Articles | Volume 18, issue 21
https://doi.org/10.5194/acp-18-15725-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-18-15725-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Forcing mechanisms of the terdiurnal tide
Friederike Lilienthal
CORRESPONDING AUTHOR
Institute for Meteorology, Universität Leipzig, Stephanstr. 3, 04103 Leipzig, Germany
Christoph Jacobi
Institute for Meteorology, Universität Leipzig, Stephanstr. 3, 04103 Leipzig, Germany
Christoph Geißler
Institute for Meteorology, Universität Leipzig, Stephanstr. 3, 04103 Leipzig, Germany
Related authors
Christoph Jacobi, Friederike Lilienthal, Dmitry Korotyshkin, Evgeny Merzlyakov, and Gunter Stober
Adv. Radio Sci., 19, 185–193, https://doi.org/10.5194/ars-19-185-2021, https://doi.org/10.5194/ars-19-185-2021, 2021
Short summary
Short summary
We compare winds and tidal amplitudes in the upper mesosphere/lower thermosphere region for cases with disturbed and undisturbed geomagnetic conditions. The zonal winds in both the mesosphere and lower thermosphere tend to be weaker during disturbed conditions. The summer equatorward meridional wind jet is weaker for disturbed geomagnetic conditions. The effect of geomagnetic variability on tidal amplitudes, except for the semidiurnal tide, is relatively small.
Christoph Geißler, Christoph Jacobi, and Friederike Lilienthal
Ann. Geophys., 38, 527–544, https://doi.org/10.5194/angeo-38-527-2020, https://doi.org/10.5194/angeo-38-527-2020, 2020
Short summary
Short summary
This is an extensive model study to analyze the migrating quarterdiurnal solar tide (QDT) and its forcing mechanisms in the middle atmosphere. We first show a climatology of the QDT amplitudes and examine the contribution of the different forcing mechanisms, including direct solar, nonlinear and gravity wave forcing, on the QDT amplitude. We then investigate the destructive interference between the individual forcing mechanisms.
Friederike Lilienthal, Erdal Yiğit, Nadja Samtleben, and Christoph Jacobi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-339, https://doi.org/10.5194/gmd-2019-339, 2020
Preprint withdrawn
Short summary
Short summary
Gravity waves are a small-scale but prominent dynamical feature in the Earth's atmosphere. Here, we use a mechanistic nonlinear general circulation model and implement a modern whole atmosphere gravity wave parameterization. We study the response of the atmosphere on several phase speed spectra. We find a large influence of fast travelling waves on the background dynamics in the thermosphere and also a strong dependence of the amplitude of the terdiurnal solar tide, indicating wave interactions.
Friederike Lilienthal and Christoph Jacobi
Ann. Geophys., 37, 943–953, https://doi.org/10.5194/angeo-37-943-2019, https://doi.org/10.5194/angeo-37-943-2019, 2019
Short summary
Short summary
We analyzed the forcing mechanisms of the migrating terdiurnal solar tide in the middle atmosphere, focusing the impact on the zonal mean circulation. We show that the primary solar forcing is the most dominant one but secondary wave–wave interactions also contribute in the lower thermosphere region. We further demonstrate that small-scale gravity waves can strongly and irregularly influence the amplitude of the terdiurnal tide as well as the background circulation in the thermosphere.
Christoph Jacobi, Christina Arras, Christoph Geißler, and Friederike Lilienthal
Ann. Geophys., 37, 273–288, https://doi.org/10.5194/angeo-37-273-2019, https://doi.org/10.5194/angeo-37-273-2019, 2019
Short summary
Short summary
Sporadic E (Es) layers in the Earth's ionosphere are produced by ion convergence due to vertical wind shear in the presence of a horizontal component of the Earth's magnetic field. We present analyses of the 6 h tidal signatures in ES occurrence rates derived from GPS radio observations. Times of maxima in ES agree well with those of negative wind shear obtained from radar observation. The global distribution of ES amplitudes agrees with wind shear amplitudes from numerical modeling.
Christoph Jacobi, Christoph Geißler, Friederike Lilienthal, and Amelie Krug
Adv. Radio Sci., 16, 141–147, https://doi.org/10.5194/ars-16-141-2018, https://doi.org/10.5194/ars-16-141-2018, 2018
Short summary
Short summary
The possible sources of the quarterdiurnal tide (QDT) in the middle atmosphere are still under discussion. Therefore, meteor radar winds were analyzed with respect to non-linear interaction, which probably plays a role in winter, but to a lesser degree in summer. Numerical model experiments lead to the conclusion that, although non-linear tidal interaction is indeed one source of the QDT, the major source is direct solar forcing of the 6-hr tidal components.
Friederike Lilienthal, Christoph Jacobi, Torsten Schmidt, Alejandro de la Torre, and Peter Alexander
Ann. Geophys., 35, 785–798, https://doi.org/10.5194/angeo-35-785-2017, https://doi.org/10.5194/angeo-35-785-2017, 2017
Short summary
Short summary
Gravity waves (GWs) are one of the most important dynamical features of the middle atmosphere that extends from the tropopause to the lower thermosphere. They originate from the troposphere and propagate upward. Here, we show the impact of the horizontal GW distribution in the lower atmosphere on the dynamics of the middle atmosphere using a global circulation model. As a result, we find that non-zonal GW structures can force additional stationary planetary waves.
Petr Šácha, Friederike Lilienthal, Christoph Jacobi, and Petr Pišoft
Atmos. Chem. Phys., 16, 15755–15775, https://doi.org/10.5194/acp-16-15755-2016, https://doi.org/10.5194/acp-16-15755-2016, 2016
Short summary
Short summary
With a mechanistic model for the middle and upper atmosphere we performed sensitivity simulations to study a possible impact of a localized GW breaking hotspot in the eastern Asia–northern Pacific region and also the possible influence of the spatial distribution of gravity wave activity on the middle atmospheric circulation and transport. We show implications for polar vortex stability, in situ PW generation and longitudinal variability and strength of the Brewer–Dobson circulation.
F. Lilienthal and Ch. Jacobi
Atmos. Chem. Phys., 15, 9917–9927, https://doi.org/10.5194/acp-15-9917-2015, https://doi.org/10.5194/acp-15-9917-2015, 2015
Short summary
Short summary
The quasi 2-day wave (QTDW), one of the most striking features in the mesosphere/lower thermosphere, is analyzed using meteor radar measurements at Collm (51°N, 13°E) during 2004-2014. The QTDW has periods lasting between 43 and 52h during strong summer bursts, and weaker enhancements are found during winter. A correlation between QTDW amplitudes and wind shear suggests baroclinic instability to be a likely forcing mechanism.
F. Lilienthal and Ch. Jacobi
Adv. Radio Sci., 12, 205–210, https://doi.org/10.5194/ars-12-205-2014, https://doi.org/10.5194/ars-12-205-2014, 2014
Sina Mehrdad, Dörthe Handorf, Ines Höschel, Khalil Karami, Johannes Quaas, Sudhakar Dipu, and Christoph Jacobi
Weather Clim. Dynam., 5, 1223–1268, https://doi.org/10.5194/wcd-5-1223-2024, https://doi.org/10.5194/wcd-5-1223-2024, 2024
Short summary
Short summary
This study introduces a novel deep learning (DL) approach to analyze how regional radiative forcing in Europe impacts the Arctic climate. By integrating atmospheric poleward energy transport with DL-based clustering of atmospheric patterns and attributing anomalies to specific clusters, our method reveals crucial, nuanced interactions within the climate system, enhancing our understanding of intricate climate dynamics.
Arthur Gauthier, Claudia Borries, Alexander Kozlovsky, Diego Janches, Peter Brown, Denis Vida, Christoph Jacobi, Damian Murphy, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Johan Kero, Nicholas Mitchell, Tracy Moffat-Griffin, and Gunter Stober
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2024-13, https://doi.org/10.5194/angeo-2024-13, 2024
Revised manuscript under review for ANGEO
Short summary
Short summary
This study focuses on the TIMED Doppler Interferometer (TIDI)-Meteor Radar(MR) comparison of zonal and meridional winds and their dependence on local time and latitude. The correlation calculation between TIDI winds measurements and MR winds shows good agreement. A TIDI-MR seasonal comparison and the altitude-latitude dependence for winds is performed. TIDI reproduce the mean circulation well when compared with the MRs and might be useful as a lower boundary for general circulation models.
