Articles | Volume 17, issue 24
https://doi.org/10.5194/acp-17-15167-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-17-15167-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Biogenic, urban, and wildfire influences on the molecular composition of dissolved organic compounds in cloud water
Ryan D. Cook
Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
Ying-Hsuan Lin
Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
Michigan Society of Fellows, University of Michigan, Ann Arbor, MI, USA
now at: Department of Environmental Sciences, University of California, Riverside, Riverside, CA, USA
Zhuoyu Peng
Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
now at: Department of Chemistry, University of Washington, Seattle, WA, USA
Eric Boone
Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
now at: College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
Rosalie K. Chu
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
James E. Dukett
Adirondack Lake Survey Corporation, Ray Brook, NY, USA
Matthew J. Gunsch
Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
Wuliang Zhang
Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
now at: Department of Chemistry, Northwestern University, Evanston, IL, USA
Nikola Tolic
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
Alexander Laskin
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, USA
now at: Department of Chemistry, Purdue University, West Lafayette, IN, USA
Department of Chemistry, University of Michigan, Ann Arbor, MI, USA
Department of Earth & Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
Related authors
No articles found.
Katherine A. Muller, Peishi Jiang, Glenn Hammond, Tasneem Ahmadullah, Hyun-Seob Song, Ravi Kukkadapu, Nicholas Ward, Madison Bowe, Rosalie K. Chu, Qian Zhao, Vanessa A. Garayburu-Caruso, Alan Roebuck, and Xingyuan Chen
Geosci. Model Dev., 17, 8955–8968, https://doi.org/10.5194/gmd-17-8955-2024, https://doi.org/10.5194/gmd-17-8955-2024, 2024
Short summary
Short summary
The new Lambda-PFLOTRAN workflow incorporates organic matter chemistry into reaction networks to simulate aerobic respiration and biogeochemistry. Lambda-PFLOTRAN is a Python-based workflow in a Jupyter notebook interface that digests raw organic matter chemistry data via Fourier transform ion cyclotron resonance mass spectrometry, develops a representative reaction network, and completes a biogeochemical simulation with the open-source, parallel-reactive-flow, and transport code PFLOTRAN.
William Kew, Allison Myers-Pigg, Christine H. Chang, Sean M. Colby, Josie Eder, Malak M. Tfaily, Jeffrey Hawkes, Rosalie K. Chu, and James C. Stegen
Biogeosciences, 21, 4665–4679, https://doi.org/10.5194/bg-21-4665-2024, https://doi.org/10.5194/bg-21-4665-2024, 2024
Short summary
Short summary
Natural organic matter (NOM) is often studied via Fourier transform mass spectrometry (FTMS), which identifies organic molecules as mass spectra peaks. The intensity of peaks is data that is often discarded due to technical concerns. We review the theory behind these concerns and show they are supported empirically. However, simulations show that ecological analyses of NOM data that include FTMS peak intensities are often valid. This opens a path for robust use of FTMS peak intensities for NOM.
Ningjin Xu, Chen Le, David R. Cocker, Kunpeng Chen, Ying-Hsuan Lin, and Don R. Collins
Atmos. Meas. Tech., 17, 4227–4243, https://doi.org/10.5194/amt-17-4227-2024, https://doi.org/10.5194/amt-17-4227-2024, 2024
Short summary
Short summary
A flow-through reactor was developed that exposes known mixtures of gases or ambient air to very high concentrations of the oxidants that are responsible for much of the chemistry that takes place in the atmosphere. Like other reactors of its type, it is primarily used to study the formation of particulate matter from the oxidation of common gases. Unlike other reactors of its type, it can simulate the chemical reactions that occur in liquid water that is present in particles or cloud droplets.
