Articles | Volume 19, issue 3
Atmos. Chem. Phys., 19, 1721–1752, 2019
https://doi.org/10.5194/acp-19-1721-2019

Special issue: Shipping and the Environment – From Regional to Global...

Atmos. Chem. Phys., 19, 1721–1752, 2019
https://doi.org/10.5194/acp-19-1721-2019

Research article 08 Feb 2019

Research article | 08 Feb 2019

Impact of a nitrogen emission control area (NECA) on the future air quality and nitrogen deposition to seawater in the Baltic Sea region

Matthias Karl et al.

Related authors

The impact of nitrogen and sulphur emissions from shipping on exceedances of critical loads in the Baltic Sea region
Sara Jutterström, Filip Moldan, Jana Moldanová, Matthias Karl, Volker Matthias, and Maximilian Posch
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-306,https://doi.org/10.5194/acp-2021-306, 2021
Revised manuscript accepted for ACP
Short summary
The urban dispersion model EPISODE v10.0 – Part 1: An Eulerian and sub-grid-scale air quality model and its application in Nordic winter conditions
Paul D. Hamer, Sam-Erik Walker, Gabriela Sousa-Santos, Matthias Vogt, Dam Vo-Thanh, Susana Lopez-Aparicio, Philipp Schneider, Martin O. P. Ramacher, and Matthias Karl
Geosci. Model Dev., 13, 4323–4353, https://doi.org/10.5194/gmd-13-4323-2020,https://doi.org/10.5194/gmd-13-4323-2020, 2020
Short summary
The impact of ship emissions on air quality and human health in the Gothenburg area – Part II: Scenarios for 2040
Martin O. P. Ramacher, Lin Tang, Jana Moldanová, Volker Matthias, Matthias Karl, Erik Fridell, and Lasse Johansson
Atmos. Chem. Phys., 20, 10667–10686, https://doi.org/10.5194/acp-20-10667-2020,https://doi.org/10.5194/acp-20-10667-2020, 2020
Short summary
The impact of ship emissions on air quality and human health in the Gothenburg area – Part 1: 2012 emissions
Lin Tang, Martin O. P. Ramacher, Jana Moldanová, Volker Matthias, Matthias Karl, Lasse Johansson, Jukka-Pekka Jalkanen, Katarina Yaramenka, Armin Aulinger, and Malin Gustafsson
Atmos. Chem. Phys., 20, 7509–7530, https://doi.org/10.5194/acp-20-7509-2020,https://doi.org/10.5194/acp-20-7509-2020, 2020
Short summary
Quantifying the contribution of shipping NOx emissions to the marine nitrogen inventory – a case study for the western Baltic Sea
Daniel Neumann, Matthias Karl, Hagen Radtke, Volker Matthias, René Friedland, and Thomas Neumann
Ocean Sci., 16, 115–134, https://doi.org/10.5194/os-16-115-2020,https://doi.org/10.5194/os-16-115-2020, 2020
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
A mass-balance-based emission inventory of non-methane volatile organic compounds (NMVOCs) for solvent use in China
Ziwei Mo, Ru Cui, Bin Yuan, Huihua Cai, Brian C. McDonald, Meng Li, Junyu Zheng, and Min Shao
Atmos. Chem. Phys., 21, 13655–13666, https://doi.org/10.5194/acp-21-13655-2021,https://doi.org/10.5194/acp-21-13655-2021, 2021
Short summary
Opinion: The germicidal effect of ambient air (open-air factor) revisited
R. Anthony Cox, Markus Ammann, John N. Crowley, Paul T. Griffiths, Hartmut Herrmann, Erik H. Hoffmann, Michael E. Jenkin, V. Faye McNeill, Abdelwahid Mellouki, Christopher J. Penkett, Andreas Tilgner, and Timothy J. Wallington
Atmos. Chem. Phys., 21, 13011–13018, https://doi.org/10.5194/acp-21-13011-2021,https://doi.org/10.5194/acp-21-13011-2021, 2021
Short summary
Impact of Athabasca oil sands operations on mercury levels in air and deposition
Ashu Dastoor, Andrei Ryjkov, Gregor Kos, Junhua Zhang, Jane Kirk, Matthew Parsons, and Alexandra Steffen
Atmos. Chem. Phys., 21, 12783–12807, https://doi.org/10.5194/acp-21-12783-2021,https://doi.org/10.5194/acp-21-12783-2021, 2021
Short summary
Study of different Carbon Bond 6 (CB6) mechanisms by using a concentration sensitivity analysis
Le Cao, Simeng Li, and Luhang Sun
Atmos. Chem. Phys., 21, 12687–12714, https://doi.org/10.5194/acp-21-12687-2021,https://doi.org/10.5194/acp-21-12687-2021, 2021
Short summary
Accelerating methane growth rate from 2010 to 2017: leading contributions from the tropics and East Asia
Yi Yin, Frederic Chevallier, Philippe Ciais, Philippe Bousquet, Marielle Saunois, Bo Zheng, John Worden, A. Anthony Bloom, Robert J. Parker, Daniel J. Jacob, Edward J. Dlugokencky, and Christian Frankenberg
Atmos. Chem. Phys., 21, 12631–12647, https://doi.org/10.5194/acp-21-12631-2021,https://doi.org/10.5194/acp-21-12631-2021, 2021
Short summary

