Articles | Volume 18, issue 21
Atmos. Chem. Phys., 18, 15725–15742, 2018
https://doi.org/10.5194/acp-18-15725-2018
Atmos. Chem. Phys., 18, 15725–15742, 2018
https://doi.org/10.5194/acp-18-15725-2018

Research article 02 Nov 2018

Research article | 02 Nov 2018

Forcing mechanisms of the terdiurnal tide

Friederike Lilienthal et al.

Related authors

Forcing mechanisms of the migrating quarterdiurnal tide
Christoph Geißler, Christoph Jacobi, and Friederike Lilienthal
Ann. Geophys., 38, 527–544, https://doi.org/10.5194/angeo-38-527-2020,https://doi.org/10.5194/angeo-38-527-2020, 2020
Short summary
Interaction of Small-Scale Gravity Waves with the Terdiurnal Solar Tide in the Mesosphere and Lower Thermosphere
Friederike Lilienthal, Erdal Yiğit, Nadja Samtleben, and Christoph Jacobi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-339,https://doi.org/10.5194/gmd-2019-339, 2020
Preprint withdrawn
Short summary
Nonlinear forcing mechanisms of the migrating terdiurnal solar tide and their impact on the zonal mean circulation
Friederike Lilienthal and Christoph Jacobi
Ann. Geophys., 37, 943–953, https://doi.org/10.5194/angeo-37-943-2019,https://doi.org/10.5194/angeo-37-943-2019, 2019
Short summary
Quarterdiurnal signature in sporadic E occurrence rates and comparison with neutral wind shear
Christoph Jacobi, Christina Arras, Christoph Geißler, and Friederike Lilienthal
Ann. Geophys., 37, 273–288, https://doi.org/10.5194/angeo-37-273-2019,https://doi.org/10.5194/angeo-37-273-2019, 2019
Short summary
Forcing mechanisms of the 6 h tide in the mesosphere/lower thermosphere
Christoph Jacobi, Christoph Geißler, Friederike Lilienthal, and Amelie Krug
Adv. Radio Sci., 16, 141–147, https://doi.org/10.5194/ars-16-141-2018,https://doi.org/10.5194/ars-16-141-2018, 2018
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Self-consistent global transport of metallic ions with WACCM-X
Jianfei Wu, Wuhu Feng, Han-Li Liu, Xianghui Xue, Daniel Robert Marsh, and John Maurice Campbell Plane
Atmos. Chem. Phys., 21, 15619–15630, https://doi.org/10.5194/acp-21-15619-2021,https://doi.org/10.5194/acp-21-15619-2021, 2021
Short summary
Does the coupling of the semiannual oscillation with the quasi-biennial oscillation provide predictability of Antarctic sudden stratospheric warmings?
Viktoria J. Nordström and Annika Seppälä
Atmos. Chem. Phys., 21, 12835–12853, https://doi.org/10.5194/acp-21-12835-2021,https://doi.org/10.5194/acp-21-12835-2021, 2021
Short summary
The sporadic sodium layer: a possible tracer for the conjunction between the upper and lower atmospheres
Shican Qiu, Ning Wang, Willie Soon, Gaopeng Lu, Mingjiao Jia, Xingjin Wang, Xianghui Xue, Tao Li, and Xiankang Dou
Atmos. Chem. Phys., 21, 11927–11940, https://doi.org/10.5194/acp-21-11927-2021,https://doi.org/10.5194/acp-21-11927-2021, 2021
Short summary
Intercomparison of Middle Atmospheric Meteorological Analyses for the Northern Hemisphere Winter 2009–2010
John P. McCormack, V. Lynn Harvey, Nicholas Pedatella, Dai Koshin, Kaoru Sato, Lawrence Coy, Shingo Watanabe, Cora E. Randall, Fabrizio Sassi, and Laura A. Holt
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-224,https://doi.org/10.5194/acp-2021-224, 2021
Revised manuscript accepted for ACP
Short summary
Modelled effects of temperature gradients and waves on the hydroxyl rotational distribution in ground-based airglow measurements
Christoph Franzen, Patrick Joseph Espy, and Robert Edward Hibbins
Atmos. Chem. Phys., 20, 333–343, https://doi.org/10.5194/acp-20-333-2020,https://doi.org/10.5194/acp-20-333-2020, 2020
Short summary

Cited articles

Akmaev, R.: Seasonal variations of the terdiurnal tide in the mesosphere and lower thermosphere: a model study, Geophys. Res. Lett., 28, 3817–3820, https://doi.org/10.1029/2001GL013002, 2001. a, b, c, d, e, f, g, h, i, j
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle Atmosphere Dynamics, Academic Press Inc. Ltd., London, 1987. a, b, c
Beard, A. G., Mitchell, N. J., Williams, P. J. S., and Kunitake, M.: Non-linear interactions between tides and planetary waves resulting in periodic tidal variability, J. Atmos. Sol.-Terr. Phys., 61, 363–376, https://doi.org/10.1016/S1364-6826(99)00003-6, 1999. a, b
Beldon, C., Muller, H., and Mitchell, N.: The 8-hour tide in the mesosphere and lower thermosphere over the UK, 1988–2004, J. Atmos. Sol.-Terr. Phys., 68, 655–668, https://doi.org/10.1016/j.jastp.2005.10.004, 2006. a, b, c, d, e
Cevolani, G. and Bonelli, P.: Tidal activity in the middle atmosphere, Il Nuovo Cimento C, 8, 461–490, https://doi.org/10.1007/BF02582675, 1985. a, b
Download
Short summary
The terdiurnal solar tide is an atmospheric wave, owing to the daily variation of solar heating with a period of 8 h. Here, we present model simulations of this tide and investigate the relative importance of possible forcing mechanisms because they are still under debate. These are, besides direct solar heating, nonlinear interactions between other tides and gravity wave–tide interactions. As a result, solar heating is most important and nonlinear effects partly counteract this forcing.
Altmetrics
Final-revised paper
Preprint