Benjamin Heutte, Nora Bergner, Hélène Angot, Jakob B. Pernov, Lubna Dada, Jessica A. Mirrielees, Ivo Beck, Andrea Baccarini, Matthew Boyer, Jessie M. Creamean, Kaspar R. Daellenbach, Imad El Haddad, Markus M. Frey, Silvia Henning, Tiaa Laurila, Vaios Moschos, Tuukka Petäjä, Kerri A. Pratt, Lauriane L. J. Quéléver, Matthew D. Shupe, Paul Zieger, Tuija Jokinen, and Julia Schmale
EGUsphere, https://doi.org/10.5194/egusphere-2024-1912, https://doi.org/10.5194/egusphere-2024-1912, 2024
Short summary
Short summary
Limited aerosol measurements in the central Arctic hinder our understanding of aerosol-climate interactions in the region. Our year-long observations of aerosol physicochemical properties during the MOSAiC expedition reveal strong seasonal variations in aerosol chemical composition, where the short-term variability is heavily affected by storms in the Arctic. Locally wind-generated particles are shown to be an important source of cloud seeds, especially in autumn.
Feng Jiang, Kyla Siemens, Claudia Linke, Yanxia Li, Yiwei Gong, Thomas Leisner, Alexander Laskin, and Harald Saathoff
Atmos. Chem. Phys., 24, 2639–2649, https://doi.org/10.5194/acp-24-2639-2024, https://doi.org/10.5194/acp-24-2639-2024, 2024
Short summary
Short summary
We investigated the optical properties, chemical composition, and formation mechanisms of secondary organic aerosol (SOA) and brown carbon (BrC) from the oxidation of indole with and without NO2 in the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) simulation chamber. This work is one of the very few to link the optical properties and chemical composition of indole SOA with and without NO2 by simulation chamber experiments.
Nathaniel Brockway, Peter K. Peterson, Katja Bigge, Kristian D. Hajny, Paul B. Shepson, Kerri A. Pratt, Jose D. Fuentes, Tim Starn, Robert Kaeser, Brian H. Stirm, and William R. Simpson
Atmos. Chem. Phys., 24, 23–40, https://doi.org/10.5194/acp-24-23-2024, https://doi.org/10.5194/acp-24-23-2024, 2024
Short summary
Short summary
Bromine monoxide (BrO) strongly affects atmospheric chemistry in the springtime Arctic, yet there are still many uncertainties around its sources and recycling, particularly in the context of a rapidly changing Arctic. In this study, we observed BrO as a function of altitude above the Alaskan Arctic. We found that BrO was often most concentrated near the ground, confirming the ability of snow to produce and recycle reactive bromine, and identified four common vertical distributions of BrO.
Daniel A. Knopf, Peiwen Wang, Benny Wong, Jay M. Tomlin, Daniel P. Veghte, Nurun N. Lata, Swarup China, Alexander Laskin, Ryan C. Moffet, Josephine Y. Aller, Matthew A. Marcus, and Jian Wang
Atmos. Chem. Phys., 23, 8659–8681, https://doi.org/10.5194/acp-23-8659-2023, https://doi.org/10.5194/acp-23-8659-2023, 2023
Short summary
Short summary
Ambient particle populations and associated ice-nucleating particles (INPs)
were examined from particle samples collected on board aircraft in the marine
boundary layer and free troposphere in the eastern North Atlantic during
summer and winter. Chemical imaging shows distinct differences in the
particle populations seasonally and with sampling altitudes, which are
reflected in the INP types. Freezing parameterizations are derived for
implementation in cloud-resolving and climate models.
Eleftherios Ioannidis, Kathy S. Law, Jean-Christophe Raut, Louis Marelle, Tatsuo Onishi, Rachel M. Kirpes, Lucia M. Upchurch, Thomas Tuch, Alfred Wiedensohler, Andreas Massling, Henrik Skov, Patricia K. Quinn, and Kerri A. Pratt
Atmos. Chem. Phys., 23, 5641–5678, https://doi.org/10.5194/acp-23-5641-2023, https://doi.org/10.5194/acp-23-5641-2023, 2023
Short summary
Short summary
Remote and local anthropogenic emissions contribute to wintertime Arctic haze, with enhanced aerosol concentrations, but natural sources, which also contribute, are less well studied. Here, modelled wintertime sea-spray aerosols are improved in WRF-Chem over the wider Arctic by including updated wind speed and temperature-dependent treatments. As a result, anthropogenic nitrate aerosols are also improved. Open leads are confirmed to be the main source of sea-spray aerosols over northern Alaska.