Ales Kuchar, Maurice Öhlert, Roland Eichinger, and Christoph Jacobi
Weather Clim. Dynam., 5, 895–912, https://doi.org/10.5194/wcd-5-895-2024, https://doi.org/10.5194/wcd-5-895-2024, 2024
Short summary
Short summary
Exploring the polar vortex's impact on climate, the study evaluates model simulations against the ERA5 reanalysis data. Revelations about model discrepancies in simulating disruptive stratospheric warmings and vortex behavior highlight the need for refined model simulations of past climate. By enhancing our understanding of these dynamics, the research contributes to more reliable climate projections of the polar vortex with the impact on surface climate.
Gunter Stober, Sharon L. Vadas, Erich Becker, Alan Liu, Alexander Kozlovsky, Diego Janches, Zishun Qiao, Witali Krochin, Guochun Shi, Wen Yi, Jie Zeng, Peter Brown, Denis Vida, Neil Hindley, Christoph Jacobi, Damian Murphy, Ricardo Buriti, Vania Andrioli, Paulo Batista, John Marino, Scott Palo, Denise Thorsen, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Kathrin Baumgarten, Johan Kero, Evgenia Belova, Nicholas Mitchell, Tracy Moffat-Griffin, and Na Li
Atmos. Chem. Phys., 24, 4851–4873, https://doi.org/10.5194/acp-24-4851-2024, https://doi.org/10.5194/acp-24-4851-2024, 2024
Short summary
Short summary
On 15 January 2022, the Hunga Tonga-Hunga Ha‘apai volcano exploded in a vigorous eruption, causing many atmospheric phenomena reaching from the surface up to space. In this study, we investigate how the mesospheric winds were affected by the volcanogenic gravity waves and estimated their propagation direction and speed. The interplay between model and observations permits us to gain new insights into the vertical coupling through atmospheric gravity waves.
Christoph Jacobi, Ales Kuchar, Toralf Renkwitz, and Juliana Jaen
Adv. Radio Sci., 21, 111–121, https://doi.org/10.5194/ars-21-111-2023, https://doi.org/10.5194/ars-21-111-2023, 2023
Short summary
Short summary
Middle atmosphere long-term changes show the signature of climate change. We analyse 43 years of mesopause region horizontal winds obtained at two sites in Germany. We observe mainly positive trends of the zonal prevailing wind throughout the year, while the meridional winds tend to decrease in magnitude in both summer and winter. Furthermore, there is a change in long-term trends around the late 1990s, which is most clearly visible in summer winds.
Juliana Jaen, Toralf Renkwitz, Huixin Liu, Christoph Jacobi, Robin Wing, Aleš Kuchař, Masaki Tsutsumi, Njål Gulbrandsen, and Jorge L. Chau
Atmos. Chem. Phys., 23, 14871–14887, https://doi.org/10.5194/acp-23-14871-2023, https://doi.org/10.5194/acp-23-14871-2023, 2023
Short summary
Short summary
Investigation of winds is important to understand atmospheric dynamics. In the summer mesosphere and lower thermosphere, there are three main wind flows: the mesospheric westward, the mesopause southward (equatorward), and the lower-thermospheric eastward wind. Combining almost 2 decades of measurements from different radars, we study the trend, their interannual oscillations, and the effects of the geomagnetic activity over these wind maxima.
Olivia Linke, Johannes Quaas, Finja Baumer, Sebastian Becker, Jan Chylik, Sandro Dahlke, André Ehrlich, Dörthe Handorf, Christoph Jacobi, Heike Kalesse-Los, Luca Lelli, Sina Mehrdad, Roel A. J. Neggers, Johannes Riebold, Pablo Saavedra Garfias, Niklas Schnierstein, Matthew D. Shupe, Chris Smith, Gunnar Spreen, Baptiste Verneuil, Kameswara S. Vinjamuri, Marco Vountas, and Manfred Wendisch
Atmos. Chem. Phys., 23, 9963–9992, https://doi.org/10.5194/acp-23-9963-2023, https://doi.org/10.5194/acp-23-9963-2023, 2023
Short summary
Short summary
Lapse rate feedback (LRF) is a major driver of the Arctic amplification (AA) of climate change. It arises because the warming is stronger at the surface than aloft. Several processes can affect the LRF in the Arctic, such as the omnipresent temperature inversion. Here, we compare multimodel climate simulations to Arctic-based observations from a large research consortium to broaden our understanding of these processes, find synergy among them, and constrain the Arctic LRF and AA.
Khalil Karami, Rolando Garcia, Christoph Jacobi, Jadwiga H. Richter, and Simone Tilmes
Atmos. Chem. Phys., 23, 3799–3818, https://doi.org/10.5194/acp-23-3799-2023, https://doi.org/10.5194/acp-23-3799-2023, 2023
Short summary
Short summary
Alongside mitigation and adaptation efforts, stratospheric aerosol intervention (SAI) is increasingly considered a third pillar to combat dangerous climate change. We investigate the teleconnection between the quasi-biennial oscillation in the equatorial stratosphere and the Arctic stratospheric polar vortex under a warmer climate and an SAI scenario. We show that the Holton–Tan relationship weakens under both scenarios and discuss the physical mechanisms responsible for such changes.
Christoph Jacobi, Kanykei Kandieva, and Christina Arras
Adv. Radio Sci., 20, 85–92, https://doi.org/10.5194/ars-20-85-2023, https://doi.org/10.5194/ars-20-85-2023, 2023
Short summary
Short summary
Sporadic E (Es) layers are thin regions of accumulated ions in the lower ionosphere. They can be observed by disturbances of GNSS links between low-Earth orbiting satellites and GNSS satellites. Es layers are influenced by neutral atmospheric tides and show the coupling between the neutral atmosphere and the ionosphere. Here we analyse migrating (sun-synchronous) and non-migrating tidal components in Es. The main signatures are migrating Es, but nonmigrating components are found as well.
Gerhard Georg Bruno Schmidtke, Raimund Brunner, and Christoph Jacobi
EGUsphere, https://doi.org/10.5194/egusphere-2023-139, https://doi.org/10.5194/egusphere-2023-139, 2023
Short summary
Short summary
The instrument records annual changes in Spectral Outgoing Radiation from 200–1100 nm, with 60 photomultiplier tubes simultaneously providing spectrometer and photometer data. Using Total Solar Irradiance data with a stability of 0.01 Wm-2 per year to recalibrate the established instruments, stable data of ~0.1 Wm-2 over a solar cycle period is expected. Determination of the changes in the global green Earth coverage and mapping will also assess the impact of climate engineering actions.
Gunter Stober, Alan Liu, Alexander Kozlovsky, Zishun Qiao, Ales Kuchar, Christoph Jacobi, Chris Meek, Diego Janches, Guiping Liu, Masaki Tsutsumi, Njål Gulbrandsen, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Meas. Tech., 15, 5769–5792, https://doi.org/10.5194/amt-15-5769-2022, https://doi.org/10.5194/amt-15-5769-2022, 2022
Short summary
Short summary
Precise and accurate measurements of vertical winds at the mesosphere and lower thermosphere are rare. Although meteor radars have been used for decades to observe horizontal winds, their ability to derive reliable vertical wind measurements was always questioned. In this article, we provide mathematical concepts to retrieve mathematically and physically consistent solutions, which are compared to the state-of-the-art non-hydrostatic model UA-ICON.
Ales Kuchar, Petr Sacha, Roland Eichinger, Christoph Jacobi, Petr Pisoft, and Harald Rieder
EGUsphere, https://doi.org/10.5194/egusphere-2022-474, https://doi.org/10.5194/egusphere-2022-474, 2022
Preprint archived
Short summary
Short summary
We focus on the impact of small-scale orographic gravity waves (OGWs) above the Himalayas. The interaction of GWs with the large-scale circulation in the stratosphere is not still well understood and can have implications on climate projections. We use a chemistry-climate model to show that these strong OGW events are associated with anomalously increased upward planetary-scale waves and in turn affect the circumpolar circulation and have the potential to alter ozone variability as well.
Sumanta Sarkhel, Gunter Stober, Jorge L. Chau, Steven M. Smith, Christoph Jacobi, Subarna Mondal, Martin G. Mlynczak, and James M. Russell III
Ann. Geophys., 40, 179–190, https://doi.org/10.5194/angeo-40-179-2022, https://doi.org/10.5194/angeo-40-179-2022, 2022
Short summary
Short summary
A rare gravity wave event was observed on the night of 25 April 2017 over northern Germany. An all-sky airglow imager recorded an upward-propagating wave at different altitudes in mesosphere with a prominent wave front above 91 km and faintly observed below. Based on wind and satellite-borne temperature profiles close to the event location, we have found the presence of a leaky thermal duct layer in 85–91 km. The appearance of this duct layer caused the wave amplitudes to diminish below 91 km.
