Articles | Volume 19, issue 17
https://doi.org/10.5194/acp-19-11185-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-19-11185-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of the Green Light Program on haze in the North China Plain, China
Xin Long
State Key Laboratory of Loess and Quaternary Geology, SKLLQG,
Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061,
China
Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth
Environment, Chinese Academy of Sciences, Xi'an 710061, China
School of Environment Science and Engineering, Southern University of
Science and Technology, Shenzhen 518055, China
Xuexi Tie
CORRESPONDING AUTHOR
State Key Laboratory of Loess and Quaternary Geology, SKLLQG,
Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061,
China
Center for Excellence in Urban Atmospheric Environment, Institute of
Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth
Environment, Chinese Academy of Sciences, Xi'an 710061, China
Shanghai Key Laboratory of Meteorology and Health, Shanghai, 200030,
China
National Center for Atmospheric Research, Boulder, CO 80303, USA
Jiamao Zhou
Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth
Environment, Chinese Academy of Sciences, Xi'an 710061, China
Wenting Dai
Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth
Environment, Chinese Academy of Sciences, Xi'an 710061, China
Xueke Li
Department of Geography, University of Connecticut, Storrs, Mansfield,
CT 06269, USA
Tian Feng
State Key Laboratory of Loess and Quaternary Geology, SKLLQG,
Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061,
China
Guohui Li
State Key Laboratory of Loess and Quaternary Geology, SKLLQG,
Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061,
China
Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth
Environment, Chinese Academy of Sciences, Xi'an 710061, China
Junji Cao
State Key Laboratory of Loess and Quaternary Geology, SKLLQG,
Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061,
China
Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth
Environment, Chinese Academy of Sciences, Xi'an 710061, China
Zhisheng An
State Key Laboratory of Loess and Quaternary Geology, SKLLQG,
Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061,
China
Related authors
Xuexi Tie, Xin Long, Guohui Li, Shuyu Zhao, Junji Cao, and Jianming Xu
Atmos. Chem. Phys., 19, 11267–11278, https://doi.org/10.5194/acp-19-11267-2019, https://doi.org/10.5194/acp-19-11267-2019, 2019
Short summary
Short summary
This study shows that there were often co-occurrences of high PM2.5 and O3 concentrations, which were related to high HONO, in eastern China. This result suggests that high daytime HONO can be photodissociated to OH radicals, enhancing the chemical production of O3 and suggesting that under high aerosol conditions, the chemical oxidizing process for O3 production can occur in eastern China.
Xin Long, Naifang Bei, Jiarui Wu, Xia Li, Tian Feng, Li Xing, Shuyu Zhao, Junji Cao, Xuexi Tie, Zhisheng An, and Guohui Li
Atmos. Chem. Phys., 18, 10869–10879, https://doi.org/10.5194/acp-18-10869-2018, https://doi.org/10.5194/acp-18-10869-2018, 2018
Xin Long, Xuexi Tie, Guohui Li, Junji Cao, Tian Feng, Shuyu Zhao, Li Xing, and Zhisheng An
Atmos. Chem. Phys., 18, 6353–6366, https://doi.org/10.5194/acp-18-6353-2018, https://doi.org/10.5194/acp-18-6353-2018, 2018
Short summary
Short summary
Using satellite products of MODIS and the numerical model of WRF-DUST, we proved that the ecological restoration programs in China help to reduce the dust pollution in the NCP, providing a direct and quantified answer to the ongoing debate about the effectiveness of the national ERPs. Despite the limitations of the case study, we provide some insights into the effects of ERPs on the downwind area, where heavy haze often occurs due to anthropogenic air pollutants.
Naifang Bei, Jiarui Wu, Miriam Elser, Tian Feng, Junji Cao, Imad El-Haddad, Xia Li, Rujin Huang, Zhengqiang Li, Xin Long, Li Xing, Shuyu Zhao, Xuexi Tie, André S. H. Prévôt, and Guohui Li
Atmos. Chem. Phys., 17, 14579–14591, https://doi.org/10.5194/acp-17-14579-2017, https://doi.org/10.5194/acp-17-14579-2017, 2017
Guohui Li, Naifang Bei, Junji Cao, Jiarui Wu, Xin Long, Tian Feng, Wenting Dai, Suixin Liu, Qiang Zhang, and Xuexi Tie
Atmos. Chem. Phys., 17, 2759–2774, https://doi.org/10.5194/acp-17-2759-2017, https://doi.org/10.5194/acp-17-2759-2017, 2017
Xin Long, Xuexi Tie, Junji Cao, Rujin Huang, Tian Feng, Nan Li, Suyu Zhao, Jie Tian, Guohui Li, and Qiang Zhang
Atmos. Chem. Phys., 16, 9675–9691, https://doi.org/10.5194/acp-16-9675-2016, https://doi.org/10.5194/acp-16-9675-2016, 2016
Short summary
Short summary
We studied the impact of crop field burning (CFB) on air pollution in North China Plain (NCP) using MODIS observations and the numerical model WRF-CHEM. The CFB plume emitted in southern NCP and went through a long-range transport to northern NCP. The long-range transport and the effect of mountains obviously enhanced the PM2.5 pollution in northern NCP. The prohibition of CFB should be strict not just in or around Beijing, but also on the ulterior crop growth areas of southern NCP.
N. Li, T.-M. Fu, J. J. Cao, J. Y. Zheng, Q. Y. He, X. Long, Z. Z. Zhao, N. Y. Cao, J. S. Fu, and Y. F. Lam
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-33583-2015, https://doi.org/10.5194/acpd-15-33583-2015, 2015
Revised manuscript not accepted
Minxia Shen, Kin Fai Ho, Wenting Dai, Suixin Liu, Ting Zhang, Qiyuan Wang, Jingjing Meng, Judith C. Chow, John G. Watson, Junji Cao, and Jianjun Li
Atmos. Chem. Phys., 22, 7489–7504, https://doi.org/10.5194/acp-22-7489-2022, https://doi.org/10.5194/acp-22-7489-2022, 2022
Short summary
Short summary
Looking at characteristics and δ13C compositions of dicarboxylic acids and related compounds in BB aerosols, we used a combined combustion and aging system to generate fresh and aged aerosols from burning straw. The results showed the emission factors (EFaged) of total diacids of aging experiments were around an order of magnitude higher than EFfresh. This meant that dicarboxylic acids are involved with secondary photochemical processes in the atmosphere rather than primary emissions from BB.
Yandong Tong, Veronika Pospisilova, Lu Qi, Jing Duan, Yifang Gu, Varun Kumar, Pragati Rai, Giulia Stefenelli, Liwei Wang, Ying Wang, Haobin Zhong, Urs Baltensperger, Junji Cao, Ru-Jin Huang, André S. H. Prévôt, and Jay G. Slowik
Atmos. Chem. Phys., 21, 9859–9886, https://doi.org/10.5194/acp-21-9859-2021, https://doi.org/10.5194/acp-21-9859-2021, 2021
Short summary
Short summary
We investigate SOA sources and formation processes by a field deployment of the EESI-TOF-MS and L-TOF AMS in Beijing in late autumn and early winter. Our study shows that the sources and processes giving rise to haze events in Beijing are variable and seasonally dependent: (1) in the heating season, SOA formation is driven by oxidation of aromatics from solid fuel combustion; and (2) under high-NOx and RH conditions, aqueous-phase chemistry can be a major contributor to SOA formation.
Jiarui Wu, Naifang Bei, Yuan Wang, Xia Li, Suixin Liu, Lang Liu, Ruonan Wang, Jiaoyang Yu, Tianhao Le, Min Zuo, Zhenxing Shen, Junji Cao, Xuexi Tie, and Guohui Li
Atmos. Chem. Phys., 21, 2229–2249, https://doi.org/10.5194/acp-21-2229-2021, https://doi.org/10.5194/acp-21-2229-2021, 2021
Short summary
Short summary
A source-oriented version of the WRF-Chem model is developed to conduct source identification of wintertime PM2.5 in the North China Plain. Trans-boundary transport of air pollutants generally dominates the haze pollution in Beijing and Tianjin. The air quality in Hebei, Shandong, and Shanxi is generally controlled by local emissions. Primary aerosol species, such as EC and POA, are generally controlled by local emissions, while secondary aerosol shows evident regional characteristics.
Qiyuan Wang, Huikun Liu, Ping Wang, Wenting Dai, Ting Zhang, Youzhi Zhao, Jie Tian, Wenyan Zhang, Yongming Han, and Junji Cao
Atmos. Chem. Phys., 20, 15537–15549, https://doi.org/10.5194/acp-20-15537-2020, https://doi.org/10.5194/acp-20-15537-2020, 2020
Short summary
Short summary
Light-absorbing carbonaceous (LAC) aerosol is an important influencing factor for global climate forcing. In this study, we used a receptor model coupling multi-wavelength absorption with chemical species to explore the source-specific LAC optical properties at a tropical marine monsoon climate zone. The results can improve our understanding of the LAC radiative effects caused by ship emissions.
Qiyuan Wang, Li Li, Jiamao Zhou, Jianhuai Ye, Wenting Dai, Huikun Liu, Yong Zhang, Renjian Zhang, Jie Tian, Yang Chen, Yunfei Wu, Weikang Ran, and Junji Cao
Atmos. Chem. Phys., 20, 15427–15442, https://doi.org/10.5194/acp-20-15427-2020, https://doi.org/10.5194/acp-20-15427-2020, 2020
Short summary
Short summary
Recently, China has promulgated a series of regulations to reduce air pollutants. The decreased black carbon (BC) and co-emitted pollutants could affect the interactions between BC and other aerosols, which in turn results in changes in BC. Herein, we re-assessed the characteristics of BC of a representative pollution site in northern China in the final year of the Chinese
Action Plan for the Prevention and Control of Air Pollution.
Shuyu Zhao, Tian Feng, Xuexi Tie, and Zebin Wang
Atmos. Chem. Phys., 20, 14873–14887, https://doi.org/10.5194/acp-20-14873-2020, https://doi.org/10.5194/acp-20-14873-2020, 2020
Short summary
Short summary
The Tibetan Plateau has been experiencing a rapid warming during the last 40 years, particularly in winter. The warming leads to an increase in the planetary boundary layer height and a decrease in the relative humidity in the Sichuan Basin, causing a reduction of PM2.5 concentration by 17.5 % (~25.1 μg m−3), of which the reduction in secondary aerosols is 19.7 μg m−3. These findings indicate that the warming plateau plays an important role in mitigating air quality in downstream.
Zhisheng An, Peizhen Zhang, Hendrik Vogel, Yougui Song, John Dodson, Thomas Wiersberg, Xijie Feng, Huayu Lu, Li Ai, and Youbin Sun
Sci. Dril., 28, 63–73, https://doi.org/10.5194/sd-28-63-2020, https://doi.org/10.5194/sd-28-63-2020, 2020
Short summary
Short summary
Earth has experienced remarkable climate–environmental changes in the last 65 million years. The Weihe Basin with its 6000–8000 m infill of a continuous sedimentary sequence gives a unique continental archive for the study of the Cenozoic environment and exploration of deep biospheres. This workshop report concludes key objectives of the two-phase Weihe Basin Drilling Project and the global significance of reconstructing Cenozoic climate evolution and tectonic–monsoon interaction in East Asia.
Ru-Jin Huang, Yao He, Jing Duan, Yongjie Li, Qi Chen, Yan Zheng, Yang Chen, Weiwei Hu, Chunshui Lin, Haiyan Ni, Wenting Dai, Junji Cao, Yunfei Wu, Renjian Zhang, Wei Xu, Jurgita Ovadnevaite, Darius Ceburnis, Thorsten Hoffmann, and Colin D. O'Dowd
Atmos. Chem. Phys., 20, 9101–9114, https://doi.org/10.5194/acp-20-9101-2020, https://doi.org/10.5194/acp-20-9101-2020, 2020
Short summary
Short summary
We systematically compared the submicron particle (PM1) processes in haze days with low and high relative humidity (RH) in wintertime Beijing. Nitrate had similar daytime growth rates in low-RH and high-RH pollution. OOA had a higher growth rate in low-RH pollution than in high-RH pollution. Sulfate had a decreasing trend in low-RH pollution, while it increased significantly in high-RH pollution. This distinction may be explained by the different processes affected by meteorological conditions.