Christopher E. Lawrence, Paul Casson, Richard Brandt, James J. Schwab, James E. Dukett, Phil Snyder, Elizabeth Yerger, Daniel Kelting, Trevor C. VandenBoer, and Sara Lance
Atmos. Chem. Phys., 23, 1619–1639, https://doi.org/10.5194/acp-23-1619-2023, https://doi.org/10.5194/acp-23-1619-2023, 2023
Short summary
Short summary
Atmospheric aqueous chemistry can have profound effects on our environment, as illustrated by historical data from Whiteface Mountain (WFM) that were critical for uncovering the process of acid rain. The current study updates the long-term trends in cloud water composition at WFM for the period 1994 to 2021. We highlight the emergence of a new chemical regime at WFM dominated by organics and ammonium, quite different from the highly acidic regime observed in the past but not necessarily
clean.
Qianjie Chen, Jessica A. Mirrielees, Sham Thanekar, Nicole A. Loeb, Rachel M. Kirpes, Lucia M. Upchurch, Anna J. Barget, Nurun Nahar Lata, Angela R. W. Raso, Stephen M. McNamara, Swarup China, Patricia K. Quinn, Andrew P. Ault, Aaron Kennedy, Paul B. Shepson, Jose D. Fuentes, and Kerri A. Pratt
Atmos. Chem. Phys., 22, 15263–15285, https://doi.org/10.5194/acp-22-15263-2022, https://doi.org/10.5194/acp-22-15263-2022, 2022
Short summary
Short summary
During a spring field campaign in the coastal Arctic, ultrafine particles were enhanced during high wind speeds, and coarse-mode particles were reduced during blowing snow. Calculated periods blowing snow were overpredicted compared to observations. Sea spray aerosols produced by sea ice leads affected the composition of aerosols and snowpack. An improved understanding of aerosol emissions from leads and blowing snow is critical for predicting the future climate of the rapidly warming Arctic.
James C. Stegen, Sarah J. Fansler, Malak M. Tfaily, Vanessa A. Garayburu-Caruso, Amy E. Goldman, Robert E. Danczak, Rosalie K. Chu, Lupita Renteria, Jerry Tagestad, and Jason Toyoda
Biogeosciences, 19, 3099–3110, https://doi.org/10.5194/bg-19-3099-2022, https://doi.org/10.5194/bg-19-3099-2022, 2022
Short summary
Short summary
Rivers are vital to Earth, and in rivers, organic matter (OM) is an energy source for microbes that make greenhouse gas and remove contaminants. Predicting Earth’s future requires understanding how and why river OM is transformed. Our results help meet this need. We found that the processes influencing OM transformations diverge between river water and riverbed sediments. This can be used to build new models for predicting the future of rivers and, in turn, the Earth system.
Daniel A. Knopf, Joseph C. Charnawskas, Peiwen Wang, Benny Wong, Jay M. Tomlin, Kevin A. Jankowski, Matthew Fraund, Daniel P. Veghte, Swarup China, Alexander Laskin, Ryan C. Moffet, Mary K. Gilles, Josephine Y. Aller, Matthew A. Marcus, Shira Raveh-Rubin, and Jian Wang
Atmos. Chem. Phys., 22, 5377–5398, https://doi.org/10.5194/acp-22-5377-2022, https://doi.org/10.5194/acp-22-5377-2022, 2022
Short summary
Short summary
Marine boundary layer aerosols collected in the remote region of the eastern North Atlantic induce immersion freezing and deposition ice nucleation under typical mixed-phase and cirrus cloud conditions. Corresponding ice nucleation parameterizations for model applications have been derived. Chemical imaging of ambient aerosol and ice-nucleating particles demonstrates that the latter is dominated by sea salt and organics while also representing a major particle type in the particle population.