Juliana Jaen, Toralf Renkwitz, Jorge L. Chau, Maosheng He, Peter Hoffmann, Yosuke Yamazaki, Christoph Jacobi, Masaki Tsutsumi, Vivien Matthias, and Chris Hall
Ann. Geophys., 40, 23–35, https://doi.org/10.5194/angeo-40-23-2022, https://doi.org/10.5194/angeo-40-23-2022, 2022
Short summary
Short summary
To study long-term trends in the mesosphere and lower thermosphere (70–100 km), we established two summer length definitions and analyzed the variability over the years (2004–2020). After the analysis, we found significant trends in the summer beginning of one definition. Furthermore, we were able to extend one of the time series up to 31 years and obtained evidence of non-uniform trends and periodicities similar to those known for the quasi-biennial oscillation and El Niño–Southern Oscillation.
Christoph Jacobi, Friederike Lilienthal, Dmitry Korotyshkin, Evgeny Merzlyakov, and Gunter Stober
Adv. Radio Sci., 19, 185–193, https://doi.org/10.5194/ars-19-185-2021, https://doi.org/10.5194/ars-19-185-2021, 2021
Short summary
Short summary
We compare winds and tidal amplitudes in the upper mesosphere/lower thermosphere region for cases with disturbed and undisturbed geomagnetic conditions. The zonal winds in both the mesosphere and lower thermosphere tend to be weaker during disturbed conditions. The summer equatorward meridional wind jet is weaker for disturbed geomagnetic conditions. The effect of geomagnetic variability on tidal amplitudes, except for the semidiurnal tide, is relatively small.
Gunter Stober, Ales Kuchar, Dimitry Pokhotelov, Huixin Liu, Han-Li Liu, Hauke Schmidt, Christoph Jacobi, Kathrin Baumgarten, Peter Brown, Diego Janches, Damian Murphy, Alexander Kozlovsky, Mark Lester, Evgenia Belova, Johan Kero, and Nicholas Mitchell
Atmos. Chem. Phys., 21, 13855–13902, https://doi.org/10.5194/acp-21-13855-2021, https://doi.org/10.5194/acp-21-13855-2021, 2021
Short summary
Short summary
Little is known about the climate change of wind systems in the mesosphere and lower thermosphere at the edge of space at altitudes from 70–110 km. Meteor radars represent a well-accepted remote sensing technique to measure winds at these altitudes. Here we present a state-of-the-art climatological interhemispheric comparison using continuous and long-lasting observations from worldwide distributed meteor radars from the Arctic to the Antarctic and sophisticated general circulation models.
Rajesh Vaishnav, Christoph Jacobi, Jens Berdermann, Mihail Codrescu, and Erik Schmölter
Ann. Geophys., 39, 641–655, https://doi.org/10.5194/angeo-39-641-2021, https://doi.org/10.5194/angeo-39-641-2021, 2021
Short summary
Short summary
We investigate the role of eddy diffusion in the delayed ionospheric response against solar flux changes in the solar rotation period using the CTIPe model. The study confirms that eddy diffusion is an important factor affecting the delay of the total electron content. An increase in eddy diffusion leads to faster transport processes and an increased loss rate, resulting in a decrease in the ionospheric delay.
Rajesh Vaishnav, Erik Schmölter, Christoph Jacobi, Jens Berdermann, and Mihail Codrescu
Ann. Geophys., 39, 341–355, https://doi.org/10.5194/angeo-39-341-2021, https://doi.org/10.5194/angeo-39-341-2021, 2021
Short summary
Short summary
We investigate the delayed ionospheric response using the observed and CTIPe-model-simulated TEC against the solar EUV flux. The ionospheric delay estimated using model-simulated TEC is in good agreement with the delay estimated for observed TEC. The study confirms the model's capabilities to reproduce the delayed ionospheric response against the solar EUV flux. Results also indicate that the average delay is higher in the Northern Hemisphere as compared to the Southern Hemisphere.
Harikrishnan Charuvil Asokan, Jorge L. Chau, Raffaele Marino, Juha Vierinen, Fabio Vargas, Juan Miguel Urco, Matthias Clahsen, and Christoph Jacobi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-974, https://doi.org/10.5194/acp-2020-974, 2020
Preprint withdrawn
Short summary
Short summary
This paper explores the dynamics of gravity waves and turbulence present in the mesosphere and lower thermosphere (MLT) region. We utilized two different techniques on meteor radar observations and simulations to obtain power spectra at different horizontal scales. The techniques are applied to a special campaign conducted in northern Germany in November 2018. The study revealed the dominance of large-scale structures with horizontal scales larger than 500 km during the campaign period.
Ales Kuchar, Petr Sacha, Roland Eichinger, Christoph Jacobi, Petr Pisoft, and Harald E. Rieder
Weather Clim. Dynam., 1, 481–495, https://doi.org/10.5194/wcd-1-481-2020, https://doi.org/10.5194/wcd-1-481-2020, 2020
Short summary
Short summary
Our study focuses on the impact of topographic structures such as the Himalayas and Rocky Mountains, so-called orographic gravity-wave hotspots. These hotspots play an important role in the dynamics of the middle atmosphere, in particular in the lower stratosphere. We study intermittency and zonally asymmetric character of these hotspots and their effects on the upper stratosphere and mesosphere using a new detection method in various modeling and observational datasets.
Christoph Geißler, Christoph Jacobi, and Friederike Lilienthal
Ann. Geophys., 38, 527–544, https://doi.org/10.5194/angeo-38-527-2020, https://doi.org/10.5194/angeo-38-527-2020, 2020
Short summary
Short summary
This is an extensive model study to analyze the migrating quarterdiurnal solar tide (QDT) and its forcing mechanisms in the middle atmosphere. We first show a climatology of the QDT amplitudes and examine the contribution of the different forcing mechanisms, including direct solar, nonlinear and gravity wave forcing, on the QDT amplitude. We then investigate the destructive interference between the individual forcing mechanisms.
Friederike Lilienthal, Erdal Yiğit, Nadja Samtleben, and Christoph Jacobi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-339, https://doi.org/10.5194/gmd-2019-339, 2020
Preprint withdrawn
Short summary
Short summary
Gravity waves are a small-scale but prominent dynamical feature in the Earth's atmosphere. Here, we use a mechanistic nonlinear general circulation model and implement a modern whole atmosphere gravity wave parameterization. We study the response of the atmosphere on several phase speed spectra. We find a large influence of fast travelling waves on the background dynamics in the thermosphere and also a strong dependence of the amplitude of the terdiurnal solar tide, indicating wave interactions.
Erik Schmölter, Jens Berdermann, Norbert Jakowski, and Christoph Jacobi
Ann. Geophys., 38, 149–162, https://doi.org/10.5194/angeo-38-149-2020, https://doi.org/10.5194/angeo-38-149-2020, 2020
Short summary
Short summary
This study correlates ionospheric parameters with the integrated solar radiation for an analysis of the delayed ionospheric response in order to confirm previous studies on the delay and to further specify variations of the delay (seasonal and spatial). Results also indicate the dependence on the geomagnetic activity as well as on the 11-year solar cycle. The results are important for the understanding of ionospheric processes and could be used for the validation of ionospheric models.
Nadja Samtleben, Aleš Kuchař, Petr Šácha, Petr Pišoft, and Christoph Jacobi
Ann. Geophys., 38, 95–108, https://doi.org/10.5194/angeo-38-95-2020, https://doi.org/10.5194/angeo-38-95-2020, 2020
Short summary
Short summary
The additional transfer of momentum and energy induced by locally breaking gravity wave hotspots in the lower stratosphere may lead to a destabilization of the polar vortex, which is strongly dependent on the position of the hotspot. The simulations with a global circulation model show that hotspots located above Eurasia cause a total decrease in the stationary planetary wave (SPW) activity, while the impact of hotspots located in North America mostly increase the SPW activity.
Rajesh Vaishnav, Christoph Jacobi, and Jens Berdermann
Ann. Geophys., 37, 1141–1159, https://doi.org/10.5194/angeo-37-1141-2019, https://doi.org/10.5194/angeo-37-1141-2019, 2019
Short summary
Short summary
We investigate the ionospheric response to the temporal and spatial dynamics of the solar activity using total electron content (TEC) maps and multiple solar proxies. The maximum correlation at a 16–32-d timescale is observed between the He-II, Mg-II, and F30 with respect to global mean TEC, with an effective time delay of about 1 d. The most suitable proxy to represent the solar activity at the timescales of 16–32 d and 32–64 d is He-II.