Luyuan Zhang, Xiaolin Hou, Sheng Xu, Tian Feng, Peng Cheng, Yunchong Fu, and Ning Chen
Atmos. Chem. Phys., 20, 2623–2635, https://doi.org/10.5194/acp-20-2623-2020, https://doi.org/10.5194/acp-20-2623-2020, 2020
Short summary
Short summary
To trace the long-range transport of air pollutants and understand the atmospheric effect of iodine, the daily-resolution temporal variations of 129I and 127I in aerosols from a monsoonal city indicate the East Asian monsoon and fossil fuel combustion plays crucial roles on transport of 129I from Europe to East Asia and on elevated 127I concentrations. Through linking iodine isotopes with five major air pollutants, this study proposes the possible role of iodine in urban air pollution.
Xingxing Liu, Youbin Sun, Jef Vandenberghe, Peng Cheng, Xu Zhang, Evan J. Gowan, Gerrit Lohmann, and Zhisheng An
Clim. Past, 16, 315–324, https://doi.org/10.5194/cp-16-315-2020, https://doi.org/10.5194/cp-16-315-2020, 2020
Short summary
Short summary
The East Asian summer monsoon and winter monsoon are anticorrelated on a centennial timescale during 16–1 ka. The centennial monsoon variability is connected to changes of both solar activity and North Atlantic cooling events during the Early Holocene. Then, North Atlantic cooling became the major forcing of events during the Late Holocene. This work presents the great challenge and potential to understand the response of the monsoon system to global climate changes in the past and the future.
John G. Watson, Junji Cao, L.-W. Antony Chen, Qiyuan Wang, Jie Tian, Xiaoliang Wang, Steven Gronstal, Steven Sai Hang Ho, Adam C. Watts, and Judith C. Chow
Atmos. Chem. Phys., 19, 14173–14193, https://doi.org/10.5194/acp-19-14173-2019, https://doi.org/10.5194/acp-19-14173-2019, 2019
Short summary
Short summary
Although peat burning is a common global emission source, region-specific emission factors are lacking. This work fills that gap for six peat-bearing regions. It is also shown through simulated aging with an oxidation flow reactor that potential aerosol mass changes during transport.
Lang Liu, Naifang Bei, Jiarui Wu, Suixin Liu, Jiamao Zhou, Xia Li, Qingchuan Yang, Tian Feng, Junji Cao, Xuexi Tie, and Guohui Li
Atmos. Chem. Phys., 19, 13341–13354, https://doi.org/10.5194/acp-19-13341-2019, https://doi.org/10.5194/acp-19-13341-2019, 2019
Judith C. Chow, Junji Cao, L.-W. Antony Chen, Xiaoliang Wang, Qiyuan Wang, Jie Tian, Steven Sai Hang Ho, Adam C. Watts, Tessa B. Carlson, Steven D. Kohl, and John G. Watson
Atmos. Meas. Tech., 12, 5475–5501, https://doi.org/10.5194/amt-12-5475-2019, https://doi.org/10.5194/amt-12-5475-2019, 2019
Short summary
Short summary
Source profiles that allow peat fire contributions to be distinguished from other source contributions using receptor models are lacking for a wide variety of peat fuels and burning conditions. These profiles change with photochemical aging during transport. Fresh and aged profiles for a variety of peat fuels are measured with an oxidation flow reactor to improve source attributions at distant receptors.
Meng Wang, Ru-Jin Huang, Junji Cao, Wenting Dai, Jiamao Zhou, Chunshui Lin, Haiyan Ni, Jing Duan, Ting Wang, Yang Chen, Yongjie Li, Qi Chen, Imad El Haddad, and Thorsten Hoffmann
Atmos. Meas. Tech., 12, 4779–4789, https://doi.org/10.5194/amt-12-4779-2019, https://doi.org/10.5194/amt-12-4779-2019, 2019
Short summary
Short summary
The analytical performances of SE-GC-MS and TD-GC-MS for the determination of n-alkanes, PAHs and hopanes were evaluated and compared. The two methods show a good agreement with a high correlation efficient (R2 > 0.98) and a slope close to unity. The concentrations of n-alkanes, PAHs and hopanes are found to be much higher in Beijing than those in Chengdu, Shanghai and Guangzhou, most likely due to emissions from coal combustion for wintertime heating in Beijing.
Xuexi Tie, Xin Long, Guohui Li, Shuyu Zhao, Junji Cao, and Jianming Xu
Atmos. Chem. Phys., 19, 11267–11278, https://doi.org/10.5194/acp-19-11267-2019, https://doi.org/10.5194/acp-19-11267-2019, 2019
Short summary
Short summary
This study shows that there were often co-occurrences of high PM2.5 and O3 concentrations, which were related to high HONO, in eastern China. This result suggests that high daytime HONO can be photodissociated to OH radicals, enhancing the chemical production of O3 and suggesting that under high aerosol conditions, the chemical oxidizing process for O3 production can occur in eastern China.
Haiyan Ni, Ru-Jin Huang, Junji Cao, Wenting Dai, Jiamao Zhou, Haoyue Deng, Anita Aerts-Bijma, Harro A. J. Meijer, and Ulrike Dusek
Atmos. Chem. Phys., 19, 10405–10422, https://doi.org/10.5194/acp-19-10405-2019, https://doi.org/10.5194/acp-19-10405-2019, 2019
Short summary
Short summary
We apply radiocarbon source apportionment of more volatile organic carbon (mvOC) to winter aerosol samples from six Chinese cities. We find a consistently larger contribution of fossil sources to mvOC than to secondary or total organic carbon. Fossil mvOC concentrations are strongly correlated with primary fossil OC but not with secondary fossil OC. The variability in nonfossil mvOC seems to be related to both primary and secondary biomass burning sources.
Jing Duan, Ru-Jin Huang, Chunshui Lin, Wenting Dai, Meng Wang, Yifang Gu, Ying Wang, Haobin Zhong, Yan Zheng, Haiyan Ni, Uli Dusek, Yang Chen, Yongjie Li, Qi Chen, Douglas R. Worsnop, Colin D. O'Dowd, and Junji Cao
Atmos. Chem. Phys., 19, 10319–10334, https://doi.org/10.5194/acp-19-10319-2019, https://doi.org/10.5194/acp-19-10319-2019, 2019
Short summary
Short summary
We present the seasonal distinction of secondary aerosol formation in urban Beijing. Both photochemical oxidation and aqueous-phase processing played important roles in SOA (secondary organic aerosol) formation during all three seasons; while for sulfate formation, gas-phase photochemical oxidation was the major pathway in late summer, aqueous-phase reactions were more responsible during early winter, and both processes had contributions during autumn.
Jianming Xu, Xuexi Tie, Wei Gao, Yanfen Lin, and Qingyan Fu
Atmos. Chem. Phys., 19, 9017–9035, https://doi.org/10.5194/acp-19-9017-2019, https://doi.org/10.5194/acp-19-9017-2019, 2019
Short summary
Short summary
The PM2.5 in China has decreased significantly in recent years as a result of the implementation of the Chinese Clean Air Action Plan in 2013, while the O3 pollution is getting worse, especially in megacities. The work aims to better understand the elevated O3 pollution in the megacity of Shanghai, China, and its response to emission changes, which is important for developing an effective emission control strategy in the future.
Jiarui Wu, Naifang Bei, Bo Hu, Suixin Liu, Meng Zhou, Qiyuan Wang, Xia Li, Lang Liu, Tian Feng, Zirui Liu, Yichen Wang, Junji Cao, Xuexi Tie, Jun Wang, Luisa T. Molina, and Guohui Li
Atmos. Chem. Phys., 19, 8703–8719, https://doi.org/10.5194/acp-19-8703-2019, https://doi.org/10.5194/acp-19-8703-2019, 2019
Short summary
Short summary
In the present study, simulations during a persistent and heavy haze pollution episode from 5 December 2015 to 4 January 2016 in the North China Plain (NCP) were performed using the WRF-Chem model to comprehensively quantify contributions of the aerosol shortwave radiative feedback (ARF) to near-surface PM2.5 mass concentrations. During the episode, the ARF deteriorates the haze pollution, increasing the near-surface PM2.5 concentration in the NCP by 10.2 μg m−3 (7.8 %) on average.
Jiarui Wu, Naifang Bei, Bo Hu, Suixin Liu, Meng Zhou, Qiyuan Wang, Xia Li, Lang Liu, Tian Feng, Zirui Liu, Yichen Wang, Junji Cao, Xuexi Tie, Jun Wang, Luisa T. Molina, and Guohui Li
Atmos. Chem. Phys., 19, 8721–8739, https://doi.org/10.5194/acp-19-8721-2019, https://doi.org/10.5194/acp-19-8721-2019, 2019
Short summary
Short summary
The near-surface PM2.5 contribution of the ALW total effect is 17.5 % in NCP, indicating that ALW plays an important role in the PM2.5 formation during the wintertime haze pollution. Moreover, the ALW-HET overwhelmingly dominates the PM2.5 enhancement due to the ALW. The ALW does not consistently enhance near-surface [PM2.5] with increasing RH. When the RH exceeds 80 %, the contribution of the ALW begins to decrease, which is caused by the high occurrence frequencies of precipitation.
Lang Liu, Jiarui Wu, Suixin Liu, Xia Li, Jiamao Zhou, Tian Feng, Yang Qian, Junji Cao, Xuexi Tie, and Guohui Li
Atmos. Chem. Phys., 19, 8189–8207, https://doi.org/10.5194/acp-19-8189-2019, https://doi.org/10.5194/acp-19-8189-2019, 2019
Tian Feng, Shuyu Zhao, Naifang Bei, Jiarui Wu, Suixin Liu, Xia Li, Lang Liu, Yang Qian, Qingchuan Yang, Yichen Wang, Weijian Zhou, Junji Cao, and Guohui Li
Atmos. Chem. Phys., 19, 7429–7443, https://doi.org/10.5194/acp-19-7429-2019, https://doi.org/10.5194/acp-19-7429-2019, 2019
Short summary
Short summary
The observed ratio of organic carbon to element carbon has increased remarkably in Beijing. Here, based on the measurements and model simulation, we show that the enhanced atmospheric oxidizing capacity is an important contributor to that increase by facilitating the aging process of organic aerosols (add oxygen). Our results indicate a ubiquitous enhancement of secondary organic aerosol formation over Beijing–Tianjin–Hebei, China, in the context of increasing oxidizing capacity.
Ge Shi, Hong Yan, Wenchao Zhang, Haobai Fei, Shuanshuan Cao, Xiaolin Ma, Chengcheng Liu, Fengyan Lu, John Dodson, Henk Heijnis, Weijian Zhou, and Zhisheng An
Clim. Past Discuss., https://doi.org/10.5194/cp-2019-28, https://doi.org/10.5194/cp-2019-28, 2019
Preprint withdrawn
Li Xing, Jiarui Wu, Miriam Elser, Shengrui Tong, Suixin Liu, Xia Li, Lang Liu, Junji Cao, Jiamao Zhou, Imad El-Haddad, Rujin Huang, Maofa Ge, Xuexi Tie, André S. H. Prévôt, and Guohui Li
Atmos. Chem. Phys., 19, 2343–2359, https://doi.org/10.5194/acp-19-2343-2019, https://doi.org/10.5194/acp-19-2343-2019, 2019
Short summary
Short summary
We used the WRF-CHEM model to simulate wintertime secondary organic aerosol (SOA) concentrations over Beijing–Tianjin–Hebei (BTH), China. Heterogeneous HONO sources increased the near-surface SOA by 46.3 % in BTH. Direct emissions of glyoxal and methylglyoxal from residential sources contributed 25.5 % to the total SOA mass. Our study highlights the importance of heterogeneous HONO sources and primary residential emissions of glyoxal and methylglyoxal to SOA formation in winter over BTH.
Qiyuan Wang, Suixin Liu, Nan Li, Wenting Dai, Yunfei Wu, Jie Tian, Yaqing Zhou, Meng Wang, Steven Sai Hang Ho, Yang Chen, Renjian Zhang, Shuyu Zhao, Chongshu Zhu, Yongming Han, Xuexi Tie, and Junji Cao
Atmos. Chem. Phys., 19, 1881–1899, https://doi.org/10.5194/acp-19-1881-2019, https://doi.org/10.5194/acp-19-1881-2019, 2019
Jiamao Zhou, Xuexi Tie, Baiqing Xu, Shuyu Zhao, Mo Wang, Guohui Li, Ting Zhang, Zhuzi Zhao, Suixin Liu, Song Yang, Luyu Chang, and Junji Cao
Atmos. Chem. Phys., 18, 13673–13685, https://doi.org/10.5194/acp-18-13673-2018, https://doi.org/10.5194/acp-18-13673-2018, 2018
Short summary
Short summary
A global chemical transportation model (MOZART-4) was used to analyze the BC transport from the source regions and a radiative transfer model (SNICAR) was used to study the effect of BC on snow albedo on the northern Tibetan Plateau. The result provides useful information to study the effect of the upward BC emissions on environmental and climate issues. The radiative effect of BC deposition on the snow melting provides important information regarding the water resources in the region.