Kathryn D. Kulju, Stephen M. McNamara, Qianjie Chen, Hannah S. Kenagy, Jacinta Edebeli, Jose D. Fuentes, Steven B. Bertman, and Kerri A. Pratt
Atmos. Chem. Phys., 22, 2553–2568, https://doi.org/10.5194/acp-22-2553-2022, https://doi.org/10.5194/acp-22-2553-2022, 2022
Short summary
Short summary
N2O5 uptake by chloride-containing surfaces produces ClNO2, which photolyzes, producing NO2 and highly reactive Cl radicals that impact air quality. In the inland urban atmosphere, ClNO2 was elevated during lower air turbulence and over snow-covered ground, from snowpack ClNO2 production. N2O5 and ClNO2 levels were lowest, on average, during rainfall and fog because of scavenging, with N2O5 scavenging by fog droplets likely contributing to observed increased particulate nitrate concentrations.
Jay M. Tomlin, Kevin A. Jankowski, Daniel P. Veghte, Swarup China, Peiwen Wang, Matthew Fraund, Johannes Weis, Guangjie Zheng, Yang Wang, Felipe Rivera-Adorno, Shira Raveh-Rubin, Daniel A. Knopf, Jian Wang, Mary K. Gilles, Ryan C. Moffet, and Alexander Laskin
Atmos. Chem. Phys., 21, 18123–18146, https://doi.org/10.5194/acp-21-18123-2021, https://doi.org/10.5194/acp-21-18123-2021, 2021
Short summary
Short summary
Analysis of individual atmospheric particles shows that aerosol transported from North America during meteorological dry intrusion episodes may have a substantial impact on the mixing state and particle-type population over the mid-Atlantic, as organic contribution and particle-type diversity are significantly enhanced during these periods. These observations need to be considered in current atmospheric models.
Dandan Wei, Hariprasad D. Alwe, Dylan B. Millet, Brandon Bottorff, Michelle Lew, Philip S. Stevens, Joshua D. Shutter, Joshua L. Cox, Frank N. Keutsch, Qianwen Shi, Sarah C. Kavassalis, Jennifer G. Murphy, Krystal T. Vasquez, Hannah M. Allen, Eric Praske, John D. Crounse, Paul O. Wennberg, Paul B. Shepson, Alexander A. T. Bui, Henry W. Wallace, Robert J. Griffin, Nathaniel W. May, Megan Connor, Jonathan H. Slade, Kerri A. Pratt, Ezra C. Wood, Mathew Rollings, Benjamin L. Deming, Daniel C. Anderson, and Allison L. Steiner
Geosci. Model Dev., 14, 6309–6329, https://doi.org/10.5194/gmd-14-6309-2021, https://doi.org/10.5194/gmd-14-6309-2021, 2021
Short summary
Short summary
Over the past decade, understanding of isoprene oxidation has improved, and proper representation of isoprene oxidation and isoprene-derived SOA (iSOA) formation in canopy–chemistry models is now recognized to be important for an accurate understanding of forest–atmosphere exchange. The updated FORCAsT version 2.0 improves the estimation of some isoprene oxidation products and is one of the few canopy models currently capable of simulating SOA formation from monoterpenes and isoprene.
