Articles | Volume 20, issue 22
https://doi.org/10.5194/acp-20-14023-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-14023-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Laboratory measurements of stomatal NO2 deposition to native California trees and the role of forests in the NOx cycle
Erin R. Delaria
Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
Bryan K. Place
Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
Amy X. Liu
Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
Department of Chemistry, University of California Berkeley, Berkeley, CA, USA
Department of Earth and Planetary Science, University of California Berkeley, Berkeley, CA, USA
Related authors
Helen L. Fitzmaurice, Alexander J. Turner, Jinsol Kim, Katherine Chan, Erin R. Delaria, Catherine Newman, Paul Wooldridge, and Ronald C. Cohen
Atmos. Chem. Phys., 22, 3891–3900, https://doi.org/10.5194/acp-22-3891-2022, https://doi.org/10.5194/acp-22-3891-2022, 2022
Short summary
Short summary
On-road emissions are thought to vary widely from existing predictions, as the effects of the age of the vehicle fleet, the performance of emission control systems, and variations in speed are difficult to assess under ambient driving conditions. We present an observational approach to characterize on-road emissions and show that the method is consistent with other approaches to within ~ 3 %.
Jiaqi Shen, Ronald C. Cohen, Glenn M. Wolfe, and Xiaomeng Jin
Atmos. Chem. Phys., 25, 8701–8718, https://doi.org/10.5194/acp-25-8701-2025, https://doi.org/10.5194/acp-25-8701-2025, 2025
Short summary
Short summary
This study shows large chemical and radiative effects of smoke aerosols from fires on near-surface ozone production. Aerosol loading and NOx levels are identified as the primary factors influencing these effects. Furthermore, we show that the ratio of surface PM2.5 to NO2 tropospheric column can be used as an indicator for identifying aerosol-dominated regimes, facilitating the assessment of aerosol impacts on ozone formation through satellite observations.
Deepangsu Chatterjee, Randall V. Martin, Chi Li, Dandan Zhang, Haihui Zhu, Daven K. Henze, James H. Crawford, Ronald C. Cohen, Lok N. Lamsal, and Alexander M. Cede
Atmos. Chem. Phys., 24, 12687–12706, https://doi.org/10.5194/acp-24-12687-2024, https://doi.org/10.5194/acp-24-12687-2024, 2024
Short summary
Short summary
We investigate the hourly variation of NO2 columns and surface concentrations by applying the GEOS-Chem model to interpret aircraft and ground-based measurements over the US and Pandora sun photometer measurements over the US, Europe, and Asia. Corrections to the Pandora columns and finer model resolution improve the modeled representation of the summertime hourly variation of total NO2 columns to explain the weaker hourly variation in NO2 columns than at the surface.
Benjamin A. Nault, Katherine R. Travis, James H. Crawford, Donald R. Blake, Pedro Campuzano-Jost, Ronald C. Cohen, Joshua P. DiGangi, Glenn S. Diskin, Samuel R. Hall, L. Gregory Huey, Jose L. Jimenez, Kyung-Eun Min, Young Ro Lee, Isobel J. Simpson, Kirk Ullmann, and Armin Wisthaler
Atmos. Chem. Phys., 24, 9573–9595, https://doi.org/10.5194/acp-24-9573-2024, https://doi.org/10.5194/acp-24-9573-2024, 2024
Short summary
Short summary
Ozone (O3) is a pollutant formed from the reactions of gases emitted from various sources. In urban areas, the density of human activities can increase the O3 formation rate (P(O3)), thus impacting air quality and health. Observations collected over Seoul, South Korea, are used to constrain P(O3). A high local P(O3) was found; however, local P(O3) was partly reduced due to compounds typically ignored. These observations also provide constraints for unmeasured compounds that will impact P(O3).
Katherine R. Travis, Benjamin A. Nault, James H. Crawford, Kelvin H. Bates, Donald R. Blake, Ronald C. Cohen, Alan Fried, Samuel R. Hall, L. Gregory Huey, Young Ro Lee, Simone Meinardi, Kyung-Eun Min, Isobel J. Simpson, and Kirk Ullman
Atmos. Chem. Phys., 24, 9555–9572, https://doi.org/10.5194/acp-24-9555-2024, https://doi.org/10.5194/acp-24-9555-2024, 2024
Short summary
Short summary
Human activities result in the emission of volatile organic compounds (VOCs) that contribute to air pollution. Detailed VOC measurements were taken during a field study in South Korea. When compared to VOC inventories, large discrepancies showed underestimates from chemical products, liquefied petroleum gas, and long-range transport. Improved emissions and chemistry of these VOCs better described urban pollution. The new chemical scheme is relevant to urban areas and other VOC sources.
Qindan Zhu, Rebecca H. Schwantes, Matthew Coggon, Colin Harkins, Jordan Schnell, Jian He, Havala O. T. Pye, Meng Li, Barry Baker, Zachary Moon, Ravan Ahmadov, Eva Y. Pfannerstill, Bryan Place, Paul Wooldridge, Benjamin C. Schulze, Caleb Arata, Anthony Bucholtz, John H. Seinfeld, Carsten Warneke, Chelsea E. Stockwell, Lu Xu, Kristen Zuraski, Michael A. Robinson, J. Andrew Neuman, Patrick R. Veres, Jeff Peischl, Steven S. Brown, Allen H. Goldstein, Ronald C. Cohen, and Brian C. McDonald
Atmos. Chem. Phys., 24, 5265–5286, https://doi.org/10.5194/acp-24-5265-2024, https://doi.org/10.5194/acp-24-5265-2024, 2024
Short summary
Short summary
Volatile organic compounds (VOCs) fuel the production of air pollutants like ozone and particulate matter. The representation of VOC chemistry remains challenging due to its complexity in speciation and reactions. Here, we develop a chemical mechanism, RACM2B-VCP, that better represents VOC chemistry in urban areas such as Los Angeles. We also discuss the contribution of VOCs emitted from volatile chemical products and other anthropogenic sources to total VOC reactivity and O3.
Milan Y. Patel, Pietro F. Vannucci, Jinsol Kim, William M. Berelson, and Ronald C. Cohen
Atmos. Meas. Tech., 17, 1051–1060, https://doi.org/10.5194/amt-17-1051-2024, https://doi.org/10.5194/amt-17-1051-2024, 2024
Short summary
Short summary
Low-cost particulate matter (PM) sensors are becoming increasingly common in community monitoring and atmospheric research, but these sensors require proper calibration to provide accurate reporting. Here, we propose a hygroscopic growth calibration scheme that evolves in time to account for seasonal changes in hygroscopic growth. In San Francisco and Los Angeles, CA, applying a seasonal hygroscopic growth calibration can account for sensor biases driven by the seasonal cycles in PM composition.