Friederike Lilienthal and Christoph Jacobi
Ann. Geophys., 37, 943–953, https://doi.org/10.5194/angeo-37-943-2019, https://doi.org/10.5194/angeo-37-943-2019, 2019
Short summary
Short summary
We analyzed the forcing mechanisms of the migrating terdiurnal solar tide in the middle atmosphere, focusing the impact on the zonal mean circulation. We show that the primary solar forcing is the most dominant one but secondary wave–wave interactions also contribute in the lower thermosphere region. We further demonstrate that small-scale gravity waves can strongly and irregularly influence the amplitude of the terdiurnal tide as well as the background circulation in the thermosphere.
Christoph Jacobi and Christina Arras
Adv. Radio Sci., 17, 213–224, https://doi.org/10.5194/ars-17-213-2019, https://doi.org/10.5194/ars-17-213-2019, 2019
Short summary
Short summary
We analyze tidal phases and related wind shear in the mesosphere and
lower thermosphere as observed by a meteor radar. The wind shear phases are compared with those of sporadic E occurrence rates, which were derived from GPS radio occultation observations. We find good correspondence between radar derived wind shear and sporadic E phases for the semidiurnal, terdiurnal, and quarterdiurnal tidal components, but not for the diurnal tide.
Nadja Samtleben, Christoph Jacobi, Petr Pišoft, Petr Šácha, and Aleš Kuchař
Ann. Geophys., 37, 507–523, https://doi.org/10.5194/angeo-37-507-2019, https://doi.org/10.5194/angeo-37-507-2019, 2019
Short summary
Short summary
Simulations of locally breaking gravity wave hot spots in the stratosphere show a suppression of wave propagation at midlatitudes, which is partly compensated for by additional wave propagation through the polar region. This leads to a displacement of the polar vortex towards lower latitudes. The effect is highly dependent on the position of the artificial gravity wave forcing. It is strongest (weakest) for hot spots at lower to middle latitudes (higher latitudes).
Christoph Jacobi, Christina Arras, Christoph Geißler, and Friederike Lilienthal
Ann. Geophys., 37, 273–288, https://doi.org/10.5194/angeo-37-273-2019, https://doi.org/10.5194/angeo-37-273-2019, 2019
Short summary
Short summary
Sporadic E (Es) layers in the Earth's ionosphere are produced by ion convergence due to vertical wind shear in the presence of a horizontal component of the Earth's magnetic field. We present analyses of the 6 h tidal signatures in ES occurrence rates derived from GPS radio observations. Times of maxima in ES agree well with those of negative wind shear obtained from radar observation. The global distribution of ES amplitudes agrees with wind shear amplitudes from numerical modeling.
Daniel Mewes and Christoph Jacobi
Atmos. Chem. Phys., 19, 3927–3937, https://doi.org/10.5194/acp-19-3927-2019, https://doi.org/10.5194/acp-19-3927-2019, 2019
Short summary
Short summary
Horizontal moist static energy (MSE) transport patterns were extracted from reanalysis data using an artificial neuronal network for the winter months. The results show that during the last 30 years transport pathways that favour MSE transport through the North Atlantic are getting more frequent. This North Atlantic pathway is connected to positive temperature anomalies over the central Arctic, which implies a connection between Arctic amplification and the change in horizontal heat transport.
Sven Wilhelm, Gunter Stober, Vivien Matthias, Christoph Jacobi, and Damian J. Murphy
Ann. Geophys., 37, 1–14, https://doi.org/10.5194/angeo-37-1-2019, https://doi.org/10.5194/angeo-37-1-2019, 2019
Short summary
Short summary
This study shows that the mesospheric winds are affected by an expansion–shrinking of the mesosphere and lower thermosphere that takes place due to changes in the intensity of the solar radiation, which affects the density within the atmosphere. On seasonal timescales, an increase in the neutral density occurs together with a decrease in the eastward-directed zonal wind. Further, even after removing the seasonal and the 11-year solar cycle variations, we show a connection between them.
Christoph Jacobi, Christoph Geißler, Friederike Lilienthal, and Amelie Krug
Adv. Radio Sci., 16, 141–147, https://doi.org/10.5194/ars-16-141-2018, https://doi.org/10.5194/ars-16-141-2018, 2018
Short summary
Short summary
The possible sources of the quarterdiurnal tide (QDT) in the middle atmosphere are still under discussion. Therefore, meteor radar winds were analyzed with respect to non-linear interaction, which probably plays a role in winter, but to a lesser degree in summer. Numerical model experiments lead to the conclusion that, although non-linear tidal interaction is indeed one source of the QDT, the major source is direct solar forcing of the 6-hr tidal components.
Erik Schmölter, Jens Berdermann, Norbert Jakowski, Christoph Jacobi, and Rajesh Vaishnav
Adv. Radio Sci., 16, 149–155, https://doi.org/10.5194/ars-16-149-2018, https://doi.org/10.5194/ars-16-149-2018, 2018
Short summary
Short summary
Physical and chemical processes in the ionosphere are driven by complex interactions with the solar radiation. The ionospheric plasma is in particular sensitive to solar variations with a time delay between one and two days.
Here we present preliminary results of the ionospheric delay based on a comprehensive and reliable database consisting of GNSS TEC Maps and EUV spectral flux data.
Rajesh Vaishnav, Christoph Jacobi, Jens Berdermann, Erik Schmölter, and Mihail Codrescu
Adv. Radio Sci., 16, 157–165, https://doi.org/10.5194/ars-16-157-2018, https://doi.org/10.5194/ars-16-157-2018, 2018
Short summary
Short summary
We investigate the ionospheric response to solar Extreme Ultraviolet (EUV) variations using different solar proxies and IGS TEC maps. An ionospheric delay in GTEC is observed at the 27 days solar rotation period with the time scale of about ~ 1–2 days. Here we present preliminary results from the CTIPe model simulations which qualitatively reproduce the observed ~1-2 days delay in GTEC, which is might be due to vertical transport processes.
Gunter Stober, Jorge L. Chau, Juha Vierinen, Christoph Jacobi, and Sven Wilhelm
Atmos. Meas. Tech., 11, 4891–4907, https://doi.org/10.5194/amt-11-4891-2018, https://doi.org/10.5194/amt-11-4891-2018, 2018
Sabine Wüst, Thomas Offenwanger, Carsten Schmidt, Michael Bittner, Christoph Jacobi, Gunter Stober, Jeng-Hwa Yee, Martin G. Mlynczak, and James M. Russell III
Atmos. Meas. Tech., 11, 2937–2947, https://doi.org/10.5194/amt-11-2937-2018, https://doi.org/10.5194/amt-11-2937-2018, 2018
Short summary
Short summary
OH*-spectrometer measurements allow the analysis of gravity wave ground-based periods, but spatial information cannot necessarily be deduced. We combine the approach of Wachter at al. (2015) in order to derive horizontal wavelengths (but based on only one OH* spectrometer) with additional information about wind and temperature and compute vertical wavelengths. Knowledge of these parameters is a precondition for the calculation of further information such as the wave group velocity.
Christoph Jacobi, Tatiana Ermakova, Daniel Mewes, and Alexander I. Pogoreltsev
Adv. Radio Sci., 15, 199–206, https://doi.org/10.5194/ars-15-199-2017, https://doi.org/10.5194/ars-15-199-2017, 2017
Short summary
Short summary
There is continuous interest in coupling processes between the lower and middle atmosphere. Here we analyse midlatitude winds measured by radar at 82–97 km and find that especially in February they are positively correlated with El Niño. The signal is strong for the upper altitudes accessible to the radar, but weakens below. The observations can be qualitatively reproduced by numerical experiments using a mechanistic global circulation model.
Friederike Lilienthal, Christoph Jacobi, Torsten Schmidt, Alejandro de la Torre, and Peter Alexander
Ann. Geophys., 35, 785–798, https://doi.org/10.5194/angeo-35-785-2017, https://doi.org/10.5194/angeo-35-785-2017, 2017
Short summary
Short summary
Gravity waves (GWs) are one of the most important dynamical features of the middle atmosphere that extends from the tropopause to the lower thermosphere. They originate from the troposphere and propagate upward. Here, we show the impact of the horizontal GW distribution in the lower atmosphere on the dynamics of the middle atmosphere using a global circulation model. As a result, we find that non-zonal GW structures can force additional stationary planetary waves.