Xin Long, Naifang Bei, Jiarui Wu, Xia Li, Tian Feng, Li Xing, Shuyu Zhao, Junji Cao, Xuexi Tie, Zhisheng An, and Guohui Li
Atmos. Chem. Phys., 18, 10869–10879, https://doi.org/10.5194/acp-18-10869-2018, https://doi.org/10.5194/acp-18-10869-2018, 2018
Xia Li, Jiarui Wu, Miriam Elser, Tian Feng, Junji Cao, Imad El-Haddad, Rujin Huang, Xuexi Tie, André S. H. Prévôt, and Guohui Li
Atmos. Chem. Phys., 18, 10675–10691, https://doi.org/10.5194/acp-18-10675-2018, https://doi.org/10.5194/acp-18-10675-2018, 2018
Jiarui Wu, Naifang Bei, Xia Li, Junji Cao, Tian Feng, Yichen Wang, Xuexi Tie, and Guohui Li
Atmos. Chem. Phys., 18, 8491–8504, https://doi.org/10.5194/acp-18-8491-2018, https://doi.org/10.5194/acp-18-8491-2018, 2018
Ru-Jin Huang, Junji Cao, Yang Chen, Lu Yang, Jincan Shen, Qihua You, Kai Wang, Chunshui Lin, Wei Xu, Bo Gao, Yongjie Li, Qi Chen, Thorsten Hoffmann, Colin D. O'Dowd, Merete Bilde, and Marianne Glasius
Atmos. Meas. Tech., 11, 3447–3456, https://doi.org/10.5194/amt-11-3447-2018, https://doi.org/10.5194/amt-11-3447-2018, 2018
Xin Long, Xuexi Tie, Guohui Li, Junji Cao, Tian Feng, Shuyu Zhao, Li Xing, and Zhisheng An
Atmos. Chem. Phys., 18, 6353–6366, https://doi.org/10.5194/acp-18-6353-2018, https://doi.org/10.5194/acp-18-6353-2018, 2018
Short summary
Short summary
Using satellite products of MODIS and the numerical model of WRF-DUST, we proved that the ecological restoration programs in China help to reduce the dust pollution in the NCP, providing a direct and quantified answer to the ongoing debate about the effectiveness of the national ERPs. Despite the limitations of the case study, we provide some insights into the effects of ERPs on the downwind area, where heavy haze often occurs due to anthropogenic air pollutants.
Yan-Lin Zhang, Imad El-Haddad, Ru-Jin Huang, Kin-Fai Ho, Jun-Ji Cao, Yongming Han, Peter Zotter, Carlo Bozzetti, Kaspar R. Daellenbach, Jay G. Slowik, Gary Salazar, André S. H. Prévôt, and Sönke Szidat
Atmos. Chem. Phys., 18, 4005–4017, https://doi.org/10.5194/acp-18-4005-2018, https://doi.org/10.5194/acp-18-4005-2018, 2018
Short summary
Short summary
Here we present a quantitative source apportionment of WSOC, isolated from aerosols in China using radiocarbon (14C) and offline high-resolution time of flight aerosol mass spectrometer measurements. We demonstrate a dominant contribution of non-fossil emissions to WSOC aerosols in the Northern Hemisphere. However, the fossil fraction is substantially larger in aerosols from East Asia and the east Asian pollution outflow, especially during winter, due to increasing coal combustion.
Naifang Bei, Jiarui Wu, Miriam Elser, Tian Feng, Junji Cao, Imad El-Haddad, Xia Li, Rujin Huang, Zhengqiang Li, Xin Long, Li Xing, Shuyu Zhao, Xuexi Tie, André S. H. Prévôt, and Guohui Li
Atmos. Chem. Phys., 17, 14579–14591, https://doi.org/10.5194/acp-17-14579-2017, https://doi.org/10.5194/acp-17-14579-2017, 2017
Feng Wu, Daizhou Zhang, Junji Cao, Xiao Guo, Yao Xia, Ting Zhang, Hui Lu, and Yan Cheng
Atmos. Chem. Phys., 17, 14473–14484, https://doi.org/10.5194/acp-17-14473-2017, https://doi.org/10.5194/acp-17-14473-2017, 2017
Short summary
Short summary
Sulfate and nitrate in dust particles at a desert site and a 700 km downwind urban site in China were compared. The production of the two salts during the transport of dust particles was limited because of the adiabatic process of the dust-loading air movement. Significant sulfate and nitrate previously reported in dust-associated samples were very likely from locally emitted and urban aerosols or soil-derived particles rather than the products of chemical reactions on desert dust particles.
James Hansen, Makiko Sato, Pushker Kharecha, Karina von Schuckmann, David J. Beerling, Junji Cao, Shaun Marcott, Valerie Masson-Delmotte, Michael J. Prather, Eelco J. Rohling, Jeremy Shakun, Pete Smith, Andrew Lacis, Gary Russell, and Reto Ruedy
Earth Syst. Dynam., 8, 577–616, https://doi.org/10.5194/esd-8-577-2017, https://doi.org/10.5194/esd-8-577-2017, 2017
Short summary
Short summary
Global temperature now exceeds +1.25 °C relative to 1880–1920, similar to warmth of the Eemian period. Keeping warming less than 1.5 °C or CO2 below 350 ppm now requires extraction of CO2 from the air. If rapid phaseout of fossil fuel emissions begins soon, most extraction can be via improved agricultural and forestry practices. In contrast, continued high emissions places a burden on young people of massive technological CO2 extraction with large risks, high costs and uncertain feasibility.
Yunfei Wu, Xiaojia Wang, Jun Tao, Rujin Huang, Ping Tian, Junji Cao, Leiming Zhang, Kin-Fai Ho, Zhiwei Han, and Renjian Zhang
Atmos. Chem. Phys., 17, 7965–7975, https://doi.org/10.5194/acp-17-7965-2017, https://doi.org/10.5194/acp-17-7965-2017, 2017
Short summary
Short summary
As black carbon (BC) aerosols play an important role in the climate and environment, the size distribution of refractory BC (rBC) was investigated. On this basis, the source of rBC was further analyzed. The local traffic exhausts contributed greatly to the rBC in urban areas. However, its contribution decreased significantly in the polluted period compared to the clean period, implying the increasing contribution of other sources, e.g., coal combustion or biomass burning, in the polluted period.
Xu Zhou, Naifang Bei, Hongli Liu, Junji Cao, Li Xing, Wenfang Lei, Luisa T. Molina, and Guohui Li
Atmos. Chem. Phys., 17, 7423–7434, https://doi.org/10.5194/acp-17-7423-2017, https://doi.org/10.5194/acp-17-7423-2017, 2017
Zhiqin Xu, Jingsui Yang, Chengshan Wang, Zhisheng An, Haibing Li, Qin Wang, and Dechen Su
Sci. Dril., 22, 1–18, https://doi.org/10.5194/sd-22-1-2017, https://doi.org/10.5194/sd-22-1-2017, 2017
Short summary
Short summary
The 5158 m deep borehole of the Chinese Continental Scientific Drilling (CCSD) Project in the Sulu ultrahigh-pressure metamorphic terrain marked the starting point of the CCSD Program. Since then, several continental scientific drilling projects were conducted with funding of the Chinese government and partially with support of ICDP, resulting in a total drilling depth of more than 35 000 m. This paper reviews the history and major progress of the CCSD Program in the past 15 years.
Guohui Li, Naifang Bei, Junji Cao, Rujin Huang, Jiarui Wu, Tian Feng, Yichen Wang, Suixin Liu, Qiang Zhang, Xuexi Tie, and Luisa T. Molina
Atmos. Chem. Phys., 17, 3301–3316, https://doi.org/10.5194/acp-17-3301-2017, https://doi.org/10.5194/acp-17-3301-2017, 2017
Guohui Li, Naifang Bei, Junji Cao, Jiarui Wu, Xin Long, Tian Feng, Wenting Dai, Suixin Liu, Qiang Zhang, and Xuexi Tie
Atmos. Chem. Phys., 17, 2759–2774, https://doi.org/10.5194/acp-17-2759-2017, https://doi.org/10.5194/acp-17-2759-2017, 2017
Jiarui Wu, Guohui Li, Junji Cao, Naifang Bei, Yichen Wang, Tian Feng, Rujin Huang, Suixin Liu, Qiang Zhang, and Xuexi Tie
Atmos. Chem. Phys., 17, 2035–2051, https://doi.org/10.5194/acp-17-2035-2017, https://doi.org/10.5194/acp-17-2035-2017, 2017
Tian Feng, Guohui Li, Junji Cao, Naifang Bei, Zhenxing Shen, Weijian Zhou, Suixin Liu, Ting Zhang, Yichen Wang, Ru-jin Huang, Xuexi Tie, and Luisa T. Molina
Atmos. Chem. Phys., 16, 10045–10061, https://doi.org/10.5194/acp-16-10045-2016, https://doi.org/10.5194/acp-16-10045-2016, 2016
Short summary
Short summary
The springtime organic aerosol (OA) concentrations in the Guanzhong Basin, China are simulated using the WRF-Chem model with two secondary OA (SOA) modules. Model results are verified with near-surface observations. The non-traditional SOA module significantly improves SOA simulation. Oxidation and partitioning of primary OAs is the most important pathway in SOA formation. Residential emissions are the dominant anthropogenic OA source.
Xin Long, Xuexi Tie, Junji Cao, Rujin Huang, Tian Feng, Nan Li, Suyu Zhao, Jie Tian, Guohui Li, and Qiang Zhang
Atmos. Chem. Phys., 16, 9675–9691, https://doi.org/10.5194/acp-16-9675-2016, https://doi.org/10.5194/acp-16-9675-2016, 2016
Short summary
Short summary
We studied the impact of crop field burning (CFB) on air pollution in North China Plain (NCP) using MODIS observations and the numerical model WRF-CHEM. The CFB plume emitted in southern NCP and went through a long-range transport to northern NCP. The long-range transport and the effect of mountains obviously enhanced the PM2.5 pollution in northern NCP. The prohibition of CFB should be strict not just in or around Beijing, but also on the ulterior crop growth areas of southern NCP.
Naifang Bei, Guohui Li, Ru-Jin Huang, Junji Cao, Ning Meng, Tian Feng, Suixin Liu, Ting Zhang, Qiang Zhang, and Luisa T. Molina
Atmos. Chem. Phys., 16, 7373–7387, https://doi.org/10.5194/acp-16-7373-2016, https://doi.org/10.5194/acp-16-7373-2016, 2016
Short summary
Short summary
Rapid industrialization and urbanization have caused severe air pollution in the Guanzhong basin, northwestern China with heavy haze events occurring frequently in recent winters. Due to frequent occurrence of unfavorable synoptic situations during wintertime, mitigation of emissions is the optimum approach to mitigate the air pollution in the Guanzhong basin.
Tian Feng, Naifang Bei, Ru-Jin Huang, Junji Cao, Qiang Zhang, Weijian Zhou, Xuexi Tie, Suixin Liu, Ting Zhang, Xiaoli Su, Wenfang Lei, Luisa T. Molina, and Guohui Li
Atmos. Chem. Phys., 16, 4323–4342, https://doi.org/10.5194/acp-16-4323-2016, https://doi.org/10.5194/acp-16-4323-2016, 2016
Short summary
Short summary
The occurrence of high O3 levels with high PM2.5 concentrations constitutes a dilemma for the design of O3 control strategies in Xi’an and surrounding areas. If the O3 mitigation approach decreases aerosols in the atmosphere directly or indirectly, the enhanced photolysis caused by aerosol reduction would compensate for the O3 loss. If only the PM2.5 control strategy is implemented, the O3 pollution will decrease.
Miriam Elser, Ru-Jin Huang, Robert Wolf, Jay G. Slowik, Qiyuan Wang, Francesco Canonaco, Guohui Li, Carlo Bozzetti, Kaspar R. Daellenbach, Yu Huang, Renjian Zhang, Zhengqiang Li, Junji Cao, Urs Baltensperger, Imad El-Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 16, 3207–3225, https://doi.org/10.5194/acp-16-3207-2016, https://doi.org/10.5194/acp-16-3207-2016, 2016
Short summary
Short summary
This work represents the first online chemical characterization of the PM2.5 using a high-resolution time-of flight aerosol mass spectrometer during extreme haze events China. The application of novel source apportionment techniques allowed for an improved identification and quantification of the sources of organic aerosols. The main sources and processes driving the extreme haze events are assessed.