Clara M. Nussbaumer, Bryan K. Place, Qindan Zhu, Eva Y. Pfannerstill, Paul Wooldridge, Benjamin C. Schulze, Caleb Arata, Ryan Ward, Anthony Bucholtz, John H. Seinfeld, Allen H. Goldstein, and Ronald C. Cohen
Atmos. Chem. Phys., 23, 13015–13028, https://doi.org/10.5194/acp-23-13015-2023, https://doi.org/10.5194/acp-23-13015-2023, 2023
Short summary
Short summary
NOx is a precursor to hazardous tropospheric ozone and can be emitted from various anthropogenic sources. It is important to quantify NOx emissions in urban environments to improve the local air quality, which still remains a challenge, as sources are heterogeneous in space and time. In this study, we calculate NOx emissions over Los Angeles, based on aircraft measurements in June 2021, and compare them to a local emission inventory, which we find mostly overpredicts the measured values.
Eva Y. Pfannerstill, Caleb Arata, Qindan Zhu, Benjamin C. Schulze, Roy Woods, John H. Seinfeld, Anthony Bucholtz, Ronald C. Cohen, and Allen H. Goldstein
Atmos. Chem. Phys., 23, 12753–12780, https://doi.org/10.5194/acp-23-12753-2023, https://doi.org/10.5194/acp-23-12753-2023, 2023
Short summary
Short summary
The San Joaquin Valley is an agricultural area with poor air quality. Organic gases drive the formation of hazardous air pollutants. Agricultural emissions of these gases are not well understood and have rarely been quantified at landscape scale. By combining aircraft-based emission measurements with land cover information, we found mis- or unrepresented emission sources. Our results help in understanding of pollution sources and in improving predictions of air quality in agricultural regions.
Qindan Zhu, Bryan Place, Eva Y. Pfannerstill, Sha Tong, Huanxin Zhang, Jun Wang, Clara M. Nussbaumer, Paul Wooldridge, Benjamin C. Schulze, Caleb Arata, Anthony Bucholtz, John H. Seinfeld, Allen H. Goldstein, and Ronald C. Cohen
Atmos. Chem. Phys., 23, 9669–9683, https://doi.org/10.5194/acp-23-9669-2023, https://doi.org/10.5194/acp-23-9669-2023, 2023
Short summary
Short summary
Nitrogen oxide (NOx) is a hazardous air pollutant, and it is the precursor of short-lived climate forcers like tropospheric ozone and aerosol particles. While NOx emissions from transportation has been strictly regulated, soil NOx emissions are overlooked. We use the airborne flux measurements to observe NOx emissions from highways and urban and cultivated soil land cover types. We show non-negligible soil NOx emissions, which are significantly underestimated in current model simulations.
Bryan K. Place, William T. Hutzell, K. Wyat Appel, Sara Farrell, Lukas Valin, Benjamin N. Murphy, Karl M. Seltzer, Golam Sarwar, Christine Allen, Ivan R. Piletic, Emma L. D'Ambro, Emily Saunders, Heather Simon, Ana Torres-Vasquez, Jonathan Pleim, Rebecca H. Schwantes, Matthew M. Coggon, Lu Xu, William R. Stockwell, and Havala O. T. Pye
Atmos. Chem. Phys., 23, 9173–9190, https://doi.org/10.5194/acp-23-9173-2023, https://doi.org/10.5194/acp-23-9173-2023, 2023
Short summary
Short summary
Ground-level ozone is a pollutant with adverse human health and ecosystem effects. Air quality models allow scientists to understand the chemical production of ozone and demonstrate impacts of air quality management plans. In this work, the role of multiple systems in ozone production was investigated for the northeastern US in summer. Model updates to chemical reaction rates and monoterpene chemistry were most influential in decreasing predicted ozone and improving agreement with observations.
Havala O. T. Pye, Bryan K. Place, Benjamin N. Murphy, Karl M. Seltzer, Emma L. D'Ambro, Christine Allen, Ivan R. Piletic, Sara Farrell, Rebecca H. Schwantes, Matthew M. Coggon, Emily Saunders, Lu Xu, Golam Sarwar, William T. Hutzell, Kristen M. Foley, George Pouliot, Jesse Bash, and William R. Stockwell
Atmos. Chem. Phys., 23, 5043–5099, https://doi.org/10.5194/acp-23-5043-2023, https://doi.org/10.5194/acp-23-5043-2023, 2023
Short summary
Short summary
Chemical mechanisms describe how emissions from vehicles, vegetation, and other sources are chemically transformed in the atmosphere to secondary products including criteria and hazardous air pollutants. The Community Regional Atmospheric Chemistry Multiphase Mechanism integrates gas-phase radical chemistry with pathways to fine-particle mass. New species were implemented, resulting in a bottom-up representation of organic aerosol, which is required for accurate source attribution of pollutants.
Forwood Wiser, Bryan K. Place, Siddhartha Sen, Havala O. T. Pye, Benjamin Yang, Daniel M. Westervelt, Daven K. Henze, Arlene M. Fiore, and V. Faye McNeill
Geosci. Model Dev., 16, 1801–1821, https://doi.org/10.5194/gmd-16-1801-2023, https://doi.org/10.5194/gmd-16-1801-2023, 2023
Short summary
Short summary
We developed a reduced model of atmospheric isoprene oxidation, AMORE-Isoprene 1.0. It was created using a new Automated Model Reduction (AMORE) method designed to simplify complex chemical mechanisms with minimal manual adjustments to the output. AMORE-Isoprene 1.0 has improved accuracy and similar size to other reduced isoprene mechanisms. When included in the CRACMM mechanism, it improved the accuracy of EPA’s CMAQ model predictions for the northeastern USA compared to observations.
Chi Li, Randall V. Martin, Ronald C. Cohen, Liam Bindle, Dandan Zhang, Deepangsu Chatterjee, Hongjian Weng, and Jintai Lin
Atmos. Chem. Phys., 23, 3031–3049, https://doi.org/10.5194/acp-23-3031-2023, https://doi.org/10.5194/acp-23-3031-2023, 2023
Short summary
Short summary
Models are essential to diagnose the significant effects of nitrogen oxides (NOx) on air pollution. We use an air quality model to illustrate the variability of NOx resolution-dependent simulation biases; how these biases depend on specific chemical environments, driving mechanisms, and vertical variabilities; and how these biases affect the interpretation of satellite observations. High-resolution simulations are thus critical to accurately interpret NOx and its relevance to air quality.