Gunter Stober, Vivien Matthias, Christoph Jacobi, Sven Wilhelm, Josef Höffner, and Jorge L. Chau
Ann. Geophys., 35, 711–720, https://doi.org/10.5194/angeo-35-711-2017, https://doi.org/10.5194/angeo-35-711-2017, 2017
Petr Šácha, Friederike Lilienthal, Christoph Jacobi, and Petr Pišoft
Atmos. Chem. Phys., 16, 15755–15775, https://doi.org/10.5194/acp-16-15755-2016, https://doi.org/10.5194/acp-16-15755-2016, 2016
Short summary
Short summary
With a mechanistic model for the middle and upper atmosphere we performed sensitivity simulations to study a possible impact of a localized GW breaking hotspot in the eastern Asia–northern Pacific region and also the possible influence of the spatial distribution of gravity wave activity on the middle atmospheric circulation and transport. We show implications for polar vortex stability, in situ PW generation and longitudinal variability and strength of the Brewer–Dobson circulation.
Ch. Jacobi, N. Samtleben, and G. Stober
Adv. Radio Sci., 14, 169–174, https://doi.org/10.5194/ars-14-169-2016, https://doi.org/10.5194/ars-14-169-2016, 2016
Short summary
Short summary
VHF meteor radar observations of mesosphere/lower thermosphere daily temperatures have been performed at Collm, Germany. The data have been analyzed with respect to long-period oscillations at time scales of 2 to 30 days. The results reveal that oscillations with periods of up to 6 days are more frequently observed during summer, while those with longer periods have larger amplitudes during winter. The results are comparable with analyses from radar wind measurements.
Christoph Jacobi, Norbert Jakowski, Gerhard Schmidtke, and Thomas N. Woods
Adv. Radio Sci., 14, 175–180, https://doi.org/10.5194/ars-14-175-2016, https://doi.org/10.5194/ars-14-175-2016, 2016
Short summary
Short summary
The ionospheric response to solar extreme ultraviolet variability is shown by simple proxies based on Solar Dynamics Observatory/Extreme Ultraviolet Variability Experiment solar spectra. The daily proxies are compared with global mean total electron content. At time scales of the solar rotation up to about 40 days there is a time lag between EUV and TEC variability of about one day, with a tendency to increase for longer time scales.
P. Šácha, A. Kuchař, C. Jacobi, and P. Pišoft
Atmos. Chem. Phys., 15, 13097–13112, https://doi.org/10.5194/acp-15-13097-2015, https://doi.org/10.5194/acp-15-13097-2015, 2015
Short summary
Short summary
In this study, we present a discovery of an internal gravity wave activity and breaking hotspot collocated with an area of anomalously low annual cycle amplitude and specific dynamics in the stratosphere over the Northeastern Pacific/Eastern Asia coastal region. The reasons why this particular IGW activity hotspot was not discovered before nor the specific dynamics of this region pointed out are discussed together with possible consequences on the middle atmospheric dynamics and transport.
F. Lilienthal and Ch. Jacobi
Atmos. Chem. Phys., 15, 9917–9927, https://doi.org/10.5194/acp-15-9917-2015, https://doi.org/10.5194/acp-15-9917-2015, 2015
Short summary
Short summary
The quasi 2-day wave (QTDW), one of the most striking features in the mesosphere/lower thermosphere, is analyzed using meteor radar measurements at Collm (51°N, 13°E) during 2004-2014. The QTDW has periods lasting between 43 and 52h during strong summer bursts, and weaker enhancements are found during winter. A correlation between QTDW amplitudes and wind shear suggests baroclinic instability to be a likely forcing mechanism.
G. Schmidtke, Ch. Jacobi, B. Nikutowski, and Ch. Erhardt
Adv. Radio Sci., 12, 251–260, https://doi.org/10.5194/ars-12-251-2014, https://doi.org/10.5194/ars-12-251-2014, 2014
F. Lilienthal and Ch. Jacobi
Adv. Radio Sci., 12, 205–210, https://doi.org/10.5194/ars-12-205-2014, https://doi.org/10.5194/ars-12-205-2014, 2014
Ch. Jacobi
Adv. Radio Sci., 12, 161–165, https://doi.org/10.5194/ars-12-161-2014, https://doi.org/10.5194/ars-12-161-2014, 2014
Related subject area
Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Effects of nonmigrating diurnal tides on the Na layer in the mesosphere and lower thermosphere
Observation and simulation of neutral air density in the middle atmosphere during the 2021 sudden stratospheric warming event
Studies on the propagation dynamics and source mechanism of quasi-monochromatic gravity waves observed over São Martinho da Serra (29° S, 53° W), Brazil
Quasi-10 d wave activity in the southern high-latitude mesosphere and lower thermosphere (MLT) region and its relation to large-scale instability and gravity wave drag
Impact of a strong volcanic eruption on the summer middle atmosphere in UA-ICON simulations
Simulated long-term evolution of the thermosphere during the Holocene – Part 2: Circulation and solar tides
Simulated long-term evolution of the thermosphere during the Holocene – Part 1: Neutral density and temperature
Numerical modelling of relative contribution of planetary waves to the atmospheric circulation
Decay times of atmospheric acoustic–gravity waves after deactivation of wave forcing
Suppressed migrating diurnal tides in the mesosphere and lower thermosphere region during El Niño in northern winter and its possible mechanism
Intercomparison of middle atmospheric meteorological analyses for the Northern Hemisphere winter 2009–2010
Self-consistent global transport of metallic ions with WACCM-X
Does the coupling of the semiannual oscillation with the quasi-biennial oscillation provide predictability of Antarctic sudden stratospheric warmings?
The sporadic sodium layer: a possible tracer for the conjunction between the upper and lower atmospheres
Modelled effects of temperature gradients and waves on the hydroxyl rotational distribution in ground-based airglow measurements
A study of the dynamical characteristics of inertia–gravity waves in the Antarctic mesosphere combining the PANSY radar and a non-hydrostatic general circulation model
Local time dependence of polar mesospheric clouds: a model study
The role of the winter residual circulation in the summer mesopause regions in WACCM
Influence of the sudden stratospheric warming on quasi-2-day waves
On the impact of the temporal variability of the collisional quenching process on the mesospheric OH emission layer: a study based on SD-WACCM4 and SABER
Environmental influences on the intensity changes of tropical cyclones over the western North Pacific
Modeling of very low frequency (VLF) radio wave signal profile due to solar flares using the GEANT4 Monte Carlo simulation coupled with ionospheric chemistry
The genesis of Typhoon Nuri as observed during the Tropical Cyclone Structure 2008 (TCS08) field experiment – Part 2: Observations of the convective environment
CO at 40–80 km above Kiruna observed by the ground-based microwave radiometer KIMRA and simulated by the Whole Atmosphere Community Climate Model
Jianfei Wu, Wuhu Feng, Xianghui Xue, Daniel Robert Marsh, and John Maurice Campbell Plane
Atmos. Chem. Phys., 24, 12133–12141, https://doi.org/10.5194/acp-24-12133-2024, https://doi.org/10.5194/acp-24-12133-2024, 2024
Short summary
Short summary
Metal layers occur in the mesosphere and lower thermosphere region 80–120 km from the ablation of cosmic dust. Nonmigrating diurnal tides are persistent global oscillations. We investigate nonmigrating diurnal tidal variations in metal layers using satellite observations and global climate model simulations; these have not been studied previously due to the limitations of measurements. The nonmigrating diurnal tides in temperature are strongly linked to the corresponding change in metal layers.
Junfeng Yang, Jianmei Wang, Dan Liu, Wenjie Guo, and Yiming Zhang
Atmos. Chem. Phys., 24, 10113–10127, https://doi.org/10.5194/acp-24-10113-2024, https://doi.org/10.5194/acp-24-10113-2024, 2024
Short summary
Short summary
Atmospheric drag may vary dramatically under the influence of atmospheric density over aircraft flights at 20–100 km. This indicates that the natural density evolution needs to be analyzed. However, the middle-atmospheric density response to sudden stratospheric warming (SSW) events has rarely been reported. In this study, the density distribution and mass transport process are illustrated based on observation data and global numerical model simulations during the 2021 major SSW event.
