Articles | Volume 18, issue 12
Atmos. Chem. Phys., 18, 8529–8547, 2018
https://doi.org/10.5194/acp-18-8529-2018
Atmos. Chem. Phys., 18, 8529–8547, 2018
https://doi.org/10.5194/acp-18-8529-2018

Research article 18 Jun 2018

Research article | 18 Jun 2018

Detection and variability of combustion-derived vapor in an urban basin

Richard P. Fiorella et al.

Related authors

Isotopic reconnaissance of urban water supply system dynamics
Yusuf Jameel, Simon Brewer, Richard P. Fiorella, Brett J. Tipple, Shazelle Terry, and Gabriel J. Bowen
Hydrol. Earth Syst. Sci., 22, 6109–6125, https://doi.org/10.5194/hess-22-6109-2018,https://doi.org/10.5194/hess-22-6109-2018, 2018
Short summary

Related subject area

Subject: Isotopes | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Baffin Bay sea ice extent and synoptic moisture transport drive water vapor isotope (δ18O, δ2H, and deuterium excess) variability in coastal northwest Greenland
Pete D. Akers, Ben G. Kopec, Kyle S. Mattingly, Eric S. Klein, Douglas Causey, and Jeffrey M. Welker
Atmos. Chem. Phys., 20, 13929–13955, https://doi.org/10.5194/acp-20-13929-2020,https://doi.org/10.5194/acp-20-13929-2020, 2020
Short summary
New evidence for atmospheric mercury transformations in the marine boundary layer from stable mercury isotopes
Ben Yu, Lin Yang, Linlin Wang, Hongwei Liu, Cailing Xiao, Yong Liang, Qian Liu, Yongguang Yin, Ligang Hu, Jianbo Shi, and Guibin Jiang
Atmos. Chem. Phys., 20, 9713–9723, https://doi.org/10.5194/acp-20-9713-2020,https://doi.org/10.5194/acp-20-9713-2020, 2020
Short summary
The isotopic composition of atmospheric nitrous oxide observed at the high-altitude research station Jungfraujoch, Switzerland
Longfei Yu, Eliza Harris, Stephan Henne, Sarah Eggleston, Martin Steinbacher, Lukas Emmenegger, Christoph Zellweger, and Joachim Mohn
Atmos. Chem. Phys., 20, 6495–6519, https://doi.org/10.5194/acp-20-6495-2020,https://doi.org/10.5194/acp-20-6495-2020, 2020
Short summary
Deposition, recycling, and archival of nitrate stable isotopes between the air–snow interface: comparison between Dronning Maud Land and Dome C, Antarctica
V. Holly L. Winton, Alison Ming, Nicolas Caillon, Lisa Hauge, Anna E. Jones, Joel Savarino, Xin Yang, and Markus M. Frey
Atmos. Chem. Phys., 20, 5861–5885, https://doi.org/10.5194/acp-20-5861-2020,https://doi.org/10.5194/acp-20-5861-2020, 2020
Short summary
Oxygen and sulfur mass-independent isotopic signatures in black crusts: the complementary negative Δ33S reservoir of sulfate aerosols?
Isabelle Genot, David Au Yang, Erwan Martin, Pierre Cartigny, Erwann Legendre, and Marc De Rafelis
Atmos. Chem. Phys., 20, 4255–4273, https://doi.org/10.5194/acp-20-4255-2020,https://doi.org/10.5194/acp-20-4255-2020, 2020
Short summary

Cited articles

Andrews, A. E., Kofler, J. D., Trudeau, M. E., Williams, J. C., Neff, D. H., Masarie, K. A., Chao, D. Y., Kitzis, D. R., Novelli, P. C., Zhao, C. L., Dlugokencky, E. J., Lang, P. M., Crotwell, M. J., Fischer, M. L., Parker, M. J., Lee, J. T., Baumann, D. D., Desai, A. R., Stanier, C. O., De Wekker, S. F. J., Wolfe, D. E., Munger, J. W., and Tans, P. P.: CO2, CO, and CH4 measurements from tall towers in the NOAA earth system research laboratory's global greenhouse gas reference network: Instrumentation, uncertainty analysis, and recommendations for future high-accuracy greenhouse gas monitoring efforts, Atmos. Meas. Tech., 7, 647–687, https://doi.org/10.5194/amt-7-647-2014, 2014.
Baasandorj, M., Hoch, S. W., Bares, R., Lin, J. C., Brown, S. S., Millet, D. B., Martin, R., Kelly, K., Zarzana, K. J., Whiteman, C. D., Dube, W. P., Tonnesen, G., Jaramillo, I. C., and Sohl, J.: Coupling between Chemical and Meteorological Processes under Persistent Cold-Air Pool Conditions: Evolution of Wintertime PM2.5 Pollution Events and N2O5 Observations in Utah's Salt Lake Valley, Environ. Sci. Technol., 51, 5941–5950, https://doi.org/10.1021/acs.est.6b06603, 2017.
Bares, R., Lin, J. C., Hoch, S. W., Baasandorj, M., Mendoza, D., Fasoli, B., Mitchell, L., and Stephens, B. B.: The wintertime co-variation of CO2 and criteria pollutants in an urban valley of the Western US, J. Geophys. Res.-Atmos., 123, 1–20, https://doi.org/10.1002/2017JD027917, 2018.
Barkan, E. and Luz, B.: High precision measurements of 17O/16O and 18O/16O ratios in H2O, Rapid Commun. Mass Spectrom., 19, 3737–3742, https://doi.org/10.1002/rcm.2250, 2005.
Bergeron, O. and Strachan, I. B.: Wintertime radiation and energy budget along an urbanization gradient in Montreal, Canada, Int. J. Climatol., 32, 137–152, https://doi.org/10.1002/joc.2246, 2012.
Download
Short summary
Fossil fuel combustion produces water; where fossil fuel combustion is concentrated in urban areas, this humidity source may represent ~ 10 % of total humidity. In turn, this water vapor addition may alter urban meteorology, though the contribution of combustion vapor is difficult to measure. Using stable water isotopes, we estimate that up to 16 % of urban humidity may arise from combustion when the atmosphere is stable during winter, and develop recommendations for application in other cities.
Altmetrics
Final-revised paper
Preprint