Amir H. Souri, Matthew S. Johnson, Glenn M. Wolfe, James H. Crawford, Alan Fried, Armin Wisthaler, William H. Brune, Donald R. Blake, Andrew J. Weinheimer, Tijl Verhoelst, Steven Compernolle, Gaia Pinardi, Corinne Vigouroux, Bavo Langerock, Sungyeon Choi, Lok Lamsal, Lei Zhu, Shuai Sun, Ronald C. Cohen, Kyung-Eun Min, Changmin Cho, Sajeev Philip, Xiong Liu, and Kelly Chance
Atmos. Chem. Phys., 23, 1963–1986, https://doi.org/10.5194/acp-23-1963-2023, https://doi.org/10.5194/acp-23-1963-2023, 2023
Short summary
Short summary
We have rigorously characterized different sources of error in satellite-based HCHO / NO2 tropospheric columns, a widely used metric for diagnosing near-surface ozone sensitivity. Specifically, the errors were categorized/quantified into (i) an inherent chemistry error, (ii) the decoupled relationship between columns and the near-surface concentration, (iii) the spatial representativeness error of ground satellite pixels, and (iv) the satellite retrieval errors.
Viral Shah, Daniel J. Jacob, Ruijun Dang, Lok N. Lamsal, Sarah A. Strode, Stephen D. Steenrod, K. Folkert Boersma, Sebastian D. Eastham, Thibaud M. Fritz, Chelsea Thompson, Jeff Peischl, Ilann Bourgeois, Ilana B. Pollack, Benjamin A. Nault, Ronald C. Cohen, Pedro Campuzano-Jost, Jose L. Jimenez, Simone T. Andersen, Lucy J. Carpenter, Tomás Sherwen, and Mat J. Evans
Atmos. Chem. Phys., 23, 1227–1257, https://doi.org/10.5194/acp-23-1227-2023, https://doi.org/10.5194/acp-23-1227-2023, 2023
Short summary
Short summary
NOx in the free troposphere (above 2 km) affects global tropospheric chemistry and the retrieval and interpretation of satellite NO2 measurements. We evaluate free tropospheric NOx in global atmospheric chemistry models and find that recycling NOx from its reservoirs over the oceans is faster than that simulated in the models, resulting in increases in simulated tropospheric ozone and OH. Over the U.S., free tropospheric NO2 contributes the majority of the tropospheric NO2 column in summer.
Helen L. Fitzmaurice and Ronald C. Cohen
Atmos. Chem. Phys., 22, 15403–15411, https://doi.org/10.5194/acp-22-15403-2022, https://doi.org/10.5194/acp-22-15403-2022, 2022
Short summary
Short summary
We develop a novel method for finding heavy-duty vehicle (HDV) emission factors (g PM kg fuel) using regulatory sensor networks and publicly available traffic data. We find that particulate matter emission factors have decreased by a factor of ~ 9 in the past decade in the San Francisco Bay area. Because of the wide availability of similar data sets across the USA and globally, this method could be applied to other settings to understand long-term trends and regional differences in HDV emissions.
Glenn M. Wolfe, Thomas F. Hanisco, Heather L. Arkinson, Donald R. Blake, Armin Wisthaler, Tomas Mikoviny, Thomas B. Ryerson, Ilana Pollack, Jeff Peischl, Paul O. Wennberg, John D. Crounse, Jason M. St. Clair, Alex Teng, L. Gregory Huey, Xiaoxi Liu, Alan Fried, Petter Weibring, Dirk Richter, James Walega, Samuel R. Hall, Kirk Ullmann, Jose L. Jimenez, Pedro Campuzano-Jost, T. Paul Bui, Glenn Diskin, James R. Podolske, Glen Sachse, and Ronald C. Cohen
Atmos. Chem. Phys., 22, 4253–4275, https://doi.org/10.5194/acp-22-4253-2022, https://doi.org/10.5194/acp-22-4253-2022, 2022
Short summary
Short summary
Smoke plumes are chemically complex. This work combines airborne observations of smoke plume composition with a photochemical model to probe the production of ozone and the fate of reactive gases in the outflow of a large wildfire. Model–measurement comparisons illustrate how uncertain emissions and chemical processes propagate into simulated chemical evolution. Results provide insight into how this system responds to perturbations, which can help guide future observation and modeling efforts.
Helen L. Fitzmaurice, Alexander J. Turner, Jinsol Kim, Katherine Chan, Erin R. Delaria, Catherine Newman, Paul Wooldridge, and Ronald C. Cohen
Atmos. Chem. Phys., 22, 3891–3900, https://doi.org/10.5194/acp-22-3891-2022, https://doi.org/10.5194/acp-22-3891-2022, 2022
Short summary
Short summary
On-road emissions are thought to vary widely from existing predictions, as the effects of the age of the vehicle fleet, the performance of emission control systems, and variations in speed are difficult to assess under ambient driving conditions. We present an observational approach to characterize on-road emissions and show that the method is consistent with other approaches to within ~ 3 %.
Douglas A. Day, Pedro Campuzano-Jost, Benjamin A. Nault, Brett B. Palm, Weiwei Hu, Hongyu Guo, Paul J. Wooldridge, Ronald C. Cohen, Kenneth S. Docherty, J. Alex Huffman, Suzane S. de Sá, Scot T. Martin, and Jose L. Jimenez
Atmos. Meas. Tech., 15, 459–483, https://doi.org/10.5194/amt-15-459-2022, https://doi.org/10.5194/amt-15-459-2022, 2022
Short summary
Short summary
Particle-phase nitrates are an important component of atmospheric aerosols and chemistry. In this paper, we systematically explore the application of aerosol mass spectrometry (AMS) to quantify the organic and inorganic nitrate fractions of aerosols in the atmosphere. While AMS has been used for a decade to quantify nitrates, methods are not standardized. We make recommendations for a more universal approach based on this analysis of a large range of field and laboratory observations.
Alexander J. Turner, Philipp Köhler, Troy S. Magney, Christian Frankenberg, Inez Fung, and Ronald C. Cohen
Biogeosciences, 18, 6579–6588, https://doi.org/10.5194/bg-18-6579-2021, https://doi.org/10.5194/bg-18-6579-2021, 2021
Short summary
Short summary
This work builds a high-resolution estimate (500 m) of gross primary productivity (GPP) over the US using satellite measurements of solar-induced chlorophyll fluorescence (SIF) from the TROPOspheric Monitoring Instrument (TROPOMI) between 2018 and 2020. We identify ecosystem-specific scaling factors for estimating gross primary productivity (GPP) from TROPOMI SIF. Extreme precipitation events drive four regional GPP anomalies that account for 28 % of year-to-year GPP differences across the US.