Cristiano M. Wrasse, Prosper K. Nyassor, Ligia A. da Silva, Cosme A. O. B. Figueiredo, José V. Bageston, Kleber P. Naccarato, Diego Barros, Hisao Takahashi, and Delano Gobbi
Atmos. Chem. Phys., 24, 5405–5431, https://doi.org/10.5194/acp-24-5405-2024, https://doi.org/10.5194/acp-24-5405-2024, 2024
Short summary
Short summary
This present work investigates the propagation dynamics and the sources–source mechanisms of quasi-monochromatic gravity waves (QMGWs) observed between April 2017 and April 2022 at São Martinho da Serra. The QMGW parameters were estimated using a 2D spectral analysis, and their source locations were identified using a backward ray-tracing model. Furthermore, the propagation conditions, sources, and source mechanisms of the QMGWs were extensively studied.
Wonseok Lee, In-Sun Song, Byeong-Gwon Song, and Yong Ha Kim
Atmos. Chem. Phys., 24, 3559–3575, https://doi.org/10.5194/acp-24-3559-2024, https://doi.org/10.5194/acp-24-3559-2024, 2024
Short summary
Short summary
We investigate the seasonal variation of westward-propagating quasi-10 d wave (Q10DW) activity in the southern high-latitude mesosphere. The observed Q10DW is amplified around equinoxes. The model experiments indicate that the Q10DW can be enhanced in the high-latitude mesosphere due to large-scale instability. However, an excessively strong instability in the summer mesosphere spuriously generates the Q10DW in the model, potentially leading to inaccurate model dynamics.
Sandra Wallis, Hauke Schmidt, and Christian von Savigny
Atmos. Chem. Phys., 23, 7001–7014, https://doi.org/10.5194/acp-23-7001-2023, https://doi.org/10.5194/acp-23-7001-2023, 2023
Short summary
Short summary
Strong volcanic eruptions are able to alter the temperature and the circulation of the middle atmosphere. This study simulates the atmospheric response to an idealized strong tropical eruption and focuses on the impact on the mesosphere. The simulations show a warming of the polar summer mesopause in the first November after the eruption. Our study indicates that this is mainly due to dynamical coupling in the summer hemisphere with a potential contribution from interhemispheric coupling.
Xu Zhou, Xinan Yue, Yihui Cai, Zhipeng Ren, Yong Wei, and Yongxin Pan
Atmos. Chem. Phys., 23, 6383–6393, https://doi.org/10.5194/acp-23-6383-2023, https://doi.org/10.5194/acp-23-6383-2023, 2023
Short summary
Short summary
Secular variations in CO2 concentration and geomagnetic field can affect the dynamics of the upper atmosphere. We examine how these two factors influence the dynamics of the upper atmosphere during the Holocene, using two sets of ~ 12 000-year control runs by the coupled thermosphere–ionosphere model. The main results show that (a) increased CO2 enhances the thermospheric circulation, but non-linearly; and (b) geomagnetic variation induced a significant hemispheric asymmetrical effect.
Yihui Cai, Xinan Yue, Xu Zhou, Zhipeng Ren, Yong Wei, and Yongxin Pan
Atmos. Chem. Phys., 23, 5009–5021, https://doi.org/10.5194/acp-23-5009-2023, https://doi.org/10.5194/acp-23-5009-2023, 2023
Short summary
Short summary
On timescales longer than the solar cycle, secular changes in CO2 concentration and geomagnetic field play a key role in influencing the thermosphere. We performed four sets of ~12000-year control runs with the coupled thermosphere–ionosphere model to examine the effects of the geomagnetic field, CO2, and solar activity on thermospheric density and temperature, deepening our understanding of long-term changes in the thermosphere and making projections for future thermospheric changes.
Andrey V. Koval, Olga N. Toptunova, Maxim A. Motsakov, Ksenia A. Didenko, Tatiana S. Ermakova, Nikolai M. Gavrilov, and Eugene V. Rozanov
Atmos. Chem. Phys., 23, 4105–4114, https://doi.org/10.5194/acp-23-4105-2023, https://doi.org/10.5194/acp-23-4105-2023, 2023
Short summary
Short summary
Periodic changes in all hydrodynamic parameters are constantly observed in the atmosphere. The amplitude of these fluctuations increases with height due to a decrease in the atmospheric density. In the upper layers of the atmosphere, waves are the dominant form of motion. We use a model of the general circulation of the atmosphere to study the contribution to the formation of the dynamic and temperature regimes of the middle and upper atmosphere made by different global-scale atmospheric waves.
Nikolai M. Gavrilov, Sergey P. Kshevetskii, and Andrey V. Koval
Atmos. Chem. Phys., 22, 13713–13724, https://doi.org/10.5194/acp-22-13713-2022, https://doi.org/10.5194/acp-22-13713-2022, 2022
Short summary
Short summary
We make high-resolution simulations of poorly understood decays of nonlinear atmospheric acoustic–gravity waves (AGWs) after deactivations of the wave forcing. The standard deviations of AGW perturbations, after fast dispersions of traveling modes, experience slower exponential decreases. AGW decay times are estimated for the first time and are 20–100 h in the stratosphere and mesosphere. This requires slow, quasi-standing and secondary modes in parameterizations of AGW impacts to be considered.
Yetao Cen, Chengyun Yang, Tao Li, James M. Russell III, and Xiankang Dou
Atmos. Chem. Phys., 22, 7861–7874, https://doi.org/10.5194/acp-22-7861-2022, https://doi.org/10.5194/acp-22-7861-2022, 2022
Short summary
Short summary
The MLT DW1 amplitude is suppressed during El Niño winters in both satellite observation and SD-WACCM simulations. The suppressed Hough mode (1, 1) in the tropopause region propagates vertically to the MLT region, leading to decreased DW1 amplitude. The latitudinal zonal wind shear anomalies during El Niño winters would narrow the waveguide and prevent the vertical propagation of DW1. The gravity wave drag excited by ENSO-induced anomalous convection could also modulate the MLT DW1 amplitude.
John P. McCormack, V. Lynn Harvey, Cora E. Randall, Nicholas Pedatella, Dai Koshin, Kaoru Sato, Lawrence Coy, Shingo Watanabe, Fabrizio Sassi, and Laura A. Holt
Atmos. Chem. Phys., 21, 17577–17605, https://doi.org/10.5194/acp-21-17577-2021, https://doi.org/10.5194/acp-21-17577-2021, 2021
Short summary
Short summary
In order to have confidence in atmospheric predictions, it is important to know how well different numerical model simulations of the Earth’s atmosphere agree with one another. This work compares four different data assimilation models that extend to or beyond the mesosphere. Results shown here demonstrate that while the models are in close agreement below ~50 km, large differences arise at higher altitudes in the mesosphere and lower thermosphere that will need to be reconciled in the future.
Jianfei Wu, Wuhu Feng, Han-Li Liu, Xianghui Xue, Daniel Robert Marsh, and John Maurice Campbell Plane
Atmos. Chem. Phys., 21, 15619–15630, https://doi.org/10.5194/acp-21-15619-2021, https://doi.org/10.5194/acp-21-15619-2021, 2021
Short summary
Short summary
Metal layers occur in the MLT region (80–120 km) from the ablation of cosmic dust. The latest lidar observations show these metals can reach a height approaching 200 km, which is challenging to explain. We have developed the first global simulation incorporating the full life cycle of metal atoms and ions. The model results compare well with lidar and satellite observations of the seasonal and diurnal variation of the metals and demonstrate the importance of ion mass and ion-neutral coupling.
Viktoria J. Nordström and Annika Seppälä
Atmos. Chem. Phys., 21, 12835–12853, https://doi.org/10.5194/acp-21-12835-2021, https://doi.org/10.5194/acp-21-12835-2021, 2021
Short summary
Short summary
The winter winds over Antarctica form a stable vortex. However, in 2019 the vortex was disrupted and the temperature in the polar stratosphere rose by 50°C. This event, called a sudden stratospheric warming, is a rare event in the Southern Hemisphere, with the only known major event having taken place in 2002. The 2019 event helps us unravel its causes, which are largely unknown. We have discovered a unique behaviour of the equatorial winds in 2002 and 2019 that may signal an impending SH SSW.
Shican Qiu, Ning Wang, Willie Soon, Gaopeng Lu, Mingjiao Jia, Xingjin Wang, Xianghui Xue, Tao Li, and Xiankang Dou
Atmos. Chem. Phys., 21, 11927–11940, https://doi.org/10.5194/acp-21-11927-2021, https://doi.org/10.5194/acp-21-11927-2021, 2021
Short summary
Short summary
Our results suggest that lightning strokes would probably influence the ionosphere and thus give rise to the occurrence of a sporadic sodium layer (NaS), with the overturning of the electric field playing an important role. Model simulation results show that the calculated first-order rate coefficient could explain the efficient recombination of Na+→Na in this NaS case study. A conjunction between the lower and upper atmospheres could be established by these inter-connected phenomena.