N. Li, T.-M. Fu, J. J. Cao, J. Y. Zheng, Q. Y. He, X. Long, Z. Z. Zhao, N. Y. Cao, J. S. Fu, and Y. F. Lam
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-33583-2015, https://doi.org/10.5194/acpd-15-33583-2015, 2015
Revised manuscript not accepted
Q. Y. Wang, R.-J. Huang, J. J. Cao, X. X. Tie, H. Y. Ni, Y. Q. Zhou, Y. M. Han, T. F. Hu, C. S. Zhu, T. Feng, N. Li, and J. D. Li
Atmos. Chem. Phys., 15, 13059–13069, https://doi.org/10.5194/acp-15-13059-2015, https://doi.org/10.5194/acp-15-13059-2015, 2015
Short summary
Short summary
An intensive campaign was conducted at the Qinghai-Tibetan Plateau using a ground-based single particle soot photometer and a photoacoustic extinctiometer. Significant enhancements of rBC loadings and number fraction of coated rBC were observed during the pollution episode. Biomass burning from N. India is determined to be an important potential source influencing the northeastern Qinghai-Tibetan Plateau. The rBC mixing state is important in determining absorption during the pollution episode.
M. Wang, B. Xu, J. Cao, X. Tie, H. Wang, R. Zhang, Y. Qian, P. J. Rasch, S. Zhao, G. Wu, H. Zhao, D. R. Joswiak, J. Li, and Y. Xie
Atmos. Chem. Phys., 15, 1191–1204, https://doi.org/10.5194/acp-15-1191-2015, https://doi.org/10.5194/acp-15-1191-2015, 2015
Short summary
Short summary
Carbonaceous aerosols recorded in a Tibetan glacier present a distinct seasonal dependence and an increasing trend after 1980, which has important implications for the accelerated glacier melting. We use a global aerosol--climate model to quantify the aerosol source--receptor relationships, showing that emissions in South Asia had the largest contribution. The emission inventories and historical fuel consumption in South Asia are consistent with our ice-core analysis and model results.
X. Tie, F. Geng, A. Guenther, J. Cao, J. Greenberg, R. Zhang, E. Apel, G. Li, A. Weinheimer, J. Chen, and C. Cai
Atmos. Chem. Phys., 13, 5655–5669, https://doi.org/10.5194/acp-13-5655-2013, https://doi.org/10.5194/acp-13-5655-2013, 2013
J.-J. Cao, C.-S. Zhu, X.-X. Tie, F.-H. Geng, H.-M. Xu, S. S. H. Ho, G.-H. Wang, Y.-M. Han, and K.-F. Ho
Atmos. Chem. Phys., 13, 803–817, https://doi.org/10.5194/acp-13-803-2013, https://doi.org/10.5194/acp-13-803-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Contribution of regional aerosol nucleation to low-level CCN in an Amazonian deep convective environment: results from a regionally nested global model
Coarse particulate matter air quality in East Asia: implications for fine particulate nitrate
Foreign emissions exacerbate PM2.5 pollution in China through nitrate chemistry
Analysis of new particle formation events and comparisons to simulations of particle number concentrations based on GEOS-Chem–advanced particle microphysics in Beijing, China
Simulation of organic aerosol, its precursors, and related oxidants in the Landes pine forest in southwestern France: accounting for domain-specific land use and physical conditions
Modelling the European wind-blown dust emissions and their impact on particulate matter (PM) concentrations
Impacts of estimated plume rise on PM2.5 exceedance prediction during extreme wildfire events: a comparison of three schemes (Briggs, Freitas, and Sofiev)
Impact of Solar Geoengineering on Wildfires in the 21st Century in CESM2/WACCM6
Strong particle production and condensational growth in the upper troposphere sustained by biogenic VOCs from the canopy of the Amazon Basin
Sources of organic aerosols in eastern China: a modeling study with high-resolution intermediate-volatility and semivolatile organic compound emissions
Composited analyses of the chemical and physical characteristics of co-polluted days by ozone and PM2.5 over 2013–2020 in the Beijing–Tianjin–Hebei region
Observation-based constraints on modeled aerosol surface area: implications for heterogeneous chemistry
Oligomer formation from the gas-phase reactions of Criegee intermediates with hydroperoxide esters: mechanism and kinetics
Modelling SO2 conversion into sulfates in the mid-troposphere with a 3D chemistry transport model: the case of Mount Etna's eruption on 12 April 2012
Global distribution of Asian, Middle Eastern, and North African dust simulated by CESM1/CARMA
Opinion: Coordinated development of emission inventories for climate forcers and air pollutants
Linking gas, particulate, and toxic endpoints to air emissions in the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM) version 1.0
Seasonal modeling analysis of nitrate formation pathways in Yangtze River Delta region, China
Modeling radiative and climatic effects of brown carbon aerosols with the ARPEGE-Climat global climate model
Numerical simulation of the impact of COVID-19 lockdown on tropospheric composition and aerosol radiative forcing in Europe
Evaluation of the WRF and CHIMERE models for the simulation of PM2.5 in large East African urban conurbations
Impact of urban heat island on inorganic aerosol in the lower free troposphere: a case study in Hangzhou, China
Statistical and machine learning methods for evaluating trends in air quality under changing meteorological conditions
Simulating the radiative forcing of oceanic dimethylsulfide (DMS) in Asia based on machine learning estimates
Quantifying the effects of mixing state on aerosol optical properties
Secondary organic aerosol formation via multiphase reaction of hydrocarbons in urban atmospheres using CAMx integrated with the UNIPAR model
Contrasting source contributions of Arctic black carbon to atmospheric concentrations, deposition flux, and atmospheric and snow radiative effects
Simulating organic aerosol in Delhi with WRF-Chem using the VBS approach: Exploring model uncertainty with a Gaussian Process emulator
Effect of dust on rainfall over the Red Sea coast based on WRF-Chem model simulations
A new assessment of global and regional budgets, fluxes, and lifetimes of atmospheric reactive N and S gases and aerosols
Limitations in representation of physical processes prevent successful simulation of PM2.5 during KORUS-AQ
Eurodelta multi-model simulated and observed particulate matter trends in Europe in the period of 1990–2010
Elucidating the critical oligomeric steps in secondary organic aerosol and brown carbon formation
Fast climate responses to emission reductions in aerosol and ozone precursors in China during 2013–2017
Secondary PM2.5 decreases significantly less than NO2 emission reductions during COVID lockdown in Germany
Modelling wintertime Arctic Haze and sea-spray aerosols
Molecular-level nucleation mechanism of iodic acid and methanesulfonic acid
Estimation of secondary PM2.5 in China and the United States using a multi-tracer approach
Two-way coupled meteorology and air quality models in Asia: a systematic review and meta-analysis of impacts of aerosol feedbacks on meteorology and air quality
OCEANFILMS (Organic Compounds from Ecosystems to Aerosols: Natural Films and Interfaces via Langmuir Molecular Surfactants) sea spray organic aerosol emissions – implementation in a global climate model and impacts on clouds
The pathway of impacts of aerosol direct effects on secondary inorganic aerosol formation
The impact of molecular self-organisation on the atmospheric fate of a cooking aerosol proxy
The formation and mitigation of nitrate pollution: comparison between urban and suburban environments
Impacts of aerosol–photolysis interaction and aerosol–radiation feedback on surface-layer ozone in North China during multi-pollutant air pollution episodes
Reducing future air-pollution-related premature mortality over Europe by mitigating emissions from the energy sector: assessing an 80 % renewable energies scenario
The impact of chlorine chemistry combined with heterogeneous N2O5 reactions on air quality in China
OH-initiated atmospheric degradation of hydroxyalkyl hydroperoxides: mechanism, kinetics, and structure–activity relationship
A predictive viscosity model for aqueous electrolytes and mixed organic–inorganic aerosol phases
The role of organic acids in new particle formation from methanesulfonic acid and methylamine
The number fraction of iron-containing particles affects OH, HO2 and H2O2 budgets in the atmospheric aqueous phase
Xuemei Wang, Hamish Gordon, Daniel P. Grosvenor, Meinrat O. Andreae, and Ken S. Carslaw
Atmos. Chem. Phys., 23, 4431–4461, https://doi.org/10.5194/acp-23-4431-2023, https://doi.org/10.5194/acp-23-4431-2023, 2023
Short summary
Short summary
New particle formation in the upper troposphere is important for the global boundary layer aerosol population, and they can be transported downward in Amazonia. We use a global and a regional model to quantify the number of aerosols that are formed at high altitude and transported downward in a 1000 km region. We find that the majority of the aerosols are from outside the region. This suggests that the 1000 km region is unlikely to be a
closed loopfor aerosol formation, transport and growth.
Shixian Zhai, Daniel J. Jacob, Drew C. Pendergrass, Nadia K. Colombi, Viral Shah, Laura Hyesung Yang, Qiang Zhang, Shuxiao Wang, Hwajin Kim, Yele Sun, Jin-Soo Choi, Jin-Soo Park, Gan Luo, Fangqun Yu, Jung-Hun Woo, Younha Kim, Jack E. Dibb, Taehyoung Lee, Jin-Seok Han, Bruce E. Anderson, Ke Li, and Hong Liao
Atmos. Chem. Phys., 23, 4271–4281, https://doi.org/10.5194/acp-23-4271-2023, https://doi.org/10.5194/acp-23-4271-2023, 2023
Short summary
Short summary
Anthropogenic fugitive dust in East Asia not only causes severe coarse particulate matter air pollution problems, but also affects fine particulate nitrate. Due to emission control efforts, coarse PM decreased steadily. We find that the decrease of coarse PM is a major driver for a lack of decrease of fine particulate nitrate, as it allows more nitric acid to form fine particulate nitrate. The continuing decrease of coarse PM requires more stringent ammonia and nitrogen oxides emission controls.
Jun-Wei Xu, Jintai Lin, Gan Luo, Jamiu Adeniran, and Hao Kong
Atmos. Chem. Phys., 23, 4149–4163, https://doi.org/10.5194/acp-23-4149-2023, https://doi.org/10.5194/acp-23-4149-2023, 2023
Short summary
Short summary
Research on the sources of Chinese PM2.5 pollution has focused on the contributions of China’s domestic emissions. However, the impact of foreign anthropogenic emissions has typically been simplified or neglected. Here we find that foreign anthropogenic emissions play an important role in Chinese PM2.5 pollution through chemical interactions between foreign-transported pollutants and China’s local emissions. Thus, foreign emission reductions are essential for improving Chinese air quality.
Kun Wang, Xiaoyan Ma, Rong Tian, and Fangqun Yu
Atmos. Chem. Phys., 23, 4091–4104, https://doi.org/10.5194/acp-23-4091-2023, https://doi.org/10.5194/acp-23-4091-2023, 2023
Short summary
Short summary
From 12 March to 6 April 2016 in Beijing, there were 11 typical new particle formation days, 13 non-event days, and 2 undefined days. We first analyzed the favorable background of new particle formation in Beijing and then conducted the simulations using four nucleation schemes based on a global chemistry transport model (GEOS-Chem) to understand the nucleation mechanism.
Arineh Cholakian, Matthias Beekmann, Guillaume Siour, Isabelle Coll, Manuela Cirtog, Elena Ormeño, Pierre-Marie Flaud, Emilie Perraudin, and Eric Villenave
Atmos. Chem. Phys., 23, 3679–3706, https://doi.org/10.5194/acp-23-3679-2023, https://doi.org/10.5194/acp-23-3679-2023, 2023
Short summary
Short summary
This article revolves around the simulation of biogenic secondary organic aerosols in the Landes forest (southwestern France). Several sensitivity cases involving biogenic emission factors, land cover data, anthropogenic emissions, and physical or meteorological parameters were performed and each compared to measurements both in the forest canopy and around the forest. The chemistry behind the formation of these aerosols and their production and transport in the forest canopy is discussed.
Marina Liaskoni, Peter Huszar, Lukáš Bartík, Alvaro Patricio Prieto Perez, Jan Karlický, and Ondřej Vlček
Atmos. Chem. Phys., 23, 3629–3654, https://doi.org/10.5194/acp-23-3629-2023, https://doi.org/10.5194/acp-23-3629-2023, 2023
Short summary
Short summary
Wind-blown dust (WBD) emissions emitted from European soils are estimated for the 2007–2016 period, and their impact on the total particulate matter (PM) concentration is calculated. We found a considerable increase in PM concentrations due to such emissions, especially on selected days (rather than on a seasonal average). We also found that WBD emissions are strongest over western Europe, and the highest impacts on PM are calculated for this region.