Cited articles

Amann, M., Borken-Kleefeld, J., Cofala, J., Hettelingh, J.-P., Heyes, C., Höglund-Isaksson, L., Holland, M., Kiesewetter, G., Klimont, Z., Rafaj, P., Posch, M., Sander, R., Schöpp, W., Wagner, F., and Winiwarter, W.: The Final Policy Scenarios of the EU Clean Air Policy Package, TSAP Report #11, International Institute for Applied Systems Analysis, Laxenburg, Austria, 2014. a
Anderson, D. M., Glibert, P. M., and Burkholder, J. M.: Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences, Estuaries, 25, 704–726, https://doi.org/10.1007/BF02804901, 2002. a
Andersson-Sköld, Y. and Simpson, D.: Secondary organic aerosol formation in northern Europe: a model study, J. Geophys. Res., 106, 7357–7374, https://doi.org/10.1029/2000JD900656, 2001. a
Appel, K. W., Pouliot, G. A., Simon, H., Sarwar, G., Pye, H. O. T., Napelenok, S. L., Akhtar, F., and Roselle, S. J.: Evaluation of dust and trace metal estimates from the Community Multiscale Air Quality (CMAQ) model version 5.0, Geosci. Model Dev., 6, 883–899, https://doi.org/10.5194/gmd-6-883-2013, 2013. a, b
Appel, K. W., Napelenok, S. L., Foley, K. M., Pye, H. O. T., Hogrefe, C., Luecken, D. J., Bash, J. O., Roselle, S. J., Pleim, J. E., Foroutan, H., Hutzell, W. T., Pouliot, G. A., Sarwar, G., Fahey, K. M., Gantt, B., Gilliam, R. C., Heath, N. K., Kang, D., Mathur, R., Schwede, D. B., Spero, T. L., Wong, D. C., and Young, J. O.: Description and evaluation of the Community Multiscale Air Quality (CMAQ) modeling system version 5.1, Geosci. Model Dev., 10, 1703–1732, https://doi.org/10.5194/gmd-10-1703-2017, 2017. a
Short summary
Air emissions of nitrogen oxides from ship traffic in the Baltic Sea are a health concern in coastal areas of the Baltic Sea region. We find that the introduction of the nitrogen emission control area (NECA) is critical for reducing ship emissions of nitrogen oxides to levels that are low enough to sustainably dampen ozone production. The decline of the ship-related nitrogen deposition to the Baltic Sea between 2012 and 2040 varies between 46 % and 78 % in different regulation scenarios.
Altmetrics
Final-revised paper
Preprint