Christoph Franzen, Patrick Joseph Espy, and Robert Edward Hibbins
Atmos. Chem. Phys., 20, 333–343, https://doi.org/10.5194/acp-20-333-2020, https://doi.org/10.5194/acp-20-333-2020, 2020
Short summary
Short summary
Ground-based observations of the hydroxyl (OH) airglow have indicated that the rotational energy levels may not be in thermal equilibrium with the surrounding gas. Here we use simulations of the OH airglow to show that temperature changes across the extended airglow layer, either climatological or those temporarily caused by atmospheric waves, can mimic this effect for thermalized OH. Thus, these must be considered in order to quantify the non-thermal nature of the OH airglow.
Ryosuke Shibuya and Kaoru Sato
Atmos. Chem. Phys., 19, 3395–3415, https://doi.org/10.5194/acp-19-3395-2019, https://doi.org/10.5194/acp-19-3395-2019, 2019
Short summary
Short summary
The first long-term simulation using the high-top non-hydrostatic general circulation model (NICAM) was executed to analyze mesospheric gravity waves. A new finding in this paper is that the spectrum of the vertical fluxes of the zonal momentum has an isolated peak at frequencies slightly lower than f at latitudes from 30 to 75° S at a height of 70 km. This study discusses the physical mechanism for an explanation of the existence of the isolated spectrum peak in the mesosphere.
Francie Schmidt, Gerd Baumgarten, Uwe Berger, Jens Fiedler, and Franz-Josef Lübken
Atmos. Chem. Phys., 18, 8893–8908, https://doi.org/10.5194/acp-18-8893-2018, https://doi.org/10.5194/acp-18-8893-2018, 2018
Short summary
Short summary
Local time variations of polar mesospheric clouds (PMCs) in the Northern Hemisphere are studied using a combination of a global circulation model and a microphysical model. We investigate the brightness, altitude, and occurrence of the clouds and find a good agreement between model and observations. The variations are caused by tidal structures in background parameters. The temperature varies by about 2 K and water vapor by about 3 ppmv at the altitude of ice particle sublimation near 81.5 km.
Maartje Sanne Kuilman and Bodil Karlsson
Atmos. Chem. Phys., 18, 4217–4228, https://doi.org/10.5194/acp-18-4217-2018, https://doi.org/10.5194/acp-18-4217-2018, 2018
Short summary
Short summary
In this study, we investigate the role of the winter residual circulation in the summer mesopause region using the Whole Atmosphere Community Climate Model. In addition, we study the role of the summer stratosphere in shaping the conditions of the summer polar mesosphere. We strengthen the evidence that the variability in the summer mesopause region is mainly driven by changes in the summer mesosphere rather than in the summer stratosphere.
Sheng-Yang Gu, Han-Li Liu, Xiankang Dou, and Tao Li
Atmos. Chem. Phys., 16, 4885–4896, https://doi.org/10.5194/acp-16-4885-2016, https://doi.org/10.5194/acp-16-4885-2016, 2016
Short summary
Short summary
The influences of sudden stratospheric warming in the Northern Hemisphere on quasi-2-day waves are studied with both observations and simulations. We found the energy of W3 is transferred to W2 through the nonlinear interaction with SPW1 and the instability at winter mesopause could provide additional amplification for W3. The summer easterly is enhanced during SSW, which is more favorable for the propagation of quasi-2-day waves.
S. Kowalewski, C. von Savigny, M. Palm, I. C. McDade, and J. Notholt
Atmos. Chem. Phys., 14, 10193–10210, https://doi.org/10.5194/acp-14-10193-2014, https://doi.org/10.5194/acp-14-10193-2014, 2014
Shoujuan Shu, Fuqing Zhang, Jie Ming, and Yuan Wang
Atmos. Chem. Phys., 14, 6329–6342, https://doi.org/10.5194/acp-14-6329-2014, https://doi.org/10.5194/acp-14-6329-2014, 2014
S. Palit, T. Basak, S. K. Mondal, S. Pal, and S. K. Chakrabarti
Atmos. Chem. Phys., 13, 9159–9168, https://doi.org/10.5194/acp-13-9159-2013, https://doi.org/10.5194/acp-13-9159-2013, 2013
M. T. Montgomery and R. K. Smith
Atmos. Chem. Phys., 12, 4001–4009, https://doi.org/10.5194/acp-12-4001-2012, https://doi.org/10.5194/acp-12-4001-2012, 2012
C. G. Hoffmann, D. E. Kinnison, R. R. Garcia, M. Palm, J. Notholt, U. Raffalski, and G. Hochschild
Atmos. Chem. Phys., 12, 3261–3271, https://doi.org/10.5194/acp-12-3261-2012, https://doi.org/10.5194/acp-12-3261-2012, 2012
Cited articles
Beard, A. G., Mitchell, N. J., Williams, P. J. S., and Kunitake, M.:
Non-linear interactions between tides and planetary waves resulting in
periodic tidal variability, J. Atmos. Sol.-Terr. Phys., 61, 363–376,
https://doi.org/10.1016/S1364-6826(99)00003-6, 1999. a, b
Cevolani, G. and Bonelli, P.: Tidal activity in the middle atmosphere, Il
Nuovo Cimento C, 8, 461–490, https://doi.org/10.1007/BF02582675, 1985. a, b
Chapman, S. and Lindzen, R.: Atmospheric tides – thermal and gravitational,
p. 200, ix, D. Reidel Publishing Company, Dordrecht, Holland, 1970. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and
Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the
data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011. a, b
Ermakova, T. S., Statnaya, I. A., Fedulina, I. N., Suvorova, E. V., and
Pogoreltsev, A. I.: Three-dimensional semi-empirical climate model of water
vapor distribution and its implementation to the radiation module of the
middle and upper atmosphere model, Russ. Meteorol. Hydro., 42,
594–600, https://doi.org/10.3103/S1068373917090060, 2017. a, b
Fleming, E. L., Chandra, S., Barnett, J., and Corney, M.: Zonal mean
temperature, pressure, zonal wind and geopotential height as functions of
latitude, Adv. Space Res., 10, 11–59, https://doi.org/10.1016/0273-1177(90)90386-E,
1990. a
Fröhlich, K., Pogoreltsev, A., and Jacobi, C.: Numerical simulation of
tides, Rossby and Kelvin waves with the COMMA-LIM model, Adv. Space Res.,
32, 863–868, https://doi.org/10.1016/S0273-1177(03)00416-2, 2003b. a, b
Fytterer, T., Arras, C., Hoffmann, P., and Jacobi, C.: Global distribution of
the migrating terdiurnal tide seen in sporadic E occurrence frequencies
obtained from GPS radio occultations, Earth Planets Space, 66, 1–9,
https://doi.org/10.1186/1880-5981-66-79, 2014. a
Glass, M. and Fellous, J. L.: The eight-hour (terdiurnal) component of
atmospheric tides, Space Res., 15, 191–197, 1975. a
Jacobi, C., Fröhlich, K., and Pogoreltsev, A.: Quasi two-day-wave
modulation of gravity wave flux and consequences for the planetary wave
propagation in a simple circulation model, J. Atmos. Sol.-Terr. Phys., 68,
283–292, https://doi.org/10.1016/j.jastp.2005.01.017, 2006. a
Jacobi, C., Lilienthal, F., Geißler, C., and Krug, A.: Long-term
variability of mid-latitude mesosphere-lower thermosphere winds over Collm
(51∘ N, 13∘ E), J. Atmos. Sol.-Terr. Phys., 136, 174–186,
https://doi.org/10.1016/j.jastp.2015.05.006, SI: Vertical Coupling, 2015. a, b
Jakobs, H. J., Bischof, M., Ebel, A., and Speth, P.: Simulation of gravity
wave effects under solstice conditions using a 3-D circulation model of the
middle atmosphere, J. Atmos. Sol.-Terr. Phys., 48, 1203–1223,
https://doi.org/10.1016/0021-9169(86)90040-1, 1986. a, b
Krug, A., Lilienthal, F., and Jacobi, C.: The terdiurnal tide in the MUAM
circulation model, Rep. Inst. Meteorol. Univ. Leipzig, 53, 33–44,
available at: http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa2-166502
(last access: 30 October 2018), 2015. a
Lilienthal, F., Jacobi, C., Schmidt, T., de la Torre, A., and Alexander, P.:
On the influence of zonal gravity wave distributions on the Southern
Hemisphere winter circulation, Ann. Geophys., 35, 785–798,
https://doi.org/10.5194/angeo-35-785-2017, 2017. a
Lindzen, R. S.: Turbulence and stress owing to gravity wave and tidal
breakdown, J. Geophys. Res.-Oceans, 86, 9707–9714,
https://doi.org/10.1029/JC086iC10p09707, 1981. a
Miyahara, S. and Forbes, J. M.: Interactions between Gravity Waves and the
Diurnal Tide in the Mesosphere and Lower Thermosphere, J. Met. Soc. Jap.