Xiaomeng Jin, Qindan Zhu, and Ronald C. Cohen
Atmos. Chem. Phys., 21, 15569–15587, https://doi.org/10.5194/acp-21-15569-2021, https://doi.org/10.5194/acp-21-15569-2021, 2021
Short summary
Short summary
We describe direct estimates of NOx emissions and lifetimes for biomass burning plumes using daily TROPOMI retrievals of NO2. Satellite-derived NOx emission factors are consistent with those from in situ measurements. We observe decreasing NOx lifetime with fire intensity, which is due to the increase in NOx abundance and radical production. Our findings suggest promise for applying space-based observations to track the emissions and chemical evolution of reactive nitrogen from wildfires.
Erin R. Delaria, Jinsol Kim, Helen L. Fitzmaurice, Catherine Newman, Paul J. Wooldridge, Kevin Worthington, and Ronald C. Cohen
Atmos. Meas. Tech., 14, 5487–5500, https://doi.org/10.5194/amt-14-5487-2021, https://doi.org/10.5194/amt-14-5487-2021, 2021
Short summary
Short summary
The use of a dense network of low-cost CO2 sensors is an attractive option for measuring CO2 emissions in cities. However, these low-cost sensors are also subject to uncertainties. Here, we describe a novel method of field calibration for correcting temperature-related errors in the CO2 sensors deployed in the BEACO2N network. We show that with this temperature correction, we can achieve a sufficiently low network error to allow for the evaluation of CO2 emissions at a neighborhood scale.
Xueling Liu, Arthur P. Mizzi, Jeffrey L. Anderson, Inez Fung, and Ronald C. Cohen
Atmos. Chem. Phys., 21, 9573–9583, https://doi.org/10.5194/acp-21-9573-2021, https://doi.org/10.5194/acp-21-9573-2021, 2021
Short summary
Short summary
Observations of winds in the planetary boundary layer remain sparse, making it challenging to simulate and predict the atmospheric conditions that are most important for describing and predicting urban air quality. Here we investigate the application of data assimilation of NO2 columns as will be observed from geostationary orbit to improve predictions and retrospective analysis of wind fields in the boundary layer.
Cited articles
Almaraz, M., Bai, E., Wang, C., Trousdell, J., Conley, S., Faloona, I., and
Houlton, B.: Agriculture is a major source of NOx pollution in California,
Sci. Adv., 4, eaao3477, https://doi.org/10.1126/sciadv.aao3477, 2018. a
Alvarado, M. J.,
Logan, J. A., Mao, J., Apel, E., Riemer, D., Blake, D., Cohen, R. C., Min, K.-E., Perring, A. E.,
Browne, E. C., Wooldridge, P. J., Diskin, G. S., Sachse, G. W., Fuelberg, H., Sessions, W. R.,
Harrigan, D. L., Huey, G., Liao, J., Case-Hanks, A., Jimenez, J. L., Cubison, M. J., Vay, S. A.,
Weinheimer, A. J., Knapp, D. J., Montzka, D. D., Flocke, F. M., Pollack, I. B., Wennberg, P. O.,
Kurten, A., Crounse, J., Clair, J. M. St., Wisthaler, A., Mikoviny, T., Yantosca, R. M., Carouge,
C. C., and Le Sager, P.: Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and
their impact on ozone: an integrated analysis of aircraft and satellite observations,
Atmos. Chem. Phys., 10, 9739–9760, https://doi.org/10.5194/acp-10-9739-2010, 2010. a
Ambrose, A. R., Sillett, S. C., Koch, G. W., Van Pelt, R., Antoine, M. E., and Dawson, T. E.:
Effects of height on treetop transpiration and stomatal conductance in coast redwood (Sequoia
sempervirens), Tree Physiol., 30, 1260–1272, https://doi.org/10.1093/treephys/tpq064, 2010. a, b
Ammann,
M., von Ballmoos, P., Stalder, M., Suter, M., and Brunold, C.: Uptake and assimilation of
atmospheric NO2–N by spruce needles (Picea abies): A field study, Water Air Soil
Pollut., 85, 1497–1502, https://doi.org/10.1007/BF00477193, 1995. a
Amnuaylojaroen, T., Barth, M. C., Emmons,
L. K., Carmichael, G. R., Kreasuwun, J., Prasitwattanaseree, S., and Chantara, S.: Effect of
different emission inventories on modeled ozone and carbon monoxide in Southeast Asia,
Atmos. Chem. Phys., 14, 12983–13012, https://doi.org/10.5194/acp-14-12983-2014, 2014. a
Andrews, M.: The partitioning of nitrate assimilation between
root and shoot of higher plants, Plant Cell Environ., 9, 511–519,
https://doi.org/10.1111/1365-3040.ep11616228, 1986. a
Arango-Velez, A., El Kayal, W., Copeland, C. C. J., Zaharia, L. I., Lusebrink,
I., and Cooke, J. E. K.: Differences in defence responses of Pinus contorta and Pinus banksiana to
the mountain pine beetle fungal associate Grosmannia clavigera are affected by water deficit,
Plant Cell Environ., 39, 726–744, https://doi.org/10.1111/pce.12615, 2016. a
Bahrun, A., Jensen,
C. R., Asch, F., and Mogensen, V. O.: Drought-induced changes in xylem pH, ionic composition, and
ABA concentration act as early signals in field-grown maize (Zea mays L.), J. Exp. Bot., 53,
251–263, https://doi.org/10.1093/jexbot/53.367.251, 2002. a
Baldocchi, D. D., Hicks,
B. B., and Camara, P.: A canopy stomatal resistance model for gaseous deposition to vegetated
surfaces, Atmos. Environ. (1967), 21, 91–101, https://doi.org/10.1016/0004-6981(87)90274-5, 1987. a
Bechtold, William A.; Patterson, P. L.: The enhanced forest
inventory and analysis program - national sampling design and estimation procedures,
Gen. tech. rep., US Department of Agriculture, Forest Service, Southern Research Station,
Asheville, NC, https://doi.org/10.2737/SRS-GTR-80, 2005. a
Breuninger, C., Oswald, R., Kesselmeier, J., and Meixner, F. X.: The dynamic chamber method: trace
