Articles | Volume 18, issue 9
Atmos. Chem. Phys., 18, 6381–6392, 2018
https://doi.org/10.5194/acp-18-6381-2018
Atmos. Chem. Phys., 18, 6381–6392, 2018
https://doi.org/10.5194/acp-18-6381-2018

Research article 04 May 2018

Research article | 04 May 2018

Triple oxygen isotopes indicate urbanization affects sources of nitrate in wet and dry atmospheric deposition

David M. Nelson et al.

Related authors

Century-scale wood nitrogen isotope trajectories from an oak savanna with variable fire frequencies
Matthew L. Trumper, Daniel Griffin, Sarah E. Hobbie, Ian M. Howard, David M. Nelson, Peter B. Reich, and Kendra K. McLauchlan
Biogeosciences, 17, 4509–4522, https://doi.org/10.5194/bg-17-4509-2020,https://doi.org/10.5194/bg-17-4509-2020, 2020
Short summary

Related subject area

Subject: Isotopes | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Baffin Bay sea ice extent and synoptic moisture transport drive water vapor isotope (δ18O, δ2H, and deuterium excess) variability in coastal northwest Greenland
Pete D. Akers, Ben G. Kopec, Kyle S. Mattingly, Eric S. Klein, Douglas Causey, and Jeffrey M. Welker
Atmos. Chem. Phys., 20, 13929–13955, https://doi.org/10.5194/acp-20-13929-2020,https://doi.org/10.5194/acp-20-13929-2020, 2020
Short summary
New evidence for atmospheric mercury transformations in the marine boundary layer from stable mercury isotopes
Ben Yu, Lin Yang, Linlin Wang, Hongwei Liu, Cailing Xiao, Yong Liang, Qian Liu, Yongguang Yin, Ligang Hu, Jianbo Shi, and Guibin Jiang
Atmos. Chem. Phys., 20, 9713–9723, https://doi.org/10.5194/acp-20-9713-2020,https://doi.org/10.5194/acp-20-9713-2020, 2020
Short summary
The isotopic composition of atmospheric nitrous oxide observed at the high-altitude research station Jungfraujoch, Switzerland
Longfei Yu, Eliza Harris, Stephan Henne, Sarah Eggleston, Martin Steinbacher, Lukas Emmenegger, Christoph Zellweger, and Joachim Mohn
Atmos. Chem. Phys., 20, 6495–6519, https://doi.org/10.5194/acp-20-6495-2020,https://doi.org/10.5194/acp-20-6495-2020, 2020
Short summary
Deposition, recycling, and archival of nitrate stable isotopes between the air–snow interface: comparison between Dronning Maud Land and Dome C, Antarctica
V. Holly L. Winton, Alison Ming, Nicolas Caillon, Lisa Hauge, Anna E. Jones, Joel Savarino, Xin Yang, and Markus M. Frey
Atmos. Chem. Phys., 20, 5861–5885, https://doi.org/10.5194/acp-20-5861-2020,https://doi.org/10.5194/acp-20-5861-2020, 2020
Short summary
Oxygen and sulfur mass-independent isotopic signatures in black crusts: the complementary negative Δ33S reservoir of sulfate aerosols?
Isabelle Genot, David Au Yang, Erwan Martin, Pierre Cartigny, Erwann Legendre, and Marc De Rafelis
Atmos. Chem. Phys., 20, 4255–4273, https://doi.org/10.5194/acp-20-4255-2020,https://doi.org/10.5194/acp-20-4255-2020, 2020
Short summary

Cited articles

Aikawa, M., Ohara, T., Hiraki, T., Oishi, O., Tsuji, A., Yamagami, M., Murano, K., and Mukai, H.: Significant geographic gradients in particulate sulfate over Japan determined from multiple-site measurements and a chemical transport model: Impacts of transboundary pollution from the Asian continent, Atmos. Environ., 44, 381–391, https://doi.org/10.1016/j.atmosenv.2009.10.025, 2010.
Akimoto, H.: Global air quality and pollution, Science, 302, 1716–1719, https://doi.org/10.1126/science.1092666, 2003.
Alexander, B., Hastings, M. G., Allman, D. J., Dachs, J., Thornton, J. A., and Kunasek, S. A.: Quantifying atmospheric nitrate formation pathways based on a global model of the oxygen isotopic composition (Δ17O) of atmospheric nitrate, Atmos. Chem. Phys., 9, 5043–5056, https://doi.org/10.5194/acp-9-5043-2009, 2009.
Balestrini, R., Galli, L., and Tartari, G.: Wet and dry atmospheric deposition at prealpine and alpine sites in northern Italy, Atmos. Environ., 34, 1455–1470, https://doi.org/10.1016/S1352-2310(99)00404-5, 2000.
Ban, S., Matsuda, K., Sato, K., and Ohizumi, T.: Long-term assessment of nitrogen deposition at remote EANET sites in Japan, Atmos. Environ., 146, 70–78, https://doi.org/10.1016/j.atmosenv.2016.04.015, 2016.
Download
Short summary
Atmospheric nitrate may be produced locally and/or come from upwind regions. To address this issue we measured oxygen and nitrogen isotopes of wet and dry nitrate deposition at nearby urban and rural sites. Our results suggest that, relative to nitrate in wet deposition in urban environments and wet and dry deposition in rural environments, nitrate in dry deposition in urban environments results from local NOx emissions more so than wet deposition, which is transported longer distances.
Altmetrics
Final-revised paper
Preprint