Articles | Volume 20, issue 22
Atmos. Chem. Phys., 20, 13771–13780, 2020
https://doi.org/10.5194/acp-20-13771-2020
Atmos. Chem. Phys., 20, 13771–13780, 2020
https://doi.org/10.5194/acp-20-13771-2020
Research article
16 Nov 2020
Research article | 16 Nov 2020

Snow-induced buffering in aerosol–cloud interactions

Takuro Michibata et al.

Related authors

Incorporation of inline warm rain diagnostics into the COSP2 satellite simulator for process-oriented model evaluation
Takuro Michibata, Kentaroh Suzuki, Tomoo Ogura, and Xianwen Jing
Geosci. Model Dev., 12, 4297–4307, https://doi.org/10.5194/gmd-12-4297-2019,https://doi.org/10.5194/gmd-12-4297-2019, 2019
Short summary
The source of discrepancies in aerosol–cloud–precipitation interactions between GCM and A-Train retrievals
Takuro Michibata, Kentaroh Suzuki, Yousuke Sato, and Toshihiko Takemura
Atmos. Chem. Phys., 16, 15413–15424, https://doi.org/10.5194/acp-16-15413-2016,https://doi.org/10.5194/acp-16-15413-2016, 2016
Short summary
The effects of aerosols on water cloud microphysics and macrophysics based on satellite-retrieved data over East Asia and the North Pacific
T. Michibata, K. Kawamoto, and T. Takemura
Atmos. Chem. Phys., 14, 11935–11948, https://doi.org/10.5194/acp-14-11935-2014,https://doi.org/10.5194/acp-14-11935-2014, 2014
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Do Arctic mixed-phase clouds sometimes dissipate due to insufficient aerosol? Evidence from comparisons between observations and idealized simulations
Lucas J. Sterzinger, Joseph Sedlar, Heather Guy, Ryan R. Neely III, and Adele L. Igel
Atmos. Chem. Phys., 22, 8973–8988, https://doi.org/10.5194/acp-22-8973-2022,https://doi.org/10.5194/acp-22-8973-2022, 2022
Short summary
Contrail formation within cirrus: ICON-LEM simulations of the impact of cirrus cloud properties on contrail formation
Pooja Verma and Ulrike Burkhardt
Atmos. Chem. Phys., 22, 8819–8842, https://doi.org/10.5194/acp-22-8819-2022,https://doi.org/10.5194/acp-22-8819-2022, 2022
Short summary
Impact of Holuhraun volcano aerosols on clouds in cloud-system-resolving simulations
Mahnoosh Haghighatnasab, Jan Kretzschmar, Karoline Block, and Johannes Quaas
Atmos. Chem. Phys., 22, 8457–8472, https://doi.org/10.5194/acp-22-8457-2022,https://doi.org/10.5194/acp-22-8457-2022, 2022
Short summary
Warm and moist air intrusions into the winter Arctic: a Lagrangian view on the near-surface energy budgets
Cheng You, Michael Tjernström, and Abhay Devasthale
Atmos. Chem. Phys., 22, 8037–8057, https://doi.org/10.5194/acp-22-8037-2022,https://doi.org/10.5194/acp-22-8037-2022, 2022
Short summary
Convective updrafts near sea-breeze fronts
Shizuo Fu, Richard Rotunno, and Huiwen Xue
Atmos. Chem. Phys., 22, 7727–7738, https://doi.org/10.5194/acp-22-7727-2022,https://doi.org/10.5194/acp-22-7727-2022, 2022
Short summary

Cited articles

Abdul-Razzak, H. and Ghan, J.: A parameterization of aerosol activation 2. Multiple aerosol types, J. Geophys. Res., 105, 6837–6844, 2000. a
Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230, 1989. a, b
Beheng, K. D.: A parameterization of warm cloud microphysical conversion processes, Atmos. Res., 33, 193–206, 1994. a
Bellouin, N., Quaas, J., Morcrette, J.-J., and Boucher, O.: Estimates of aerosol radiative forcing from the MACC re-analysis, Atmos. Chem. Phys., 13, 2045–2062, https://doi.org/10.5194/acp-13-2045-2013, 2013. a
Bellouin, N., Quaas, J., Gryspeerdt, E., Kinne, S., Stier, P., Watson‐Parris, D., Boucher, O., Carslaw, K., Christensen, M., Daniau, A., Dufresne, J., Feingold, G., Fiedler, S., Forster, P., Gettelman, A., Haywood, J., Lohmann, U., Malavelle, F., Mauritsen, T., McCoy, D., Myhre, G., Mülmenstädt, J., Neubauer, D., Possner, A., Rugenstein, M., Sato, Y., Schulz, M., Schwartz, S., Sourdeval, O., Storelvmo, T., Toll, V., Winker, D., and Stevens, B.: Bounding global aerosol radiative forcing of climate change, Rev. Geophys., 58, e2019RG000660, https://doi.org/10.1029/2019rg000660, 2020. a, b
Download
Short summary
This work reveals that prognostic precipitation significantly reduces the magnitude of aerosol–cloud interactions (ERFaci), mainly due to the collection process associated with snowflakes and underlying cloud droplets. This precipitation-driven buffering effect, which is missing in traditional GCMs, can explain the model–observation discrepancy in ERFaci. These results underscore the necessity for a prognostic precipitation framework in GCMs for more reliable climate simulations.
Altmetrics
Final-revised paper
Preprint