gas exchange fluxes (NO, NO2, O3) between plants and the atmosphere in the
laboratory and in the field, Atmos. Meas. Tech., 5, 955–989, https://doi.org/10.5194/amt-5-955-2012, 2012. a
Breuninger,
C., Meixner, F. X., and Kesselmeier, J.: Field investigations of nitrogen dioxide (NO2)
exchange between plants and the atmosphere, Atmos. Chem. Phys., 13, 773–790,
https://doi.org/10.5194/acp-13-773-2013, 2013. a, b, c, d
Brown, S. S., Dibb, J. E., Stark, H., Aldener, M.,
Vozella, M., Whitlow, S., Williams, E. J., Lerner, B. M., Jakoubek, R., Middlebrook, A. M.,
DeGouw, J. A., Warneke, C., Goldan, P. D., Kuster, W. C., Angevine, W. M., Sueper, D. T., Quinn,
P. K., Bates, T. S., Meagher, J. F., Fehsenfeld, F. C., and Ravishankara, A. R.: Nighttime removal
of NOx in the summer marine boundary layer, Geophys. Res. Lett., 31, L07108, https://doi.org/10.1029/2004GL019412, 2004. a
Brown, S. S., Ryerson, T. B., Wollny,
A. G., Brock, C. A., Peltier, R., Sullivan, A. P., Weber, R. J., Dubé, W. P., Trainer, M.,
Meagher, J. F., Fehsenfeld, F. C., and Ravishankara, A. R.: Variability in Nocturnal Nitrogen
Oxide Processing and Its Role in Regional Air Quality, Science, 311, 67–70,
https://doi.org/10.1126/science.1120120, 2006. a
Cantrell,
C. A., Davidson, J. A., Busarow, K. L., and Calvert, J. G.: The CH3CHO-NO3
reaction and possible nighttime PAN generation, J. Geophys. Res.-Atmos., 91, 5347–5353,
https://doi.org/10.1029/JD091iD05p05347, 1986. a
Chen, J.,
Wu, F.-H., Liu, T.-W., Chen, L., Xiao, Q., Dong, X.-J., He, J.-X., Pei, Z.-M., and Zheng, H.-L.:
Emissions of nitric oxide from 79 plant species in response to simulated nitrogen deposition,
Environ. Pollut., 160, 192–200, https://doi.org/10.1016/j.envpol.2011.09.007, 2012. a, b
Crowley, J. N., Schuster, G., Pouvesle, N., Parchatka, U., Fischer, H.,
Bonn, B., Bingemer, H., and Lelieveld, J.: Nocturnal nitrogen oxides at a rural mountain-site in
south-western Germany, Atmos. Chem. Phys., 10, 2795–2812, https://doi.org/10.5194/acp-10-2795-2010, 2010. a
Crowley, J. N., Pouvesle, N., Phillips, G. J., Axinte, R., Fischer, H., Petäjä, T., Nölscher, A.,
Williams, J., Hens, K., Harder, H., Martinez-Harder, M., Novelli, A., Kubistin, D., Bohn, B., and
Lelieveld, J.: Insights into HOx and ROx chemistry in the boreal forest via measurement of
peroxyacetic acid, peroxyacetic nitric anhydride (PAN) and hydrogen peroxide, Atmos. Chem. Phys.,
18, 13457–13479, https://doi.org/10.5194/acp-18-13457-2018, 2018. a
Crutzen, P. J.: The Role of NO and NO2 in the
Chemistry of the Troposphere and Stratosphere, Annu. Rev. Earth Planet. Sci., 7, 443–472,
https://doi.org/10.1146/annurev.ea.07.050179.002303, 1979. a
Datta, N., Rao, L.,
Guha-Mukherjee, S., and Sopory, S. K.: Regulation of nitrate reductase activity by ammonium in
wheat, Plant Sci. Lett., 20, 305–313, https://doi.org/10.1016/0304-4211(81)90245-5, 1981. a
Dawson, T. E., Burgess, S. S. O., Tu, K. P., Oliveira, R. S., Santiago,
L. S., Fisher, J. B., Simonin, K. A., and Ambrose, A. R.: Nighttime transpiration in woody plants
from contrasting ecosystems, Tree Physiol., 27, 561–575, https://doi.org/10.1093/treephys/27.4.561,
2007. a, b
Decina, S. M.,
Templer, P. H., Hutyra, L. R., Gately, C. K., and Rao, P.: Variability, drivers, and effects of
atmospheric nitrogen inputs across an urban area: Emerging patterns among human activities, the
atmosphere, and soils, Sci. Total Environ., 609, 1524–1534,
https://doi.org/10.1016/j.scitotenv.2017.07.166, 2017. a
Delaria, E. R. and Cohen, R. C.: A model-based
analysis of foliar NOx deposition, Atmos. Chem. Phys., 20, 2123–2141,
https://doi.org/10.5194/acp-20-2123-2020, 2020. a
Dillon,
M. B., Lamanna, M. S., Schade, G. W., Goldstein, A. H., and Cohen, R. C.: Chemical evolution of
the Sacramento urban plume: Transport and oxidation, J. Geophys. Res.-Atmos., 107, ACH 3–1–ACH
3–15, https://doi.org/10.1029/2001JD000969, 2002. a
Drake, P. L., Froend, R. H., and
Franks, P. J.: Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal
conductance, J. Exp. Bot., 64, 495–505, https://doi.org/10.1093/jxb/ers347, 2013. a, b
Eller, A. and Sparks, J.: Predicting leaf-level fluxes
of O3 and NO2: The relative roles of diffusion and biochemical processes, Plant Cell Environ., 29,
1742–1750, https://doi.org/10.1111/j.1365-3040.2006.01546.x, 2006. a
Fast, J. D., Allan, J., Bahreini, R., Craven, J.,
Emmons, L., Ferrare, R., Hayes, P. L., Hodzic, A., Holloway, J., Hostetler, C., Jimenez, J. L.,
Jonsson, H., Liu, S., Liu, Y., Metcalf, A., Middlebrook, A., Nowak, J., Pekour, M., Perring, A.,
Russell, L., Sedlacek, A., Seinfeld, J., Setyan, A., Shilling, J., Shrivastava, M., Springston,
S., Song, C., Subramanian, R., Taylor, J. W., Vinoj, V., Yang, Q., Zaveri, R. A., and Zhang, Q.:
Modeling regional aerosol and aerosol precursor variability over California and its sensitivity to
emissions and long-range transport during the 2010 CalNex and CARES campaigns, Atmos. Chem. Phys.,
14, 10013–10060, https://doi.org/10.5194/acp-14-10013-2014, 2014. a
Fisher,
J. B., Baldocchi, D. D., Misson, L., Dawson, T. E., and Goldstein, A. H.: What the towers don't
see at night: nocturnal sap flow in trees and shrubs at two AmeriFlux sites in California, Tree
Physiol., 27, 597–610, https://doi.org/10.1093/treephys/27.4.597, 2007. a
Forest Inventory and Analysis: The Forest
Inventory and Analysis Database: Database description and user guide version 6.0.1 for Phase 3,