Aditi Sengupta, Sarah J. Fansler, Rosalie K. Chu, Robert E. Danczak, Vanessa A. Garayburu-Caruso, Lupita Renteria, Hyun-Seob Song, Jason Toyoda, Jacqueline Hager, and James C. Stegen
Biogeosciences, 18, 4773–4789, https://doi.org/10.5194/bg-18-4773-2021, https://doi.org/10.5194/bg-18-4773-2021, 2021
Short summary
Short summary
Conceptual models link microbes with the environment but are untested. We test a recent model using riverbed sediments. We exposed sediments to disturbances, going dry and becoming wet again. As the length of dry conditions got longer, there was a sudden shift in the ecology of microbes, chemistry of organic matter, and rates of microbial metabolism. We propose a new model based on feedbacks initiated by disturbance that cascade across biological, chemical, and functional aspects of the system.
Yang Wang, Guangjie Zheng, Michael P. Jensen, Daniel A. Knopf, Alexander Laskin, Alyssa A. Matthews, David Mechem, Fan Mei, Ryan Moffet, Arthur J. Sedlacek, John E. Shilling, Stephen Springston, Amy Sullivan, Jason Tomlinson, Daniel Veghte, Rodney Weber, Robert Wood, Maria A. Zawadowicz, and Jian Wang
Atmos. Chem. Phys., 21, 11079–11098, https://doi.org/10.5194/acp-21-11079-2021, https://doi.org/10.5194/acp-21-11079-2021, 2021
Short summary
Short summary
This paper reports the vertical profiles of trace gas and aerosol properties over the eastern North Atlantic, a region of persistent but diverse subtropical marine boundary layer (MBL) clouds. We examined the key processes that drive the cloud condensation nuclei (CCN) population and how it varies with season and synoptic conditions. This study helps improve the model representation of the aerosol processes in the remote MBL, reducing the simulated aerosol indirect effects.
Yue Zhou, Christopher P. West, Anusha P. S. Hettiyadura, Xiaoying Niu, Hui Wen, Jiecan Cui, Tenglong Shi, Wei Pu, Xin Wang, and Alexander Laskin
Atmos. Chem. Phys., 21, 8531–8555, https://doi.org/10.5194/acp-21-8531-2021, https://doi.org/10.5194/acp-21-8531-2021, 2021
Short summary
Short summary
We present a comprehensive characterization of water-soluble organic carbon (WSOC) in seasonal snow of northwestern China. We applied complementary multimodal analytical techniques to investigate bulk and molecular-level composition, optical properties, and sources of WSOC. For the first time, we estimated the extent of radiative forcing due to WSOC in snow using a model simulation and showed the profound influences of WSOC on the energy budget of midlatitude seasonal snowpack.
Demetrios Pagonis, Pedro Campuzano-Jost, Hongyu Guo, Douglas A. Day, Melinda K. Schueneman, Wyatt L. Brown, Benjamin A. Nault, Harald Stark, Kyla Siemens, Alex Laskin, Felix Piel, Laura Tomsche, Armin Wisthaler, Matthew M. Coggon, Georgios I. Gkatzelis, Hannah S. Halliday, Jordan E. Krechmer, Richard H. Moore, David S. Thomson, Carsten Warneke, Elizabeth B. Wiggins, and Jose L. Jimenez
Atmos. Meas. Tech., 14, 1545–1559, https://doi.org/10.5194/amt-14-1545-2021, https://doi.org/10.5194/amt-14-1545-2021, 2021
Short summary
Short summary
We describe the airborne deployment of an extractive electrospray time-of-flight mass spectrometer (EESI-MS). The instrument provides a quantitative 1 Hz measurement of the chemical composition of organic aerosol up to altitudes of
7 km, with single-compound detection limits as low as 50 ng per standard cubic meter.
Ana C. Morales, Thilina Jayarathne, Jonathan H. Slade, Alexander Laskin, and Paul B. Shepson
Atmos. Chem. Phys., 21, 129–145, https://doi.org/10.5194/acp-21-129-2021, https://doi.org/10.5194/acp-21-129-2021, 2021
Short summary
Short summary
Organic nitrates formed from the oxidation of biogenic volatile organic compounds impact both ozone and particulate matter as they remove nitrogen oxides, but they represent important aerosol precursors. We conducted a series of reaction chamber experiments that quantified the total organic nitrate and secondary organic aerosol yield from the OH-radical-initiated oxidation of ocimene, and also measured their hydrolysis lifetimes in the aqueous phase, as a function of pH.