Ser. II, 69, 523–531, https://doi.org/10.2151/jmsj1965.69.5_523, 1991. a, b, c
NOAA ESRL Global Monitoring Division: Atmospheric Carbon Dioxide Dry Air
Mole Fractions from quasi-continuous measurements at Mauna Loa, Hawaii,
National Oceanic and Atmospheric Administration (NOAA), Earth System Research
Laboratory (ESRL), Global Monitoring Division (GMD), Boulder, Colorado, USA,
available at: https://www.esrl.noaa.gov/gmd/ccgg/trends/data.html (last access: 30 October 2018), compiled
by Thoning, K. W., Kitzis, D. R., and Crotwell, A., Version 2015-12, updated
annually, 2018. a, b
Pogoreltsev, A. I.: Generation of normal atmospheric modes by stratospheric
vacillations, Izvestiya, Atmospheric and Oceanic Physics, 43, 423–435,
https://doi.org/10.1134/S0001433807040044, 2007. a
Pogoreltsev, A. I., Vlasov, A. A., Fröhlich, K., and Jacobi, C.: Planetary
waves in coupling the lower and upper atmosphere, J. Atmos. Sol.-Terr.
Phys., 69, 2083–2101, https://doi.org/10.1016/j.jastp.2007.05.014, 2007. a, b
Pokhotelov, D., Becker, E., Stober, G., and Chau, J. L.: Seasonal variability
of atmospheric tides in the mesosphere and lower thermosphere: meteor radar
data and simulations, Ann. Geophys., 36, 825–830,
https://doi.org/10.5194/angeo-36-825-2018, 2018. a
Portnyagin, Y., Solovjova, T., Merzlyakov, E., Forbes, J., Palo, S., Ortland,
D., Hocking, W., MacDougall, J., Thayaparan, T., Manson, A., Meek, C.,
Hoffmann, P., Singer, W., Mitchell, N., Pancheva, D., Igarashi, K., Murayama,
Y., Jacobi, C., Kuerschner, D., Fahrutdinova, A., Korotyshkin, D., Clark, R.,
Taylor, M., Franke, S., Fritts, D., Tsuda, T., Nakamura, T., Gurubaran, S.,
Rajaram, R., Vincent, R., Kovalam, S., Batista, P., Poole, G., Malinga, S.,
Fraser, G., Murphy, D., Riggin, D., Aso, T., and Tsutsumi, M.:
Mesosphere/lower thermosphere prevailing wind model, Adv. Space Res., 34,
1755–1762, https://doi.org/10.1016/j.asr.2003.04.058, 2004. a
Randel, W. J. and Wu, F.: A stratospheric ozone profile data set for
1979–2005: Variability, trends, and comparisons with column ozone data, J.
Geophys. Res.-Atmos., 112, d06313, https://doi.org/10.1029/2006JD007339, 2007. a, b
Reddi, C. R., Rajeev, K., and Geetha, R.: Tidal winds in the
radio-meteor region over Trivandrum (8.5∘ N, 77∘ E), J. Atmos. Terr.
Phys., 55, 1219–1231, https://doi.org/10.1016/0021-9169(93)90049-5, 1993. a, b
Ribstein, B. and Achatz, U.: The interaction between gravity waves and solar
tides in a linear tidal model with a 4-D ray-tracing gravity-wave
parameterization, J. Geophys. Res.-Space, 121, 8936–8950,
https://doi.org/10.1002/2016JA022478, 2016. a
Riese, M., Offermann, D., and Brasseur, G.: Energy released by recombination
of atomic oxygen and related species at mesopause heights, J. Geophys. Res.-Atmos., 99, 14585–14593, https://doi.org/10.1029/94JD00356, 1994. a
Rind, D., Jonas, J., Balachandran, K. N., Schmidt, G. A., and Lean, J.: The
QBO in two GISS global climate models: 1. Generation of the QBO, J. Geophys. Res.-Atmos., 119, 8798–8824,
https://doi.org/10.1002/2014JD021678, 2014. a
Smith, A., Pancheva, D., and Mitchell, N.: Observations and modeling of the
6-hour tide in the upper mesosphere, J. Geophys. Res., 109, D10105,
https://doi.org/10.1029/2003jd004421, 2004. a
Smith, A. K.: Structure of the terdiurnal tide at 95 km, Geophys. Res,
Lett.,
27, 177–180, https://doi.org/10.1029/1999GL010843, 2000. a
Smith, A. K.: Global Dynamics of the MLT, Surv. Geophys., 33, 1177–1230,
https://doi.org/10.1007/s10712-012-9196-9, 2012. a
Strobel, D. F.: Parameterization of the atmospheric heating rate from 15 to
120 km due to O2 and O3 absorption of solar radiation, J. Geophys. Res.-Oceans, 83, 6225–6230, https://doi.org/10.1029/JC083iC12p06225, 1978. a
Swinbank, R. and Ortland, D. A.: Compilation of wind data for the Upper
Atmosphere Research Satellite (UARS) Reference Atmosphere Project, J. Geophys. Res.-Atmos., 108, 4615, https://doi.org/10.1029/2002JD003135, 2003. a
Teitelbaum, H. and Vial, F.: On tidal variability induced by nonlinear
interaction with planetary waves, J. Geophys. Res.-Space, 96,
14169–14178, https://doi.org/10.1029/91JA01019, 1991. a
Teitelbaum, H., Vial, F., Manson, A., Giraldez, R., and Massebeuf, M.:
Non-linear interaction between the diurnal and semidiurnal tides: terdiurnal
and diurnal secondary waves, J. Atmos. Terr. Phys., 51, 627–634,
https://doi.org/10.1016/0021-9169(89)90061-5, 1989. a, b
Thoning, K. W., Tans, P. P., and Komhyr, W. D.: Atmospheric carbon dioxide at
Mauna Loa Observatory: 2. Analysis of the NOAA GMCC data, 1974–1985, J.
Geophys. Res.-Atmos., 94, 8549–8565, https://doi.org/10.1029/JD094iD06p08549, 1989. a, b
Trinh, Q. T., Ern, M., Doornbos, E., Preusse, P., and Riese, M.: Satellite
observations of middle atmosphere–thermosphere vertical coupling by gravity
waves, Ann. Geophys., 36, 425–444, https://doi.org/10.5194/angeo-36-425-2018,
2018. a
Yiǧit, W., Aylward, A., and Medvedev, A.: Parameterization of the effects
of vertically propagating gravity waves for thermosphere general circulation
models: Sensitivity study, J. Geophys. Res., 113, D19106,
https://doi.org/10.1029/2008JD010135, 2008. a, b
Younger, P. T., Pancheva, D., Middleton, H. R., and Mitchell, N. J.: The
8-hour tide in the Arctic mesosphere and lower thermosphere, J. Geophys.
Res.-Space, 107, 1420, https://doi.org/10.1029/2001JA005086, 2002. a
Yue, J., Xu, J., Chang, L. C., Wu, Q., Liu, H.-L., Lu, X., and Russell, J.:
Global structure and seasonal variability of the migrating terdiurnal tide
in the mesosphere and lower thermosphere, J. Atmos. Sol.-Terr. Phys.,
105–106, 191–198, https://doi.org/10.1016/j.jastp.2013.10.010, 2013. a, b, c, d, e, f, g, h, i, j
Short summary
The terdiurnal solar tide is an atmospheric wave, owing to the daily variation of solar heating with a period of 8 h. Here, we present model simulations of this tide and investigate the relative importance of possible forcing mechanisms because they are still under debate. These are, besides direct solar heating, nonlinear interactions between other tides and gravity wave–tide interactions. As a result, solar heating is most important and nonlinear effects partly counteract this forcing.
The terdiurnal solar tide is an atmospheric wave, owing to the daily variation of solar heating...
Altmetrics
Final-revised paper
Preprint