available at: http://www.fia.fs.fed.us/library/database-documentation/ (last access: 18 February 2020), 2014. a
Grantz, D. A., Linscheid,
B. S., and Grulke, N. E.: Differential responses of stomatal kinetics and steady-state conductance
to abscisic acid in a fern: comparison with a gymnosperm and an angiosperm, New Phytol., 222,
1883–1892, https://doi.org/10.1111/nph.15736, 2019. a, b
Gut, A., Scheibe, M.,
Rottenberger, S., Rummel, U., Welling, M., Ammann, C., Kirkman, G. A., Kuhn, U., Meixner, F. X.,
Kesselmeier, J., Lehmann, B. E., Schmidt, W., Müller, E., and Piedade, M. T. F.: Exchange fluxes
of NO2 and O3 at soil and leaf surfaces in an Amazonian rain forest, J. Geophys. Res.-Atmos., 107,
LBA 27–1–LBA 27–15, https://doi.org/10.1029/2001JD000654, 2002. a
Hari,
P., Raivonen, M., Vesala, T., Munger, J., Pilegaard, K., and Kulmala, M.: Ultraviolet light and
leaf emission of NOx, Nature, 422, 134–134, https://doi.org/10.1038/422134a, 2003. a
Heidari, B., Matre, P., Nemie-Feyissa, D., Meyer, C., Rognli, O. A.,
Møller, S. G., and Lillo, C.: Protein Phosphatase 2A B55 and A Regulatory Subunits Interact
with Nitrate Reductase and Are Essential for Nitrate Reductase Activation, Plant Physiol., 156,
165–172, https://doi.org/10.1104/pp.111.172734, 2011. a
Henry, C. L., John, G. P., Pan, R., Bartlett, M. K., Fletcher, L. R., Scoffoni, C., and Sack, L.:
A stomatal safety-efficiency trade-off constrains responses to leaf dehydration, Nat. Commun., 10, 3398, https://doi.org/10.1038/s41467-019-11006-1, 2019. a, b, c
Hereid, D. and Monson, R.: Nitrogen Oxide Fluxes
between Corn (Zea mays L.) Leaves and the Atmosphere, Atmos. Environ., 35, 975–983,
https://doi.org/10.1016/S1352-2310(00)00342-3, 2001. a, b
Jacob, D. J. and Wofsy, S. C.: Budgets of reactive
nitrogen, hydrocarbons, and ozone over the Amazon forest during the wet season,
J. Geophys. Res.-Atmos., 95, 16737–16754, https://doi.org/10.1029/JD095iD10p16737, 1990. a, b
Joensuu, J., Raivonen, M., Kieloaho, A.-J., Altimir, N., Kolari, P., Sarjala,
T., and Bäck, J.: Does nitrate fertilization induce NOx emission from scots pine (p. sylvestris)
shoots?, Plant Soil, 388, 283–295, https://doi.org/10.1007/s11104-014-2328-x, 2014. a, b, c, d
Johansson, C.: Pine forest: a negligible sink for
atmospheric NOx in rural Sweden, Tellus B, 39, 426–438,
https://doi.org/10.1111/j.1600-0889.1987.tb00204.x, 1987. a
Kenagy, H. S., Sparks, T. L., Ebben, C. J.,
Wooldrige, P. J., Lopez-Hilfiker, F. D., Lee, B. H., Thornton, J. A., McDuffie, E. E., Fibiger,
D. L., Brown, S. S., Montzka, D. D., Weinheimer, A. J., Schroder, J. C., Campuzano-Jost, P., Day,
D. A., Jimenez, J. L., Dibb, J. E., Campos, T., Shah, V., Jaeglé, L., and Cohen, R. C.:
NOx Lifetime and NOy Partitioning During WINTER,
J. Geophys. Res.-Atmos., 123, 9813–9827, https://doi.org/10.1029/2018JD028736, 2018. a
Kolb, P. and Robberecht, R.: High temperature and
drought stress effects on survival of Pinus ponderosa seedlings, Tree Physiol., 16, 665–72,
https://doi.org/10.1093/treephys/16.8.665, 1996. a, b
Kottek, M.,
Grieser, J., Beck, C., Rudolf, B., and Rubel, F.: World Map of the Köppen-Geiger Climate
Classification Updated, Meteorol. Z., 15, 259–263, https://doi.org/10.1127/0941-2948/2006/0130, 2006. a
Laughner, J. L. and Cohen, R. C.: Direct
observation of changing NOx lifetime in North American cities, Science, 366, 723–727,
https://doi.org/10.1126/science.aax6832, 2019. a
Laughner, J. L., Zhu, Q., and
Cohen, R. C.: Evaluation of version 3.0B of the BEHR OMI NO2 product, Atmos. Meas. Tech., 12,
129–146, https://doi.org/10.5194/amt-12-129-2019, 2019. a
Lerdau, M. T., Munger, J. W., and
Jacob, D. J.: The NO2 Flux Conundrum, Science, 289, 2291–2293,
https://doi.org/10.1126/science.289.5488.2291, 2000. a
Lillo, C.: Signalling cascades integrating light-enhanced nitrate
metabolism, Biochem. J., 415, 11–19, https://doi.org/10.1042/BJ20081115, 2008. a
Maherali, H. and DeLucia, E. H.: Xylem
conductivity and vulnerability to cavitation of ponderosa pine growing in contrasting climates,
Tree Physiol., 20, 859–867, https://doi.org/10.1093/treephys/20.13.859, 2000. a, b
Maire, V., Wright, I. J.,
Prentice, I. C., Batjes, N. H., Bhaskar, R., van Bodegom, P. M., Cornwell, W. K., Ellsworth, D.,
Niinemets, l., Ordonez, A., Reich, P. B., and Santiago, L. S.: Global effects of soil and climate
on leaf photosynthetic traits and rates, Global Ecol. Biogeogr., 24, 706–717,
https://doi.org/10.1111/geb.12296, 2015. a, b, c, d, e, f
Manter, D. and Kavanagh, K.: Stomatal regulation in
Douglas fir following a fungal-mediated chronic reduction in leaf area, Trees, 17, 485–491,
https://doi.org/10.1007/s00468-003-0262-2, 2003. a
Manter, D., Bond,
B., Kavanagh, K., Rosso, P., and Filip, G.: Pseudothecia of Swiss needle cast fungus,
Phaeocryptopus gaeumannii, physically block stomata of Douglas fir, reducing CO2
assimilation, New Phytol., 148, 481–491, https://doi.org/10.1046/j.1469-8137.2000.00779.x, 2000. a
Massman, W.: A review of the molecular diffusivities of
H2O, CO2, CH4, CO, O3, SO2, NH3,
N2O, NO, and NO2 in air, O2 and N2 near STP,
Atmos. Environ., 32, 1111–1127, https://doi.org/10.1016/S1352-2310(97)00391-9, 1998. a
Matzner, S., Rice, K., and
Richards, J.: Patterns of stomatal conductance among blue oak (Quercus douglasii) size classes and
populations: Implications for seedling establishment, Tree Physiol., 23, 777–84,