Yunyao Li, Daniel Tong, Siqi Ma, Saulo R. Freitas, Ravan Ahmadov, Mikhail Sofiev, Xiaoyang Zhang, Shobha Kondragunta, Ralph Kahn, Youhua Tang, Barry Baker, Patrick Campbell, Rick Saylor, Georg Grell, and Fangjun Li
Atmos. Chem. Phys., 23, 3083–3101, https://doi.org/10.5194/acp-23-3083-2023, https://doi.org/10.5194/acp-23-3083-2023, 2023
Short summary
Short summary
Plume height is important in wildfire smoke dispersion and affects air quality and human health. We assess the impact of plume height on wildfire smoke dispersion and the exceedances of the National Ambient Air Quality Standards. A higher plume height predicts lower pollution near the source region, but higher pollution in downwind regions, due to the faster spread of the smoke once ejected, affects pollution exceedance forecasts and the early warning of extreme air pollution events.
Wenfu Tang, Simone Tilmes, David M. Lawrence, Fang Li, Cenlin He, Louisa K. Emmons, Rebecca R. Buchholz, and Lili Xia
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-834, https://doi.org/10.5194/acp-2022-834, 2023
Revised manuscript accepted for ACP
Short summary
Short summary
Globally, total wildfire burned area is projected to increase over the 21st century under scenarios without geoengineering and decrease under the two geoengineering scenarios. Geoengineering reduces fire through decreasing surface temperature and wind speed and increasing relative humidity and soil water. However, geoengineering also yields reductions in precipitation, which offsets some of the fire reduction.
Yunfan Liu, Hang Su, Siwen Wang, Chao Wei, Wei Tao, Mira L. Pöhlker, Christopher Pöhlker, Bruna A. Holanda, Ovid O. Krüger, Thorsten Hoffmann, Manfred Wendisch, Paulo Artaxo, Ulrich Pöschl, Meinrat O. Andreae, and Yafang Cheng
Atmos. Chem. Phys., 23, 251–272, https://doi.org/10.5194/acp-23-251-2023, https://doi.org/10.5194/acp-23-251-2023, 2023
Short summary
Short summary
The origins of the abundant cloud condensation nuclei (CCN) in the upper troposphere (UT) of the Amazon remain unclear. With model developments of new secondary organic aerosol schemes and constrained by observation, we show that strong aerosol nucleation and condensation in the UT is triggered by biogenic organics, and organic condensation is key for UT CCN production. This UT CCN-producing mechanism may prevail over broader vegetation canopies and deserves emphasis in aerosol–climate feedback.
Jingyu An, Cheng Huang, Dandan Huang, Momei Qin, Huan Liu, Rusha Yan, Liping Qiao, Min Zhou, Yingjie Li, Shuhui Zhu, Qian Wang, and Hongli Wang
Atmos. Chem. Phys., 23, 323–344, https://doi.org/10.5194/acp-23-323-2023, https://doi.org/10.5194/acp-23-323-2023, 2023
Short summary
Short summary
This paper aims to build up an approach to establish a high-resolution emission inventory of intermediate-volatility and semi-volatile organic compounds in city-scale and detailed source categories and incorporate it into the CMAQ model. We believe this approach can be widely applied to improve the simulation of secondary organic aerosol and its source contributions.
Huibin Dai, Hong Liao, Ke Li, Xu Yue, Yang Yang, Jia Zhu, Jianbing Jin, Baojie Li, and Xingwen Jiang
Atmos. Chem. Phys., 23, 23–39, https://doi.org/10.5194/acp-23-23-2023, https://doi.org/10.5194/acp-23-23-2023, 2023
Short summary
Short summary
We apply the 3-D global chemical transport model (GEOS-Chem) to simulate co-polluted days by O3 and PM2.5 (O3–PM2.5PDs) in Beijing–Tianjin–Hebei in 2013–2020 and investigate the chemical and physical characteristics of O3–PM2.5PDs by composited analyses of such days that are captured by both the observations and the model. We report for the first time the unique features in vertical distributions of aerosols during O3–PM2.5PDs and the physical and chemical characteristics of O3–PM2.5PDs.
Rachel A. Bergin, Monica Harkey, Alicia Hoffman, Richard H. Moore, Bruce Anderson, Andreas Beyersdorf, Luke Ziemba, Lee Thornhill, Edward Winstead, Tracey Holloway, and Timothy H. Bertram
Atmos. Chem. Phys., 22, 15449–15468, https://doi.org/10.5194/acp-22-15449-2022, https://doi.org/10.5194/acp-22-15449-2022, 2022
Short summary
Short summary
Correctly predicting aerosol surface area concentrations is important for determining the rate of heterogeneous reactions in chemical transport models. Here, we compare aircraft measurements of aerosol surface area with a regional model. In polluted air masses, we show that the model underpredicts aerosol surface area by a factor of 2. Despite this disagreement, the representation of heterogeneous chemistry still dominates the overall uncertainty in the loss rate of molecules such as N2O5.
Long Chen, Yu Huang, Yonggang Xue, Zhihui Jia, and Wenliang Wang
Atmos. Chem. Phys., 22, 14529–14546, https://doi.org/10.5194/acp-22-14529-2022, https://doi.org/10.5194/acp-22-14529-2022, 2022
Short summary
Short summary
Quantum chemical methods are applied to gain insight into the oligomerization reaction mechanisms and kinetics of distinct stabilized Criegee intermediate (SCI) reactions with hydroperoxide esters, where calculations show that SCI addition reactions with hydroperoxide esters proceed through the successive insertion of SCIs to form oligomers that involve SCIs as the repeating unit. The saturated vapor pressure of the formed oligomers decreases monotonically with the increasing number of SCIs.
Mathieu Lachatre, Sylvain Mailler, Laurent Menut, Arineh Cholakian, Pasquale Sellitto, Guillaume Siour, Henda Guermazi, Giuseppe Salerno, and Salvatore Giammanco
Atmos. Chem. Phys., 22, 13861–13879, https://doi.org/10.5194/acp-22-13861-2022, https://doi.org/10.5194/acp-22-13861-2022, 2022
Short summary
Short summary
In this study, we have evaluated the predominance of various pathways of volcanic SO2 conversion to sulfates in the upper troposphere. We show that the main conversion pathway was gaseous oxidation by OH, although the liquid pathways were expected to be predominant. These results are interesting with respect to a better understanding of sulfate formation in the middle and upper troposphere and are an important component to help evaluate particulate matter radiative forcing.
Siying Lian, Luxi Zhou, Daniel M. Murphy, Karl D. Froyd, Owen B. Toon, and Pengfei Yu
Atmos. Chem. Phys., 22, 13659–13676, https://doi.org/10.5194/acp-22-13659-2022, https://doi.org/10.5194/acp-22-13659-2022, 2022
Short summary
Short summary
Parameterizations of dust lifting and microphysical properties of dust in climate models are still subject to large uncertainty. Here we use a sectional aerosol climate model to investigate the global vertical distributions of the dust. Constrained by a suite of observations, the model suggests that, although North African dust dominates global dust mass loading at the surface, the relative contribution of Asian dust increases with altitude and becomes dominant in the upper troposphere.
Steven J. Smith, Erin E. McDuffie, and Molly Charles
Atmos. Chem. Phys., 22, 13201–13218, https://doi.org/10.5194/acp-22-13201-2022, https://doi.org/10.5194/acp-22-13201-2022, 2022
Short summary
Short summary
Emissions into the atmosphere of greenhouse gases (GHGs) and air pollutants, quantified in emission inventories, impact human health, ecosystems, and the climate. We review how air pollutant and GHG inventory activities have historically been structured and their different uses and requirements. We discuss the benefits of increasing coordination between air pollutant and GHG inventory development efforts, but also caution that there are differences in appropriate methodologies and applications.
Havala O. T. Pye, Bryan K. Place, Benjamin N. Murphy, Karl M. Seltzer, Emma L. D'Ambro, Christine Allen, Ivan R. Piletic, Sara Farrell, Rebecca H. Schwantes, Matthew M. Coggon, Emily Saunders, Lu Xu, Golam Sarwar, William T. Hutzell, Kristen M. Foley, George Pouliot, Jesse Bash, and William R. Stockwell
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-695, https://doi.org/10.5194/acp-2022-695, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Chemical mechanisms describe how emissions from vehicles, chemical products, vegetation, and other sources are chemically transformed in the atmosphere to secondary products. The Community Regional Atmospheric Chemistry Multiphase Mechanism is a new mechanism that integrates radical chemistry leading to gas-phase endpoints with pathways to fine particle mass. In addition, some hazardous air pollutants are explicitly included to enable calculation of health risks from specific chemicals.
Jinjin Sun, Momei Qin, Xiaodong Xie, Wenxing Fu, Yang Qin, Li Sheng, Lin Li, Jingyi Li, Ishaq Dimeji Sulaymon, Lei Jiang, Lin Huang, Xingna Yu, and Jianlin Hu
Atmos. Chem. Phys., 22, 12629–12646, https://doi.org/10.5194/acp-22-12629-2022, https://doi.org/10.5194/acp-22-12629-2022, 2022
Short summary
Short summary
NO3- has become the dominant and the least reduced chemical component of fine particulate matter in China. NO3- formation is mostly in the NH3-rich regime in the Yangtze River Delta (YRD). OH + NO2 contributes 60 %–83 % of the TNO3 production rates, and the N2O5 heterogeneous pathway contributes 10 %–36 %. The N2O5 heterogeneous pathway becomes more important in cold seasons. Local emissions and regional transportation contribute 50 %–62 % and 38 %–50 % to YRD NO3- concentrations, respectively.
Thomas Drugé, Pierre Nabat, Marc Mallet, Martine Michou, Samuel Rémy, and Oleg Dubovik
Atmos. Chem. Phys., 22, 12167–12205, https://doi.org/10.5194/acp-22-12167-2022, https://doi.org/10.5194/acp-22-12167-2022, 2022
Short summary
Short summary
This study presents the implementation of brown carbon in the atmospheric component of the CNRM global climate model and particularly in its aerosol scheme TACTIC. Several simulations were carried out with this climate model, over the period 2000–2014, to evaluate the model by comparison with different reference datasets (PARASOL-GRASP, OMI-OMAERUVd, MACv2, FMI_SAT, AERONET) and to analyze the brown carbon radiative and climatic effects.
Simon F. Reifenberg, Anna Martin, Matthias Kohl, Sara Bacer, Zaneta Hamryszczak, Ivan Tadic, Lenard Röder, Daniel J. Crowley, Horst Fischer, Katharina Kaiser, Johannes Schneider, Raphael Dörich, John N. Crowley, Laura Tomsche, Andreas Marsing, Christiane Voigt, Andreas Zahn, Christopher Pöhlker, Bruna A. Holanda, Ovid Krüger, Ulrich Pöschl, Mira Pöhlker, Patrick Jöckel, Marcel Dorf, Ulrich Schumann, Jonathan Williams, Birger Bohn, Joachim Curtius, Hardwig Harder, Hans Schlager, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 22, 10901–10917, https://doi.org/10.5194/acp-22-10901-2022, https://doi.org/10.5194/acp-22-10901-2022, 2022
Short summary
Short summary
In this work we use a combination of observational data from an aircraft campaign and model results to investigate the effect of the European lockdown due to COVID-19 in spring 2020. Using model results, we show that the largest relative changes to the atmospheric composition caused by the reduced emissions are located in the upper troposphere around aircraft cruise altitude, while the largest absolute changes are present at the surface.
Andrea Mazzeo, Michael Burrow, Andrew Quinn, Eloise A. Marais, Ajit Singh, David Ng'ang'a, Michael J. Gatari, and Francis D. Pope
Atmos. Chem. Phys., 22, 10677–10701, https://doi.org/10.5194/acp-22-10677-2022, https://doi.org/10.5194/acp-22-10677-2022, 2022
Short summary
Short summary
A modelling system for meteorology and chemistry transport processes, WRF–CHIMERE, has been tested and validated for three East African conurbations using the most up-to-date anthropogenic emissions available. Results show that the model is able to reproduce hourly and daily temporal variabilities in aerosol concentrations that are close to observations in both urban and rural environments, encouraging the adoption of numerical modelling as a tool for air quality management in East Africa.
Hanqing Kang, Bin Zhu, Gerrit de Leeuw, Bu Yu, Ronald J. van der A, and Wen Lu
Atmos. Chem. Phys., 22, 10623–10634, https://doi.org/10.5194/acp-22-10623-2022, https://doi.org/10.5194/acp-22-10623-2022, 2022
Short summary
Short summary
This study quantified the contribution of each urban-induced meteorological effect (temperature, humidity, and circulation) to aerosol concentration. We found that the urban heat island (UHI) circulation dominates the UHI effects on aerosol. The UHI circulation transports aerosol and its precursor gases from the warmer lower boundary layer to the colder lower free troposphere and promotes the secondary formation of ammonium nitrate aerosol in the cold atmosphere.
