Articles | Volume 18, issue 12
Atmos. Chem. Phys., 18, 8529–8547, 2018
Atmos. Chem. Phys., 18, 8529–8547, 2018

Research article 18 Jun 2018

Research article | 18 Jun 2018

Detection and variability of combustion-derived vapor in an urban basin

Richard P. Fiorella et al.

Data sets

Water Vapor Isotope Data from Salt Lake Valley, DJF 2013-2017 R. P. Fiorella and G. J. Bowen

IGRA database National Centers for Environmental Information, Integrated Global Radiosonde Archive, and United States National Oceanic and Atmospheric Administration

MesoWest: Cooperative mesonets in the western United States J. Horel, M. Splitt, L. Dunn, J. Pechmann, B. White, C. Ciliberti, S. Lazarus, J. Slemmer, D. Zaff, and J. Burks<0211:MCMITW>2.3.CO;2

Data Repository, Utah Atmospheric Trace Gas & Air Quality Lab B. Fasoli, B., J. C. Lin, R. Bares, L. Mitchell, and J. Ehleringer

Combustion Vapor - SLV Data R. P. Fiorella and G. J. Bowen

University of Utah Water Vapor Data Processing Scripts v1.2.0b R. P. Fiorella, G. Gorski, G., and G. J. Bowen

Model code and software

Water Vapor Isotope Processing Scripts R. P. Fiorella, G. Gorski, G. J. Bowen

Short summary
Fossil fuel combustion produces water; where fossil fuel combustion is concentrated in urban areas, this humidity source may represent ~ 10 % of total humidity. In turn, this water vapor addition may alter urban meteorology, though the contribution of combustion vapor is difficult to measure. Using stable water isotopes, we estimate that up to 16 % of urban humidity may arise from combustion when the atmosphere is stable during winter, and develop recommendations for application in other cities.
Final-revised paper