https://doi.org/10.1093/treephys/23.11.777, 2003. a, b
McCarty, G. and Bremner, J.: Regulation of
assimilatory nitrate reductase activity in soil by microbial assimilation of ammonium,
P. Natl. Acad. Sci. USA, 89, 453–456, https://doi.org/10.1073/pnas.89.2.453, 1992. a
Murray, M., Soh, W. K., Yiotis, C., Batke, S., Parnell, A. C.,
Spicer, R. A., Lawson, T., Caballero, R., Wright, I. J., Purcell, C., and McElwain, J. C.:
Convergence in Maximum Stomatal Conductance of C3 Woody Angiosperms in Natural Ecosystems Across
Bioclimatic Zones, Front. Plant Sci., 10, 558, https://doi.org/10.3389/fpls.2019.00558, 2019. a, b, c, d
Musselman, R. C. and Minnick, T. J.: Nocturnal
stomatal conductance and ambient air quality standards for ozone, Atmos. Environ., 34, 719–733,
https://doi.org/10.1016/S1352-2310(99)00355-6, 2000. a
Myneni, R., Knyazikhin, Y., and
Park, T.: MCD15A2H MODIS/Terra+Aqua Leaf Area Index/FPAR 8-day L4 Global 500m SIN Grid V006 [Data
set], NASA EOSDIS Land Processes DAAC, available at: https://doi.org/10.5067/MODIS/MCD15A2H.006 (last
access: 30 June 2020), 2015. a
Ng, N. L., Brown, S. S., Archibald,
A. T., Atlas, E., Cohen, R. C., Crowley, J. N., Day, D. A., Donahue, N. M., Fry, J. L., Fuchs, H.,
Griffin, R. J., Guzman, M. I., Herrmann, H., Hodzic, A., Iinuma, Y., Jimenez, J. L.,
Kiendler-Scharr, A., Lee, B. H., Luecken, D. J., Mao, J., McLaren, R., Mutzel, A., Osthoff, H. D.,
Ouyang, B., Picquet-Varrault, B., Platt, U., Pye, H. O. T., Rudich, Y., Schwantes, R. H.,
Shiraiwa, M., Stutz, J., Thornton, J. A., Tilgner, A., Williams, B. J., and Zaveri, R. A.: Nitrate
radicals and biogenic volatile organic compounds: oxidation, mechanisms, and organic aerosol,
Atmos. Chem. Phys., 17, 2103–2162, https://doi.org/10.5194/acp-17-2103-2017, 2017. a
Nunnermacker, L. J., Kleinman, L. I., Imre, D., Daum, P. H., Lee,
Y.-N., Lee, J. H., Springston, S. R., Newman, L., and Gillani, N.: NOy
lifetimes and O3 production efficiencies in urban and power plant plumes: Analysis of
field data, J. Geophys. Res.-Atmos., 105, 9165–9176, https://doi.org/10.1029/1999JD900753, 2000. a
Okano, K. and Totsuka, T.: Absorption of nitrogen
dioxide by sunflower plants grown at various levels of nitrate, New Phytol., 102, 551–562,
https://doi.org/10.1111/j.1469-8137.1986.tb00831.x, 1986. a, b
Pape,
L., Ammann, C., Nyfeler-Brunner, A., Spirig, C., Hens, K., and Meixner, F. X.: An automated
dynamic chamber system for surface exchange measurement of non-reactive and reactive trace gases
of grassland ecosystems, Biogeosciences, 6, 405–429, https://doi.org/10.5194/bg-6-405-2009, 2009. a, b
Park, J. Y. and Lee, Y. N.: Solubility and decomposition
kinetics of nitrous acid in aqueous solution, J. Phys. Chem., 92, 6294–6302,
https://doi.org/10.1021/j100333a025, 1988. a
Perring, A. E., Wisthaler, A., Graus, M., Wooldridge, P. J.,
Lockwood, A. L., Mielke, L. H., Shepson, P. B., Hansel, A., and Cohen, R. C.: A product study of
the isoprene+NO3 reaction, Atmos. Chem. Phys., 9, 4945–4956,
https://doi.org/10.5194/acp-9-4945-2009, 2009. a, b
Pharis, R.: Comparative Drought Resistance of Five Conifers and
Foliage Moisture Content as a Viability Index, Ecology, 47, 211, https://doi.org/10.2307/1933767, 1966. a, b
Pietilainen, P. and Lahdesmaki, P.:
Effect of various concentrations of potassium nitrate and ammonium sulphate on nitrate reductase
activity in the roots and needles of Scots pine seedlings in N Finland, Ann. Bot. Fennici, 25,
201–206, 1988. a
Place, B. K., Delaria, E. R., Liu, A. X., and Cohen, R. C.: Leaf Stomatal Control over Acyl Peroxynitrate Dry Deposition to Trees,
ACS Earth and Space Chemistry, https://doi.org/10.1021/acsearthspacechem.0c00152, 2020. a, b
Raivonen, M., Bonn, B., Sanz, M. J., Vesala, T., Kulmala, M., and Hari, P.: UV-induced NOy
emissions from Scots pine: Could they originate from photolysis of deposited HNO3?,
Atmos. Environ., 40, 6201–6213, https://doi.org/10.1016/j.atmosenv.2006.03.063, 2006. a
Ramge, P., Badeck,
F.-W., Plochl, M., and Kohlmaier, G. H.: Apoplastic antioxidants as decisive elimination factors
within the uptake process of nitrogen dioxide into leaf tissues, New Phytol., 125, 771–785,
https://doi.org/10.1111/j.1469-8137.1993.tb03927.x, 1993. a
Rogers, H. H., Jeffries,
H. E., and Witherspoon, A. M.: Measuring Air Pollutant Uptake by Plants: Nitrogen Dioxide,
J. Environ. Qual., 8, 551–557, https://doi.org/10.2134/jeq1979.00472425000800040022x, 1979. a
Romer, P. S., Duffey, K. C., Wooldridge, P. J., Allen, H. M., Ayres, B. R.,
Brown, S. S., Brune, W. H., Crounse, J. D., de Gouw, J., Draper, D. C., Feiner, P. A., Fry, J. L.,
Goldstein, A. H., Koss, A., Misztal, P. K., Nguyen, T. B., Olson, K., Teng, A. P., Wennberg,
P. O., Wild, R. J., Zhang, L., and Cohen, R. C.: The lifetime of nitrogen oxides in an
isoprene-dominated forest, Atmos. Chem. Phys., 16, 7623–7637, https://doi.org/10.5194/acp-16-7623-2016,
2016. a
Romer, P. S., Duffey, K. C., Wooldridge,
P. J., Edgerton, E., Baumann, K., Feiner, P. A., Miller, D. O., Brune, W. H., Koss, A. R., de
Gouw, J. A., Misztal, P. K., Goldstein, A. H., and Cohen, R. C.: Effects of temperature-dependent
NOx emissions on continental ozone production, Atmos. Chem. Phys., 18, 2601–2614,
https://doi.org/10.5194/acp-18-2601-2018, 2018. a
Rondón, A. and Granat, L.: Studies on the dry
deposition of NO2 to coniferous species at low NO2 concentrations, Tellus B, 46, 339–352,
