Articles | Volume 18, issue 8
https://doi.org/10.5194/acp-18-5847-2018
https://doi.org/10.5194/acp-18-5847-2018
Research article
 | 
26 Apr 2018
Research article |  | 26 Apr 2018

Study of the daily and seasonal atmospheric CH4 mixing ratio variability in a rural Spanish region using 222Rn tracer

Claudia Grossi, Felix R. Vogel, Roger Curcoll, Alba Àgueda, Arturo Vargas, Xavier Rodó, and Josep-Anton Morguí

Related authors

Estimation of seasonal methane fluxes over a Mediterranean rice paddy area using the Radon Tracer Method (RTM)
Roger Curcoll, Josep-Anton Morguí, Alba Àgueda, Lídia Cañas, Sílvia Borràs, Arturo Vargas, and Claudia Grossi
EGUsphere, https://doi.org/10.5194/egusphere-2024-1370,https://doi.org/10.5194/egusphere-2024-1370, 2024
Short summary
Full characterization and calibration of a transfer standard monitor for atmospheric radon measurements
Roger Curcoll, Claudia Grossi, Stefan Röttger, and Arturo Vargas
Atmos. Meas. Tech., 17, 3047–3065, https://doi.org/10.5194/amt-17-3047-2024,https://doi.org/10.5194/amt-17-3047-2024, 2024
Short summary
Characterizing the automatic radon flux transfer standard system Autoflux: laboratory calibration and field experiments
Claudia Grossi, Daniel Rabago, Scott Chambers, Carlos Sáinz, Roger Curcoll, Peter P. S. Otáhal, Eliška Fialová, Luis Quindos, and Arturo Vargas
Atmos. Meas. Tech., 16, 2655–2672, https://doi.org/10.5194/amt-16-2655-2023,https://doi.org/10.5194/amt-16-2655-2023, 2023
Short summary
Metrology for low-cost CO2 sensors applications: the case of a steady-state through-flow (SS-TF) chamber for CO2 fluxes observations
Roger Curcoll, Josep-Anton Morguí, Armand Kamnang, Lídia Cañas, Arturo Vargas, and Claudia Grossi
Atmos. Meas. Tech., 15, 2807–2818, https://doi.org/10.5194/amt-15-2807-2022,https://doi.org/10.5194/amt-15-2807-2022, 2022
Short summary
Radon metrology for use in climate change observation and radiation protection at the environmental level
Stefan Röttger, Annette Röttger, Claudia Grossi, Arturo Vargas, Ute Karstens, Giorgia Cinelli, Edward Chung, Dafina Kikaj, Chris Rennick, Florian Mertes, and Ileana Radulescu
Adv. Geosci., 57, 37–47, https://doi.org/10.5194/adgeo-57-37-2022,https://doi.org/10.5194/adgeo-57-37-2022, 2022
Short summary

Related subject area

Subject: Biosphere Interactions | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Dynamics of aerosol, humidity, and clouds in air masses travelling over Fennoscandian boreal forests
Meri Räty, Larisa Sogacheva, Helmi-Marja Keskinen, Veli-Matti Kerminen, Tuomo Nieminen, Tuukka Petäjä, Ekaterina Ezhova, and Markku Kulmala
Atmos. Chem. Phys., 23, 3779–3798, https://doi.org/10.5194/acp-23-3779-2023,https://doi.org/10.5194/acp-23-3779-2023, 2023
Short summary
Residence times of air in a mature forest: observational evidence from a free-air CO2 enrichment experiment
Edward J. Bannister, Mike Jesson, Nicholas J. Harper, Kris M. Hart, Giulio Curioni, Xiaoming Cai, and A. Rob MacKenzie
Atmos. Chem. Phys., 23, 2145–2165, https://doi.org/10.5194/acp-23-2145-2023,https://doi.org/10.5194/acp-23-2145-2023, 2023
Short summary
Energy and mass exchange at an urban site in mountainous terrain – the Alpine city of Innsbruck
Helen Claire Ward, Mathias Walter Rotach, Alexander Gohm, Martin Graus, Thomas Karl, Maren Haid, Lukas Umek, and Thomas Muschinski
Atmos. Chem. Phys., 22, 6559–6593, https://doi.org/10.5194/acp-22-6559-2022,https://doi.org/10.5194/acp-22-6559-2022, 2022
Short summary
Observations of aerosol–vapor pressure deficit–evaporative fraction coupling over India
Chandan Sarangi, TC Chakraborty, Sachchidanand Tripathi, Mithun Krishnan, Ross Morrison, Jonathan Evans, and Lina M. Mercado
Atmos. Chem. Phys., 22, 3615–3629, https://doi.org/10.5194/acp-22-3615-2022,https://doi.org/10.5194/acp-22-3615-2022, 2022
Short summary
Biogeochemical and biophysical responses to episodes of wildfire smoke from natural ecosystems in southwestern British Columbia, Canada
Sung-Ching Lee, Sara H. Knox, Ian McKendry, and T. Andrew Black
Atmos. Chem. Phys., 22, 2333–2349, https://doi.org/10.5194/acp-22-2333-2022,https://doi.org/10.5194/acp-22-2333-2022, 2022
Short summary

Cited articles

Àgueda, A., Grossi, C., Pastor, E., Rioja, E., Sánchez-García, L., Batet, O., Curcoll, R., Ealo, M., Nofuentes, M., Occhipinti, P., Rodó, X., and Morguí, J.-A: Temporal and spatial variability of ground level atmospheric methane concentrations in the Ebro River Delta, Atmos. Pollut. Res., in press, https://doi.org/10.1016/j.apr.2017.01.009, 2018.
Arnold, D., Vargas, A., Vermeulen, A., T., Verheggen, B., and Seibert, P.: Analysis of radon origin by backward atmospheric transport modelling, Atmos. Environ., 44, 494–502, https://doi.org/10.1016/j.atmosenv.2009.11.003, 2010.
Crosson, E. R.: A cavity ring-down analyzer for measuring atmospheric levels of methane, Carbon dioxide and water vapor, Appl. Phys. B, 92, 403–408, https://doi.org/10.1007/s00340-008-3135-y, 2008.
De Ramus, H. A., Clement, T. C., Giampola, D. D., and Dickison, P. C.: Methane Emissions of Beef Cattle on Forages: Efficiency of Grazing Management Systems, J. Environ. Qual., 32, 269–277, https://doi.org/10.2134/jeq2003.2690, 2003.
Download
Short summary
To gain a full picture of the Spanish (and European) GHG balance, understanding of CH4 emissions in different regions is a critical challenge, as is the improvement of bottom-up inventories for all European regions. This study uses, among other elements, GHG, meteorological and 222Rn tracer data from a Spanish region to understand the main causes of temporal variability of GHG mixing ratios. The study can offer new insights into regional emissions by identifying the impacts of changing sources.
Altmetrics
Final-revised paper
Preprint