Minghao Qiu, Corwin Zigler, and Noelle E. Selin
Atmos. Chem. Phys., 22, 10551–10566, https://doi.org/10.5194/acp-22-10551-2022, https://doi.org/10.5194/acp-22-10551-2022, 2022
Short summary
Short summary
Evaluating impacts of emission changes on air quality requires accounting for meteorological variability. Many studies use simple regression methods to correct for meteorology, but little is known about their performance. Using cases in the US and China, we show that widely used regression models do not perform well and can lead to biased estimates of emission-driven trends. We propose a novel machine learning method with lower bias and provide recommendations to policymakers and researchers.
Junri Zhao, Weichun Ma, Kelsey R. Bilsback, Jeffrey R. Pierce, Shengqian Zhou, Ying Chen, Guipeng Yang, and Yan Zhang
Atmos. Chem. Phys., 22, 9583–9600, https://doi.org/10.5194/acp-22-9583-2022, https://doi.org/10.5194/acp-22-9583-2022, 2022
Short summary
Short summary
Marine dimethylsulfide (DMS) emissions play important roles in atmospheric sulfur cycle and climate effects. In this study, DMS emissions were estimated by using the machine learning method and drove the global 3D chemical transport model to simulate their climate effects. To our knowledge, this is the first study in the Asian region that quantifies the combined impacts of DMS on sulfate, particle number concentration, and radiative forcings.
Yu Yao, Jeffrey H. Curtis, Joseph Ching, Zhonghua Zheng, and Nicole Riemer
Atmos. Chem. Phys., 22, 9265–9282, https://doi.org/10.5194/acp-22-9265-2022, https://doi.org/10.5194/acp-22-9265-2022, 2022
Short summary
Short summary
Investigating the impacts of aerosol mixing state on aerosol optical properties has a long history from both the modeling and experimental perspective. In this study, we used particle-resolved simulations as a benchmark to determine the error in optical properties when using simplified aerosol representations. We found that errors in single scattering albedo due to the internal mixture assumptions can have substantial effects on calculating aerosol direct radiative forcing.
Zechen Yu, Myoseon Jang, Soontae Kim, Kyuwon Son, Sanghee Han, Azad Madhu, and Jinsoo Park
Atmos. Chem. Phys., 22, 9083–9098, https://doi.org/10.5194/acp-22-9083-2022, https://doi.org/10.5194/acp-22-9083-2022, 2022
Short summary
Short summary
The UNIPAR model was incorporated into CAMx to predict the ambient concentration of organic matter in urban atmospheres during the KORUS-AQ campaign. CAMx–UNIPAR significantly improved the simulation of SOA formation under the wet aerosol condition through the consideration of aqueous reactions of reactive organic species and gas–aqueous partitioning into the wet inorganic aerosol.
Hitoshi Matsui, Tatsuhiro Mori, Sho Ohata, Nobuhiro Moteki, Naga Oshima, Kumiko Goto-Azuma, Makoto Koike, and Yutaka Kondo
Atmos. Chem. Phys., 22, 8989–9009, https://doi.org/10.5194/acp-22-8989-2022, https://doi.org/10.5194/acp-22-8989-2022, 2022
Short summary
Short summary
Using a global aerosol model, we find that the source contributions to radiative effects of black carbon (BC) in the Arctic are quite different from those to mass concentrations and deposition flux of BC in the Arctic. This is because microphysical properties (e.g., mixing state), altitudes, and seasonal variations of BC in the atmosphere differ among emissions sources. These differences need to be considered for accurate simulations of Arctic BC and its source contributions and climate impacts.
Ernesto Reyes-Villegas, Doug Lowe, Jill Johnson, Kenneth S. Carslaw, Eoghan Darbyshire, Michael Flynn, James D. Allan, Hugh Coe, Ying Chen, Oliver Wild, Scott Archer-Nicholls, Alex Archibald, Siddhartha Singh, Manish Shrivastava, Rahul A. Zaveri, Vikas Singh, Gufran Beig, Ranjeet Sokhi, and Gordon McFiggans
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-463, https://doi.org/10.5194/acp-2022-463, 2022
Revised manuscript accepted for ACP
Short summary
Short summary
Organic aerosols (OA), their sources and processes remain poorly understood. The volatility basis set (VBS) approach, implemented in air quality models such as WRF-Chem, can be a useful tool to describe POA production and aging. However, the main disadvantage is its complexity. We used a Gaussian process simulator to reproduce model results and estimate the sources of model uncertainty. We do this by comparing the outputs with OA observations taken at Delhi, India in 2018.
Sagar P. Parajuli, Georgiy L. Stenchikov, Alexander Ukhov, Suleiman Mostamandi, Paul A. Kucera, Duncan Axisa, William I. Gustafson Jr., and Yannian Zhu
Atmos. Chem. Phys., 22, 8659–8682, https://doi.org/10.5194/acp-22-8659-2022, https://doi.org/10.5194/acp-22-8659-2022, 2022
Short summary
Short summary
Rainfall affects the distribution of surface- and groundwater resources, which are constantly declining over the Middle East and North Africa (MENA) due to overexploitation. Here, we explored the effects of dust on rainfall using WRF-Chem model simulations. Although dust is considered a nuisance from an air quality perspective, our results highlight the positive fundamental role of dust particles in modulating rainfall formation and distribution, which has implications for cloud seeding.
Yao Ge, Massimo Vieno, David S. Stevenson, Peter Wind, and Mathew R. Heal
Atmos. Chem. Phys., 22, 8343–8368, https://doi.org/10.5194/acp-22-8343-2022, https://doi.org/10.5194/acp-22-8343-2022, 2022
Short summary
Short summary
Reactive N and S gases and aerosols are critical determinants of air quality. We report a comprehensive analysis of the concentrations, wet and dry deposition, fluxes, and lifetimes of these species globally as well as for 10 world regions. We used the EMEP MSC-W model coupled with WRF meteorology and 2015 global emissions. Our work demonstrates the substantial regional variation in these quantities and the need for modelling to simulate atmospheric responses to precursor emissions.
Katherine R. Travis, James H. Crawford, Gao Chen, Carolyn E. Jordan, Benjamin A. Nault, Hwajin Kim, Jose L. Jimenez, Pedro Campuzano-Jost, Jack E. Dibb, Jung-Hun Woo, Younha Kim, Shixian Zhai, Xuan Wang, Erin E. McDuffie, Gan Luo, Fangqun Yu, Saewung Kim, Isobel J. Simpson, Donald R. Blake, Limseok Chang, and Michelle J. Kim
Atmos. Chem. Phys., 22, 7933–7958, https://doi.org/10.5194/acp-22-7933-2022, https://doi.org/10.5194/acp-22-7933-2022, 2022
Short summary
Short summary
The 2016 Korea–United States Air Quality (KORUS-AQ) field campaign provided a unique set of observations to improve our understanding of PM2.5 pollution in South Korea. Models typically have errors in simulating PM2.5 in this region, which is of concern for the development of control measures. We use KORUS-AQ observations to improve our understanding of the mechanisms driving PM2.5 and the implications of model errors for determining PM2.5 that is attributable to local or foreign sources.
Svetlana Tsyro, Wenche Aas, Augustin Colette, Camilla Andersson, Bertrand Bessagnet, Giancarlo Ciarelli, Florian Couvidat, Kees Cuvelier, Astrid Manders, Kathleen Mar, Mihaela Mircea, Noelia Otero, Maria-Teresa Pay, Valentin Raffort, Yelva Roustan, Mark R. Theobald, Marta G. Vivanco, Hilde Fagerli, Peter Wind, Gino Briganti, Andrea Cappelletti, Massimo D'Isidoro, and Mario Adani
Atmos. Chem. Phys., 22, 7207–7257, https://doi.org/10.5194/acp-22-7207-2022, https://doi.org/10.5194/acp-22-7207-2022, 2022
Short summary
Short summary
Particulate matter (PM) air pollution causes adverse health effects. In Europe, the emissions caused by anthropogenic activities have been reduced in the last decades. To assess the efficiency of emission reductions in improving air quality, we have studied the evolution of PM pollution in Europe. Simulations with six air quality models and observational data indicate a decrease in PM concentrations by 10 % to 30 % across Europe from 2000 to 2010, which is mainly a result of emission reductions.
Yuemeng Ji, Qiuju Shi, Xiaohui Ma, Lei Gao, Jiaxin Wang, Yixin Li, Yanpeng Gao, Guiying Li, Renyi Zhang, and Taicheng An
Atmos. Chem. Phys., 22, 7259–7271, https://doi.org/10.5194/acp-22-7259-2022, https://doi.org/10.5194/acp-22-7259-2022, 2022
Short summary
Short summary
The formation mechanisms of secondary organic aerosol and brown carbon from small α-carbonyls are still unclear. Thus, the mechanisms and kinetics of aqueous-phase reactions of glyoxal were investigated using quantum chemical and kinetic rate calculations. Several essential isomeric processes were identified, including protonation to yield diol/tetrol and carbenium ions as well as nucleophilic addition of carbenium ions to diol/tetrol and free methylamine/ammonia.
Jiyuan Gao, Yang Yang, Hailong Wang, Pinya Wang, Huimin Li, Mengyun Li, Lili Ren, Xu Yue, and Hong Liao
Atmos. Chem. Phys., 22, 7131–7142, https://doi.org/10.5194/acp-22-7131-2022, https://doi.org/10.5194/acp-22-7131-2022, 2022
Short summary
Short summary
China has been implementing a sequence of policies for clean air since the year 2013. The aerosol decline produced a 0.09 ± 0.10°C warming during 2013–2017 estimated in this study, and the increase in ozone in the lower troposphere during this time period accelerated the warming, leading to a total 0.16 ± 0.15°C temperature increase in eastern China. Residential emission reductions led to a cooling effect because of a substantial decrease in light-absorbing aerosols.
Vigneshkumar Balamurugan, Jia Chen, Zhen Qu, Xiao Bi, and Frank N. Keutsch
Atmos. Chem. Phys., 22, 7105–7129, https://doi.org/10.5194/acp-22-7105-2022, https://doi.org/10.5194/acp-22-7105-2022, 2022
Short summary
Short summary
In this study, we investigated the response of secondary pollutants to changes in precursor emissions, focusing on the formation of secondary PM, during the COVID-19 lockdown period. We show that, due to the decrease in primary NOx emissions, atmospheric oxidizing capacity is increased. The nighttime increase in ozone, caused by less NO titration, results in higher NO3 radicals, which contribute significantly to the formation of PM nitrates. O3 should be limited in order to control PM pollution.
Eleftherios Ioannidis, Kathy S. Law, Jean-Christophe Raut, Louis Marelle, Tatsuo Onishi, Rachel M. Kirpes, Lucia Upchurch, Andreas Massling, Henrik Skov, Patricia K. Quinn, and Kerri A. Pratt
EGUsphere, https://doi.org/10.5194/egusphere-2022-310, https://doi.org/10.5194/egusphere-2022-310, 2022
Short summary
Short summary
Enhanced concentrations of aerosols influence the Arctic region during wintertime and winter-spring transition, transported from mid-latitude source regions. However, there are also local anthropogenic and natural (sea-spray aerosols – SSA) sources. SSA are a major contributor to PM1.0/PM10 at remote coastal sites during wintertime, however, models tend to miss essential mechanisms for SSA production and local sources of marine organics in the Arctic. This study addresses these uncertainties.
An Ning, Ling Liu, Lin Ji, and Xiuhui Zhang
Atmos. Chem. Phys., 22, 6103–6114, https://doi.org/10.5194/acp-22-6103-2022, https://doi.org/10.5194/acp-22-6103-2022, 2022
Short summary
Short summary
Iodic acid (IA) and methanesulfonic acid (MSA) were previously proved to be significant nucleation precursors in marine areas. However, the nucleation process involved in IA and MSA remains unclear. We show the enhancement of MSA on IA cluster formation and reveal the IAM-SA nucleating mechanism using a theoretical approach. This study helps to understand the clustering process in which marine sulfur- and iodine-containing species are jointly involved and its impact on new particle formation.