https://doi.org/10.3402/tellusb.v46i5.15809, 1994. a
Russell, A. G., Cass, G. R.,
and Seinfeld, J. H.: On some aspects of nighttime atmospheric chemistry, Env. Sci. Technol., 20,
1167–1172, https://doi.org/10.1021/es00153a013, 1986. a
Sarjala, T.: Effect of mycorrhiza and nitrate nutrition on
nitrate reductase activity in Scots pine seedlings, Physiol. Plantarum, 81, 89–94,
https://doi.org/10.1111/j.1399-3054.1991.tb01718.x, 1991. a
Schneider, C. A., Rasband, W. S., and Eliceiri, K. W.: A
Preliminary multiple resistance routine for deriving dry deposition velocities from measured
quantities, Nat. Meth., 9, 671–675, https://doi.org/10.1038/nmeth.2089, 2012. a
Sims, G. K., Ellsworth, T. R.,
and Mulvaney, R. L.: Microscale determination of inorganic nitrogen in water and soil extracts,
Commun. Soil Sci. Plant Anal., 26, 303–316, https://doi.org/10.1080/00103629509369298, 1995. a
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O.,
Barker, D., Duda, M. G., Huang, X.-Y., Wang, W., and Powers, J. G.: A Description of the Advanced
Research WRF Version 3, Tech. rep., National Center for Atmospheric Res., Boulder, CO, https://doi.org/10.5065/D68S4MVH, 2008. a
Sparks, J., Monson, R.,
Sparks, K., and Lerdau, M.: Leaf uptake of nitrogen dioxide (NO2) in a tropical wet forest:
Implications for tropospheric chemistry, Oecologia, 127, 214–221, https://doi.org/10.1007/s004420000594,
2001. a, b
Sparks, J. P., Roberts, J. M.,
and Monson, R. K.: The uptake of gaseous organic nitrogen by leaves: A significant global nitrogen
transfer process, Geophys. Res. Lett., 30, 2189,
https://doi.org/10.1029/2003GL018578, 2003. a
Stavrakou, T., Müller, J.-F., Boersma, K. F., van der A, R. J., Kurokawa,
J., Ohara, T., and Zhang, Q.: Key chemical NOx sink uncertainties and how they
influence top-down emissions of nitrogen oxides, Atmos. Chem. Phys., 13, 9057–9082,
https://doi.org/10.5194/acp-13-9057-2013, 2013. a
Sun, S., Moravek,
A., Trebs, I., Kesselmeier, J., and Sörgel, M.: Investigation of the influence of liquid surface
films on O3 and PAN deposition to plant leaves coated with organic/inorganic solution,
J. Geophys. Res.-Atmos., 121, 14239–14256, https://doi.org/10.1002/2016JD025519, 2016. a
Thornton, J. A.,
Wooldridge, P. J., and Cohen, R. C.: Atmospheric NO2: In Situ Laser-Induced Fluorescence
Detection at Parts per Trillion Mixing Ratios, Anal. Chem., 72, 528–539, https://doi.org/10.1021/ac9908905,
2000. a
Tischner, R.: Nitrate uptake and reduction in higher and
lower plants, Plant Cell Environ., 23, 1005–1024, https://doi.org/10.1046/j.1365-3040.2000.00595.x, 2000. a
Turner, A. J., Köhler, P., Magney, T. S., Frankenberg, C., Fung, I., and Cohen, R. C.: A double
peak in the seasonality of California's photosynthesis as observed from space, Biogeosciences, 17,
405–422, https://doi.org/10.5194/bg-17-405-2020, 2020. a
Turnipseed, A. A., Huey, L. G., Nemitz, E., Stickel, R.,
Higgs, J., Tanner, D. J., Slusher, D. L., Sparks, J. P., Flocke, F., and Guenther, A.: Eddy
covariance fluxes of peroxyacetyl nitrates (PANs) and NOy to a coniferous
forest, J. Geophys. Res.-Atmos., 111, D09304,
https://doi.org/10.1029/2005JD006631, 2006. a
Valin, L. C., Russell, A. R., and
Cohen, R. C.: Variations of OH radical in an urban plume inferred from NO2 column
measurements, Geophys. Res. Lett., 40, 1856–1860, https://doi.org/10.1002/grl.50267, 2013. a
von Caemmerer, S. and Farquhar,
G. D.: Some relationships between the biochemistry of photosynthesis and the gas exchange of
leaves, Planta, 153, 376–387, https://doi.org/10.1007/BF00384257, 1981. a, b
Wolfe, G. M., Thornton, J. A., Yatavelli, R. L. N., McKay, M., Goldstein,
A. H., LaFranchi, B., Min, K.-E., and Cohen, R. C.: Eddy covariance fluxes of acyl peroxy nitrates
(PAN, PPN and MPAN) above a Ponderosa pine forest, Atmos. Chem. Phys., 9, 615–634,
https://doi.org/10.5194/acp-9-615-2009, 2009. a
Woodin, S., PRESS, M., and Lee, J.:
Nitrate reductase activity in Sphagnum fuscum in relation to atmospheric nitrate deposition, New
Phytol., 99, 381–388, https://doi.org/10.1111/j.1469-8137.1985.tb03666.x, 2006. a
Yang, L., Jin, S., Danielson, P., Homer,
C., Gass, L., Bender, S. M., Case, A., Costello, C., Dewitz, J., Fry, J., Funk, M., Granneman, B.,
Liknes, G. C., Rigge, M., and Xian, G.: A new generation of the United States National Land Cover
Database: Requirements, research priorities, design, and implementation strategies, ISPRS
J. Photogramm. Remote S., 146, 108–123, https://doi.org/10.1016/j.isprsjprs.2018.09.006, 2018.
a
Zhang, L., Moran, M.,
Makar, P., Brook, J., and Gong, S.: Modelling gaseous dry deposition in AURAMS – A Unified
Regional Air-quality Modelling System, Atmos. Environ., 36, 537–560,
https://doi.org/10.1016/S1352-2310(01)00447-2, 2002. a
Short summary
Observations of NO2 deposition to vegetation have been widely reported, but the magnitude and mechanism remain uncertain. We use laboratory measurements to study NO2 deposition to leaves of 10 native California tree species. We report important differences in the uptake rates between species and find that this process is primarily diffusion-regulated. We suggest that processes within leaves at a cellular level represent a negligible limitation to NO2 deposition at the canopy level.
Observations of NO2 deposition to vegetation have been widely reported, but the magnitude and...
Altmetrics
Final-revised paper
Preprint