Articles | Volume 18, issue 21
https://doi.org/10.5194/acp-18-15725-2018
https://doi.org/10.5194/acp-18-15725-2018
Research article
 | 
02 Nov 2018
Research article |  | 02 Nov 2018

Forcing mechanisms of the terdiurnal tide

Friederike Lilienthal, Christoph Jacobi, and Christoph Geißler

Related authors

Influence of geomagnetic disturbances on mean winds and tides in the mesosphere/lower thermosphere at midlatitudes
Christoph Jacobi, Friederike Lilienthal, Dmitry Korotyshkin, Evgeny Merzlyakov, and Gunter Stober
Adv. Radio Sci., 19, 185–193, https://doi.org/10.5194/ars-19-185-2021,https://doi.org/10.5194/ars-19-185-2021, 2021
Short summary
Forcing mechanisms of the migrating quarterdiurnal tide
Christoph Geißler, Christoph Jacobi, and Friederike Lilienthal
Ann. Geophys., 38, 527–544, https://doi.org/10.5194/angeo-38-527-2020,https://doi.org/10.5194/angeo-38-527-2020, 2020
Short summary
Interaction of Small-Scale Gravity Waves with the Terdiurnal Solar Tide in the Mesosphere and Lower Thermosphere
Friederike Lilienthal, Erdal Yiğit, Nadja Samtleben, and Christoph Jacobi
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2019-339,https://doi.org/10.5194/gmd-2019-339, 2020
Preprint withdrawn
Short summary
Nonlinear forcing mechanisms of the migrating terdiurnal solar tide and their impact on the zonal mean circulation
Friederike Lilienthal and Christoph Jacobi
Ann. Geophys., 37, 943–953, https://doi.org/10.5194/angeo-37-943-2019,https://doi.org/10.5194/angeo-37-943-2019, 2019
Short summary
Quarterdiurnal signature in sporadic E occurrence rates and comparison with neutral wind shear
Christoph Jacobi, Christina Arras, Christoph Geißler, and Friederike Lilienthal
Ann. Geophys., 37, 273–288, https://doi.org/10.5194/angeo-37-273-2019,https://doi.org/10.5194/angeo-37-273-2019, 2019
Short summary

Related subject area

Subject: Dynamics | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Quasi-10 d wave activity in the southern high-latitude mesosphere and lower thermosphere (MLT) region and its relation to large-scale instability and gravity wave drag
Wonseok Lee, In-Sun Song, Byeong-Gwon Song, and Yong Ha Kim
Atmos. Chem. Phys., 24, 3559–3575, https://doi.org/10.5194/acp-24-3559-2024,https://doi.org/10.5194/acp-24-3559-2024, 2024
Short summary
Studies on the Propagation Dynamics and Source Mechanism of Quasi-Monochromatic Gravity Waves Observed over São Martinho da Serra (29° S, 53° W), Brazil
Cristiano M. Wrasse, Prosper K. Nyassor, Ligia A. da Silva, Cosme O. A. B. Figueiredo, José V. Bageston, Kleber P. Naccarato, Diego Barros, Hisao Takahashi, and Delano Gobbi
EGUsphere, https://doi.org/10.5194/egusphere-2023-1825,https://doi.org/10.5194/egusphere-2023-1825, 2023
Short summary
Impact of a strong volcanic eruption on the summer middle atmosphere in UA-ICON simulations
Sandra Wallis, Hauke Schmidt, and Christian von Savigny
Atmos. Chem. Phys., 23, 7001–7014, https://doi.org/10.5194/acp-23-7001-2023,https://doi.org/10.5194/acp-23-7001-2023, 2023
Short summary
Simulated long-term evolution of the thermosphere during the Holocene – Part 2: Circulation and solar tides
Xu Zhou, Xinan Yue, Yihui Cai, Zhipeng Ren, Yong Wei, and Yongxin Pan
Atmos. Chem. Phys., 23, 6383–6393, https://doi.org/10.5194/acp-23-6383-2023,https://doi.org/10.5194/acp-23-6383-2023, 2023
Short summary
Simulated long-term evolution of the thermosphere during the Holocene – Part 1: Neutral density and temperature
Yihui Cai, Xinan Yue, Xu Zhou, Zhipeng Ren, Yong Wei, and Yongxin Pan
Atmos. Chem. Phys., 23, 5009–5021, https://doi.org/10.5194/acp-23-5009-2023,https://doi.org/10.5194/acp-23-5009-2023, 2023
Short summary

Cited articles

Akmaev, R.: Seasonal variations of the terdiurnal tide in the mesosphere and lower thermosphere: a model study, Geophys. Res. Lett., 28, 3817–3820, https://doi.org/10.1029/2001GL013002, 2001. a, b, c, d, e, f, g, h, i, j
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle Atmosphere Dynamics, Academic Press Inc. Ltd., London, 1987. a, b, c
Beard, A. G., Mitchell, N. J., Williams, P. J. S., and Kunitake, M.: Non-linear interactions between tides and planetary waves resulting in periodic tidal variability, J. Atmos. Sol.-Terr. Phys., 61, 363–376, https://doi.org/10.1016/S1364-6826(99)00003-6, 1999. a, b
Beldon, C., Muller, H., and Mitchell, N.: The 8-hour tide in the mesosphere and lower thermosphere over the UK, 1988–2004, J. Atmos. Sol.-Terr. Phys., 68, 655–668, https://doi.org/10.1016/j.jastp.2005.10.004, 2006. a, b, c, d, e
Cevolani, G. and Bonelli, P.: Tidal activity in the middle atmosphere, Il Nuovo Cimento C, 8, 461–490, https://doi.org/10.1007/BF02582675, 1985. a, b
Download
Short summary
The terdiurnal solar tide is an atmospheric wave, owing to the daily variation of solar heating with a period of 8 h. Here, we present model simulations of this tide and investigate the relative importance of possible forcing mechanisms because they are still under debate. These are, besides direct solar heating, nonlinear interactions between other tides and gravity wave–tide interactions. As a result, solar heating is most important and nonlinear effects partly counteract this forcing.
Altmetrics
Final-revised paper
Preprint