Haoran Zhang, Nan Li, Keqin Tang, Hong Liao, Chong Shi, Cheng Huang, Hongli Wang, Song Guo, Min Hu, Xinlei Ge, Mindong Chen, Zhenxin Liu, Huan Yu, and Jianlin Hu
Atmos. Chem. Phys., 22, 5495–5514, https://doi.org/10.5194/acp-22-5495-2022, https://doi.org/10.5194/acp-22-5495-2022, 2022
Short summary
Short summary
We developed a new algorithm with low economic/technique costs to identify primary and secondary components of PM2.5. Our model was shown to be reliable by comparison with different observation datasets. We systematically explored the patterns and changes in the secondary PM2.5 pollution in China at large spatial and time scales. We believe that this method is a promising tool for efficiently estimating primary and secondary PM2.5, and has huge potential for future PM mitigation.
Chao Gao, Aijun Xiu, Xuelei Zhang, Qingqing Tong, Hongmei Zhao, Shichun Zhang, Guangyi Yang, and Mengduo Zhang
Atmos. Chem. Phys., 22, 5265–5329, https://doi.org/10.5194/acp-22-5265-2022, https://doi.org/10.5194/acp-22-5265-2022, 2022
Short summary
Short summary
With ever-growing applications of two-way coupled meteorology and air quality models in Asia over the past decade, this paper summarizes the current status and research focuses, as well as how aerosol effects impact model performance, meteorology, and air quality. These models enable investigations of ARI and ACI effects induced by natural and anthropogenic aerosols in Asia, which has serious air pollution problems. The current gaps and perspectives are also presented and discussed.
Susannah M. Burrows, Richard C. Easter, Xiaohong Liu, Po-Lun Ma, Hailong Wang, Scott M. Elliott, Balwinder Singh, Kai Zhang, and Philip J. Rasch
Atmos. Chem. Phys., 22, 5223–5251, https://doi.org/10.5194/acp-22-5223-2022, https://doi.org/10.5194/acp-22-5223-2022, 2022
Short summary
Short summary
Sea spray particles are composed of a mixture of salts and organic substances from oceanic microorganisms. In prior work, our team developed an approach connecting sea spray chemistry to ocean biology, called OCEANFILMS. Here we describe its implementation within an Earth system model, E3SM. We show that simulated sea spray chemistry is consistent with observed seasonal cycles and that sunlight reflected by simulated Southern Ocean clouds increases, consistent with analysis of satellite data.
Jiandong Wang, Jia Xing, Shuxiao Wang, Rohit Mathur, Jiaping Wang, Yuqiang Zhang, Chao Liu, Jonathan Pleim, Dian Ding, Xing Chang, Jingkun Jiang, Peng Zhao, Shovan Kumar Sahu, Yuzhi Jin, David C. Wong, and Jiming Hao
Atmos. Chem. Phys., 22, 5147–5156, https://doi.org/10.5194/acp-22-5147-2022, https://doi.org/10.5194/acp-22-5147-2022, 2022
Short summary
Short summary
Aerosols reduce surface solar radiation and change the photolysis rate and planetary boundary layer stability. In this study, the online coupled meteorological and chemistry model was used to explore the detailed pathway of how aerosol direct effects affect secondary inorganic aerosol. The effects through the dynamics pathway act as an equally or even more important route compared with the photolysis pathway in affecting secondary aerosol concentration in both summer and winter.
Adam Milsom, Adam M. Squires, Andrew D. Ward, and Christian Pfrang
Atmos. Chem. Phys., 22, 4895–4907, https://doi.org/10.5194/acp-22-4895-2022, https://doi.org/10.5194/acp-22-4895-2022, 2022
Short summary
Short summary
Cooking emissions can self-organise into nanostructured lamellar bilayers, and this can influence reaction kinetics. We developed a kinetic multi-layer model-based description of decay data we obtained from laboratory experiments of the ozonolysis of coated films of such a self-organised system, demonstrating a decreased diffusivity for both oleic acid and ozone. Nanostructure formation can thus increase the reactive half-life of oleic acid by days under typical indoor and outdoor conditions.
Suxia Yang, Bin Yuan, Yuwen Peng, Shan Huang, Wei Chen, Weiwei Hu, Chenglei Pei, Jun Zhou, David D. Parrish, Wenjie Wang, Xianjun He, Chunlei Cheng, Xiao-Bing Li, Xiaoyun Yang, Yu Song, Haichao Wang, Jipeng Qi, Baolin Wang, Chen Wang, Chaomin Wang, Zelong Wang, Tiange Li, E Zheng, Sihang Wang, Caihong Wu, Mingfu Cai, Chenshuo Ye, Wei Song, Peng Cheng, Duohong Chen, Xinming Wang, Zhanyi Zhang, Xuemei Wang, Junyu Zheng, and Min Shao
Atmos. Chem. Phys., 22, 4539–4556, https://doi.org/10.5194/acp-22-4539-2022, https://doi.org/10.5194/acp-22-4539-2022, 2022
Short summary
Short summary
We use a model constrained using observations to study the formation of nitrate aerosol in and downwind of a representative megacity. We found different contributions of various chemical reactions to ground-level nitrate concentrations between urban and suburban regions. We also show that controlling VOC emissions are effective for decreasing nitrate formation in both urban and regional environments, although VOCs are not direct precursors of nitrate aerosol.
Hao Yang, Lei Chen, Hong Liao, Jia Zhu, Wenjie Wang, and Xin Li
Atmos. Chem. Phys., 22, 4101–4116, https://doi.org/10.5194/acp-22-4101-2022, https://doi.org/10.5194/acp-22-4101-2022, 2022
Short summary
Short summary
Aerosols can influence O3 through aerosol–radiation interactions, including aerosol–photolysis interaction (API) and aerosol–radiation feedback (ARF). The weakened photolysis rates and changed meteorological conditions reduce surface-layer O3 concentrations by up to 9.3–11.4 ppb, with API and ARF contributing 74.6 %–90.0 % and 10.0 %–25.4 % of the O3 decrease in three episodes, respectively, which indicates that API is the dominant way for O3 reduction related to aerosol–radiation interactions.
Patricia Tarín-Carrasco, Ulas Im, Camilla Geels, Laura Palacios-Peña, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 22, 3945–3965, https://doi.org/10.5194/acp-22-3945-2022, https://doi.org/10.5194/acp-22-3945-2022, 2022
Short summary
Short summary
The evidence of the effects of atmospheric pollution (and particularly fine particulate matter, PM2.5) on human mortality is now unquestionable. Here, 895 000 annual premature deaths (PD) are estimated for the present (1991–2010), which increases to 1 540 000 in the year 2050 due to the ageing of the European population. The implementation of a mitigation scenario (80 % of the energy production in Europe from renewable sources) could lead to a decrease of over 60 000 annual PD for the year 2050.
Xiajie Yang, Qiaoqiao Wang, Nan Ma, Weiwei Hu, Yang Gao, Zhijiong Huang, Junyu Zheng, Bin Yuan, Ning Yang, Jiangchuan Tao, Juan Hong, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 22, 3743–3762, https://doi.org/10.5194/acp-22-3743-2022, https://doi.org/10.5194/acp-22-3743-2022, 2022
Short summary
Short summary
We use the GEOS-Chem model with additional anthropogenic and biomass burning chlorine emissions combined with updated parameterizations for N2O5 + Cl chemistry to investigate the impacts of chlorine chemistry on air quality in China. Our study not only significantly improves the model's performance but also demonstrates the importance of non-sea-salt chlorine sources as well as an appropriate parameterization for N2O5 + Cl chemistry to the impact of chlorine chemistry in China.
Long Chen, Yu Huang, Yonggang Xue, Zhihui Jia, and Wenliang Wang
Atmos. Chem. Phys., 22, 3693–3711, https://doi.org/10.5194/acp-22-3693-2022, https://doi.org/10.5194/acp-22-3693-2022, 2022
Short summary
Short summary
Quantum chemical methods are applied to gain insight into the detailed mechanisms of OH-initiated oxidation of distinct HHPs. The dominant pathway is H-abstraction from the -OOH group in the initiation reactions of the OH radical with HOCH2OOH and HOC(CH3)2OOH. H-abstraction from -CH group is competitive with that from the -OOH group in the reaction of the OH radical with HOCH(CH3)OOH. The barrier of H-abstraction from the -OOH group is slightly increased as the methyl group number increases.
Joseph Lilek and Andreas Zuend
Atmos. Chem. Phys., 22, 3203–3233, https://doi.org/10.5194/acp-22-3203-2022, https://doi.org/10.5194/acp-22-3203-2022, 2022
Short summary
Short summary
Depending on temperature and chemical makeup, certain aerosols can be highly viscous or glassy, with atmospheric implications. We have therefore implemented two major upgrades to the predictive viscosity model AIOMFAC-VISC. First, we created a new viscosity model for aqueous electrolyte solutions containing an arbitrary number of ion species. Second, we integrated the electrolyte model within the existing AIOMFAC-VISC framework to enable viscosity predictions for organic–inorganic mixtures.
Rongjie Zhang, Jiewen Shen, Hong-Bin Xie, Jingwen Chen, and Jonas Elm
Atmos. Chem. Phys., 22, 2639–2650, https://doi.org/10.5194/acp-22-2639-2022, https://doi.org/10.5194/acp-22-2639-2022, 2022
Short summary
Short summary
Formic acid is screened out as the species that can effectively catalyze the new particle formation (NPF) of the methanesulfonic acid (MSA)–methylamine system, indicating organic acids might be required to facilitate MSA-driven NPF in the atmosphere. The results are significant to comprehensively understand the MSA-driven NPF and expand current knowledge of the contribution of OAs to NPF.
Amina Khaled, Minghui Zhang, and Barbara Ervens
Atmos. Chem. Phys., 22, 1989–2009, https://doi.org/10.5194/acp-22-1989-2022, https://doi.org/10.5194/acp-22-1989-2022, 2022
Short summary
Short summary
Chemical reactions with iron in clouds and aerosol form and cycle reactive oxygen species (ROS). Previous model studies assumed that all cloud droplets (particles) contain iron, while single-particle analyses showed otherwise. By means of a model, we explore the bias in predicted ROS budgets by distributing a given iron mass to either all or only a few droplets (particles). Implications for oxidation potential, radical loss and iron oxidation state are discussed.
Cited articles
Asolkar, K. and Ardhapurkar, S. S.: Energy Efficient Intelligent Household LED
Lighting System Based On Daylight Illumination, Int. J. Eng. Tech., 9,
4258–4264, 2017.
Binkowski, F. S. and Roselle, S. J.: Models-3 Community Multiscale Air
Quality (CMAQ) model aerosol component 1. Model description, J. Geophys.
Res., 108, 1–18, https://doi.org/10.1029/2001JD001409, 2003.
Chen, F. and Dudhia, J.: Coupling an advanced land surface–hydrology model
with the Penn State–NCAR MM5 modeling system. Part II: Preliminary model
validation, Mon. Weather Rev., 129, 587–604, 2001.
Chen, X. and Nordhaus, W. D.: Using luminosity data as a proxy for economic
statistics, P. Natl. Acad. Sci. USA, 108, 8589–8594, 2011.
Chou, M. D. and Suarez, M. J.: A solar radiation parameterization for
atmospheric studies, NASA TM-104606, Nasa Tech. memo, 15, 1999.
Chou, M. D., Suarez, M. J., Liang, X. Z., Yan, M. H., and Cote, C.: A
Thermal Infrared Radiation Parameterization for Atmospheric Studies, Tech. Rep. NASA/TM-2001-104606, 19, 55, 2001.
Coscieme, L., Pulselli, F. M., Bastianoni, S., Elvidge, C. D., Anderson, S.,
and Sutton, P. C.: A Thermodynamic Geography: Night-Time Satellite Imagery
as a Proxy Measure of Emergy, Ambio, 43, 969–979, 2014.
Edirisinghe, K., Abeyweera, R., and Senanayake, N. S.: Evaluation of
Effectiveness of LED Lighting in Buildings, SLEMA J., 19, 2, 2016.
Elvidge, C. D., Baugh, K. E., Kihn, E. A., Kroehl, H. W., Davis, E. R., and
Davis, C. W.: Relation between satellite observed visible-near infrared
emissions, population, economic activity and electric power consumption,
Int. J. Remote Sens., 18, 1373–1379, 1997.
Elvidge, C. D., Sutton, P. C., Ghosh, T., Tuttle, B. T., Baugh, K. E.,
Bhaduri, B., and Bright, E.: A global poverty map derived from satellite
data, Comput. Geosci., 35, 1652–1660, 2009.
Elvidge, C. D., Baugh, K. E., Zhizhin, M., and Hsu, F. C.: Why VIIRS data
are superior to DMSP for mapping nighttime lights, P. Asia-Pac. Adv. Netw.,
35, 62–69, 2013.
