Articles | Volume 20, issue 22
Atmos. Chem. Phys., 20, 14023–14041, 2020
https://doi.org/10.5194/acp-20-14023-2020
Atmos. Chem. Phys., 20, 14023–14041, 2020
https://doi.org/10.5194/acp-20-14023-2020
Research article
19 Nov 2020
Research article | 19 Nov 2020

Laboratory measurements of stomatal NO2 deposition to native California trees and the role of forests in the NOx cycle

Erin R. Delaria et al.

Related authors

Assessing vehicle fuel efficiency using a dense network of CO2 observations
Helen L. Fitzmaurice, Alexander J. Turner, Jinsol Kim, Katherine Chan, Erin R. Delaria, Catherine Newman, Paul Wooldridge, and Ronald C. Cohen
Atmos. Chem. Phys., 22, 3891–3900, https://doi.org/10.5194/acp-22-3891-2022,https://doi.org/10.5194/acp-22-3891-2022, 2022
Short summary
A model-based analysis of foliar NOx deposition
Erin R. Delaria and Ronald C. Cohen
Atmos. Chem. Phys., 20, 2123–2141, https://doi.org/10.5194/acp-20-2123-2020,https://doi.org/10.5194/acp-20-2123-2020, 2020
Short summary
Measurements of NO and NO2 exchange between the atmosphere and Quercus agrifolia
Erin R. Delaria, Megan Vieira, Julie Cremieux, and Ronald C. Cohen
Atmos. Chem. Phys., 18, 14161–14173, https://doi.org/10.5194/acp-18-14161-2018,https://doi.org/10.5194/acp-18-14161-2018, 2018
Short summary

Related subject area

Subject: Biosphere Interactions | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
A mechanism for biogenic production and emission of MEK from MVK decoupled from isoprene biosynthesis
Luca Cappellin, Francesco Loreto, Franco Biasioli, Paolo Pastore, and Karena McKinney
Atmos. Chem. Phys., 19, 3125–3135, https://doi.org/10.5194/acp-19-3125-2019,https://doi.org/10.5194/acp-19-3125-2019, 2019
Short summary
Disentangling the rates of carbonyl sulfide (COS) production and consumption and their dependency on soil properties across biomes and land use types
Aurore Kaisermann, Jérôme Ogée, Joana Sauze, Steven Wohl, Sam P. Jones, Ana Gutierrez, and Lisa Wingate
Atmos. Chem. Phys., 18, 9425–9440, https://doi.org/10.5194/acp-18-9425-2018,https://doi.org/10.5194/acp-18-9425-2018, 2018
Short summary
H2O2 modulates the energetic metabolism of the cloud microbiome
Nolwenn Wirgot, Virginie Vinatier, Laurent Deguillaume, Martine Sancelme, and Anne-Marie Delort
Atmos. Chem. Phys., 17, 14841–14851, https://doi.org/10.5194/acp-17-14841-2017,https://doi.org/10.5194/acp-17-14841-2017, 2017
Short summary
The contribution of soil biogenic NO and HONO emissions from a managed hyperarid ecosystem to the regional NOx emissions during growing season
Buhalqem Mamtimin, Franz X. Meixner, Thomas Behrendt, Moawad Badawy, and Thomas Wagner
Atmos. Chem. Phys., 16, 10175–10194, https://doi.org/10.5194/acp-16-10175-2016,https://doi.org/10.5194/acp-16-10175-2016, 2016
Short summary
Carbonyl sulfide exchange in soils for better estimates of ecosystem carbon uptake
Mary E. Whelan, Timothy W. Hilton, Joseph A. Berry, Max Berkelhammer, Ankur R. Desai, and J. Elliott Campbell
Atmos. Chem. Phys., 16, 3711–3726, https://doi.org/10.5194/acp-16-3711-2016,https://doi.org/10.5194/acp-16-3711-2016, 2016
Short summary

Cited articles

Almaraz, M., Bai, E., Wang, C., Trousdell, J., Conley, S., Faloona, I., and Houlton, B.: Agriculture is a major source of NOx pollution in California, Sci. Adv., 4, eaao3477, https://doi.org/10.1126/sciadv.aao3477, 2018. a
Alvarado, M. J., Logan, J. A., Mao, J., Apel, E., Riemer, D., Blake, D., Cohen, R. C., Min, K.-E., Perring, A. E., Browne, E. C., Wooldridge, P. J., Diskin, G. S., Sachse, G. W., Fuelberg, H., Sessions, W. R., Harrigan, D. L., Huey, G., Liao, J., Case-Hanks, A., Jimenez, J. L., Cubison, M. J., Vay, S. A., Weinheimer, A. J., Knapp, D. J., Montzka, D. D., Flocke, F. M., Pollack, I. B., Wennberg, P. O., Kurten, A., Crounse, J., Clair, J. M. St., Wisthaler, A., Mikoviny, T., Yantosca, R. M., Carouge, C. C., and Le Sager, P.: Nitrogen oxides and PAN in plumes from boreal fires during ARCTAS-B and their impact on ozone: an integrated analysis of aircraft and satellite observations, Atmos. Chem. Phys., 10, 9739–9760, https://doi.org/10.5194/acp-10-9739-2010, 2010. a
Ambrose, A. R., Sillett, S. C., Koch, G. W., Van Pelt, R., Antoine, M. E., and Dawson, T. E.: Effects of height on treetop transpiration and stomatal conductance in coast redwood (Sequoia sempervirens), Tree Physiol., 30, 1260–1272, https://doi.org/10.1093/treephys/tpq064, 2010. a, b
Ammann, M., von Ballmoos, P., Stalder, M., Suter, M., and Brunold, C.: Uptake and assimilation of atmospheric NO2N by spruce needles (Picea abies): A field study, Water Air Soil Pollut., 85, 1497–1502, https://doi.org/10.1007/BF00477193, 1995. a
Amnuaylojaroen, T., Barth, M. C., Emmons, L. K., Carmichael, G. R., Kreasuwun, J., Prasitwattanaseree, S., and Chantara, S.: Effect of different emission inventories on modeled ozone and carbon monoxide in Southeast Asia, Atmos. Chem. Phys., 14, 12983–13012, https://doi.org/10.5194/acp-14-12983-2014, 2014. a
Download
Short summary
Observations of NO2 deposition to vegetation have been widely reported, but the magnitude and mechanism remain uncertain. We use laboratory measurements to study NO2 deposition to leaves of 10 native California tree species. We report important differences in the uptake rates between species and find that this process is primarily diffusion-regulated. We suggest that processes within leaves at a cellular level represent a negligible limitation to NO2 deposition at the canopy level.
Altmetrics
Final-revised paper
Preprint