Elvidge, C. D., Hsu, K. E., Baugh, K., and Ghosh, T.: National Trends in
Satellite Observed Lighting: 1992–2012, Global Urban Monitoring and
Assessment Through Earth Observation, Chapter 6, 97–130, Boca Raton, FL, USA, https://doi.org/10.1201/b17012, 2014.
Gao, F. and Zheng, B.: Review of Development and Implementation of the
Green Lighting Project in China, China Illum. Eng. J., 27, 1–7, 2016 (in Chinese).
Gao, J., Zhu, B., Xiao, H., Kang, H., Pan, C., Wang, D., and Wang, H.: Effects of black carbon and boundary layer interaction on surface ozone in Nanjing, China, Atmos. Chem. Phys., 18, 7081–7094, https://doi.org/10.5194/acp-18-7081-2018, 2018.
Ge, A., Shu, H., Chen, D., Cai, J., Chen, J., and Zhu, L.: Optical design of
a road lighting luminaire using a chip-on-board LED array, Lighting Res.
Technol., 49, 651–657, https://doi.org/10.1177/1477153515627480, 2016.
Grell, G. A., Peckham, S. E., Schmitz, R., McKeen, S. A., Frost, G.,
Skamarock, W. C., and Eder, B.: Fully coupled “online” chemistry within
the WRF model, Atmos. Environ., 39, 6957–6975, 2005.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
Guo, F. and Pachauri, S.: China's Green Lights Program: A review and
assessment, Energ. Policy, 110, 31–39, 2017.
He, C., Ma, Q., Liu, Z., and Zhang, Q.: Modeling the spatiotemporal dynamics
of electric power consumption in Mainland China using saturation-corrected
DMSP/OLS nighttime stable light data, Int. J. Digit. Earth, 7, 993–1014, https://doi.org/10.1080/17538947.2013.822026, 2013.
Hong, S.-Y. and Lim, J.-O. J.: The WRF Single-Moment 6-Class Microphysics
Scheme (WSM6), Asia-Pac. J. Atmos. Sci., 42, 129–151, 2006.
Horowitz, L. W., Walters, S., Mauzerall, D. L., Emmons, L. K., Rasch, P. J.,
Granier, C., Tie, X., Lamarque, J. F., Schultz, M. G., and Tyndall, G. S.: A
global simulation of tropospheric ozone and related tracers: Description and
evaluation of MOZART, version 2, J. Geophys. Res.-Atmos., 108, 1–29, https://doi.org/10.1029/2002JD002853,
2003.
Hu, J., Huang, L., Chen, M., He, G., and Zhang, H.: Impacts of power
generation on air quality in China – Part II: Future scenarios, Resour.
Conserv. Recy., 121, 115–127, 2016.
Huang, L., Hu, J., Chen, M., and Zhang, H.: Impacts of power generation on
air quality in China – part I: An overview, Resour. Conserv. Recy., 121, 103–104, https://doi.org/10.1016/j.resconrec.2016.04.010, 2016.
Huang, Q., Yang, X., Gao, B., Yang, Y., and Zhao, Y.: Application of
DMSP/OLS Nighttime Light Images: A Meta-Analysis and a Systematic Literature
Review, Remote Sens., 6, 6844–6866, 2014.
Janjić, Z. I.: Nonsingular implementation of the Mellor–Yamada level
2.5 scheme in the NCEP Meso model, NCEP office note, 437, 61, 2002.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L.,
Iredell, M., Saha, S., White, G., and Woollen, J.: The NCEP/NCAR 40-Year
Reanalysis Project, B. Am. Meteorol. Soc., 77, 437–472, 1996.
Laurent, O., Hu, J., Li, L., Cockburn, M., Escobedo, L., Kleeman, M. J., and
Wu, J.: Sources and contents of air pollution affecting term low birth
weight in Los Angeles County, California, 2001–2008, Environ. Res., 134,
488–495, 2014.
Li, G., Zhang, R., Fan, J., and Tie, X.: Impacts of black carbon aerosol on
photolysis and ozone, J. Geophys. Res., 110, D23206, https://doi.org/10.1029/2005JD005898, 2005.
Li, G., Lei, W., Zavala, M., Volkamer, R., Dusanter, S., Stevens, P., and Molina, L. T.: Impacts of HONO sources on the photochemistry in Mexico City during the MCMA-2006/MILAGO Campaign, Atmos. Chem. Phys., 10, 6551–6567, https://doi.org/10.5194/acp-10-6551-2010, 2010.
Li, G., Bei, N., Tie, X., and Molina, L. T.: Aerosol effects on the photochemistry in Mexico City during MCMA-2006/MILAGRO campaign, Atmos. Chem. Phys., 11, 5169–5182, https://doi.org/10.5194/acp-11-5169-2011, 2011a.
Li, G., Zavala, M., Lei, W., Tsimpidi, A. P., Karydis, V. A., Pandis, S. N., Canagaratna, M. R., and Molina, L. T.: Simulations of organic aerosol concentrations in Mexico City using the WRF-CHEM model during the MCMA-2006/MILAGRO campaign, Atmos. Chem. Phys., 11, 3789–3809, https://doi.org/10.5194/acp-11-3789-2011, 2011b.
Li, G., Lei, W., Bei, N., and Molina, L. T.: Contribution of garbage burning to chloride and PM2.5 in Mexico City, Atmos. Chem. Phys., 12, 8751–8761, https://doi.org/10.5194/acp-12-8751-2012, 2012.
Li, Z., Guo, J., Ding, A., Liao, H., Liu, J., Sun, Y., Wang, T., Xue, H., Zhang, H., and Zhu, B.:
Aerosol and boundary-layer interactions and impact on air
quality, Natl. Sci. Rev., 4, 810–833, https://doi.org/10.1093/nsr/nwx117, 2017.
Lin, J.: China green lights program: A review and recommendations, Lawrence
Berkeley National Laboratory, Berkeley, CA, USA, 1999.
Liu, F., Zhang, Q., Tong, D., Zheng, B., Li, M., Huo, H., and He, K. B.: High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010, Atmos. Chem. Phys., 15, 13299–13317, https://doi.org/10.5194/acp-15-13299-2015, 2015.
Liu, H.: China's Green Lights Program: review of the past ten years and
prospect, Energ. China, 28, 17–20, 2006.
Liu, H.: The concept and practice of green lights, China Electric Power
Press, Beijing, China, 2009 (in Chinese).
Liu, H.: China's Green Lights Program in the past 20 years, J. China Illum.
Eng., 23, 12–17, 2012.
Liu, H. and Zhao, J. P.: The Implementation Manual of China Green Lights,
China Environ. Sci. Press, Beijing, 2011.
Lv, F. and Lv, W. B.: The Progress and Prospect of Green Lights Program in
China, China Illum. Eng. J., 23, 1–6, 2012.
NBS (National Bureau of Statistics): China Statistical Yearbook 2000–2016,
China Statistics Press, Beijing, available at: http://www.stats.gov.cn/tjsj/ndsj/ (last
access: 27 August 2019), 2000–2016.
NDRC (National Development and Reform Commission of China): China Green
Lights Development Report (2004), China Elect. Pow. Press, Beijing, 2005.
Nenes, A., Pandis, S. N., and Pilinis, C.: ISORROPIA: A new thermodynamic
equilibrium model for multiphase multicomponent inorganic aerosols, Aquat.
Geochem., 4, 123–152, 1998.
Pan, Y.: Actual Effect Tracking and Analysis of a LED Road Lighting
Upgrading Project, China Light & Lighting, 2, 25–28, https://doi.org/10.3969/j.issn.1002-6150.2018.02.006, 2018 (in Chinese).
Román, M. O. and Stokes, E. C.: Holidays in lights: Tracking cultural
patterns in demand for energy services, Earth. Future, 3, 182–205, 2015.
SCIO (State Council Information Office of China): NDRC press conference
on Green Lights Program, available at:
http://www.scio.gov.cn/xwfbh/gbwxwfbh/xwfbh/fzggw/document/313370/313370.htm (last access: 27 August 2019), 2006.
Seinfeld, J. H., Pandis, S. N., and Noone, K.: Atmospheric Chemistry and
Physics: From Air Pollution to Climate Change, Environ. Sci. Policy Sust.
Dev., 40, 26–26, 1998.
Tie, X. and Cao, J.: Aerosol pollution in China: Present and future impact
on environment, Particuology, 8, 426–431, 2010.
Tie, X., Brasseur, G., Emmons, L., Horowitz, L., and Kinnison, D.: Effects
of aerosols on tropospheric oxidants: A global model study, J. Geophys. Res.-Atmos., 106, 22931–22964, 2001.
Tie, X., Madronich, S., Walters, S., Zhang, R., Rasch, P., and Collins, W.:
Effect of clouds on photolysis and oxidants in the troposphere, J. Geophys.
Res., 108, 1–25, https://doi.org/10.1029/2003JD003659, 2003.
Tong, D., Zhang, Q., Liu, F., Geng, G., Zheng, Y., Xue, T., Hong, C., Wu,
R., Qin, Y., Zhao, H., Yang, L., and He, K.: Current Emissions and Future
Mitigation Pathways of Coal-Fired Power Plants in China from 2010 to 2030,
Environ. Sci. Technol., 52, 12905–12914, 2018.
Wang, S. and Hao, J.: Air quality management in China: Issues, challenges,
and options, J. Environ. Sci., 24, 2–13, 2012.
Wang, Y. J.: Study on energy saving technology of urban road lighting LED
street lighting, Heilongjiang Science, 8, 50–51, 2017 (in Chinese).
Wang, Y., Zhang, Q., Jiang, J., Zhou, W., Wang, B., He, K., Duan, F., Zhang,
Q., Philip, S., and Xie, Y.: Enhanced sulfate formation during China's
severe winter haze episode in January 2013 missing from current models, J.
Geophys. Res.-Atmos., 119, 10425–10440, https://doi.org/10.1002/2013JD021426, 2015a.
Wang, Z., Pan, L., Li, Y., Zhang, D., Ma, J., Sun, F., Xu, W., and Wang, X.:
Assessment of air quality benefits from the national pollution control
policy of thermal power plants in China: A numerical simulation, Atmos.
Environ., 106, 288–304, 2015b.
Wesely, M.: Parameterization of surface resistances to gaseous dry
deposition in regional-scale numerical models, Atmos. Environ., 23,
1293–1304, 1989.
Xue, J., Yuan, Z., Griffith, S. M., Yu, X., Lau, A. K. H., and Yu, J. Z.:
Sulfate Formation Enhanced by a Cocktail of High NOx, SO2, Particulate
Matter, and Droplet pH during Haze-Fog Events in Megacities in China: An
Observation-Based Modeling Investigation, Environ. Sci. Technol., 50, 7325–7334,
2016.
Yu, C. and Zhou, D.: Evaluation of the implementation of China's green
lights program, Energy China, 2, 8–11, 2001.
Zhang, H., Li, J., Qi, Y., Jian, Z. Y., Wu, D., Yuan, C., He, K., and Jiang,
J.: Source apportionment of PM2.5 nitrate and sulfate in China using a
source-oriented chemical transport model, Atmos. Environ., 62, 228–242,
2012.
Zhang, Q., Streets, D. G., Carmichael, G. R., He, K. B., Huo, H., Kannari, A., Klimont, Z., Park, I. S., Reddy, S., Fu, J. S., Chen, D., Duan, L., Lei, Y., Wang, L. T., and Yao, Z. L.: Asian emissions in 2006 for the NASA INTEX-B mission, Atmos. Chem. Phys., 9, 5131–5153, https://doi.org/10.5194/acp-9-5131-2009, 2009.
Zhao, Y., Zhang, J., and Nielsen, C. P.: The effects of recent control policies on trends in emissions of anthropogenic atmospheric pollutants and CO2 in China, Atmos. Chem. Phys., 13, 487–508, https://doi.org/10.5194/acp-13-487-2013, 2013.
Zheng, B., Gao, F., and Guo, X.: Survey Analysis of Lighting Power
Consumption in China, China Light & Lighting, 10, 18–22, 2016 (in Chinese).
Short summary
China is undergoing ever-increasing demand for electricity, and launched the Green Light Program (GLP), which is an effective reduction of the coal consumption for power generation. The estimated potential coal saving induced by the GLP can reach a massive value of 120–323 million tons. There was a massive resultant potential emission reduction of air pollutants, which is inherently connected to the haze formation, because the NOx and SO2 are important precursors for the formation of particles.
China is undergoing ever-increasing demand for electricity, and launched the Green Light Program...
Altmetrics
Final-revised paper
Preprint