Matthew Fraund, Daniel J. Bonanno, Swarup China, Don Q. Pham, Daniel Veghte, Johannes Weis, Gourihar Kulkarni, Ken Teske, Mary K. Gilles, Alexander Laskin, and Ryan C. Moffet
Atmos. Chem. Phys., 20, 11593–11606, https://doi.org/10.5194/acp-20-11593-2020, https://doi.org/10.5194/acp-20-11593-2020, 2020
Short summary
Short summary
High viscosity organic particles (HVOPs) in the Southern Great Plains have been analyzed, and two particle types were found. Previously studied tar balls and the recently discovered airborne soil organic particles (ASOPs) are both shown to be brown carbon (BrC). These particle types can be identified in bulk by an absorption Ångström exponent approaching 2.6. HVOP types can be differentiated by comparing carbon absorption spectrum peak ratios between the carboxylic acid, alcohol, and sp2 peaks.
Lauren T. Fleming, Peng Lin, James M. Roberts, Vanessa Selimovic, Robert Yokelson, Julia Laskin, Alexander Laskin, and Sergey A. Nizkorodov
Atmos. Chem. Phys., 20, 1105–1129, https://doi.org/10.5194/acp-20-1105-2020, https://doi.org/10.5194/acp-20-1105-2020, 2020
Short summary
Short summary
We have explored the nature and stability of molecules that give biomass burning smoke its faint brown color. Different types of biomass fuels were burned and the resulting smoke was collected for a detailed chemical analysis. We found that brown molecules in smoke become less colored when they are irradiated by sunlight, but this photobleaching process is very slow. This means that biomass burning smoke will remain brown-colored for a long time and efficiently warm up the atmosphere.
Adam S. Ward, Steven M. Wondzell, Noah M. Schmadel, Skuyler Herzog, Jay P. Zarnetske, Viktor Baranov, Phillip J. Blaen, Nicolai Brekenfeld, Rosalie Chu, Romain Derelle, Jennifer Drummond, Jan H. Fleckenstein, Vanessa Garayburu-Caruso, Emily Graham, David Hannah, Ciaran J. Harman, Jase Hixson, Julia L. A. Knapp, Stefan Krause, Marie J. Kurz, Jörg Lewandowski, Angang Li, Eugènia Martí, Melinda Miller, Alexander M. Milner, Kerry Neil, Luisa Orsini, Aaron I. Packman, Stephen Plont, Lupita Renteria, Kevin Roche, Todd Royer, Catalina Segura, James Stegen, Jason Toyoda, Jacqueline Hager, and Nathan I. Wisnoski
Hydrol. Earth Syst. Sci., 23, 5199–5225, https://doi.org/10.5194/hess-23-5199-2019, https://doi.org/10.5194/hess-23-5199-2019, 2019
Short summary
Short summary
The movement of water and solutes between streams and their shallow, connected subsurface is important to many ecosystem functions. These exchanges are widely expected to vary with stream flow across space and time, but these assumptions are seldom tested across basin scales. We completed more than 60 experiments across a 5th-order river basin to document these changes, finding patterns in space but not time. We conclude space-for-time and time-for-space substitutions are not good assumptions.
Adam S. Ward, Jay P. Zarnetske, Viktor Baranov, Phillip J. Blaen, Nicolai Brekenfeld, Rosalie Chu, Romain Derelle, Jennifer Drummond, Jan H. Fleckenstein, Vanessa Garayburu-Caruso, Emily Graham, David Hannah, Ciaran J. Harman, Skuyler Herzog, Jase Hixson, Julia L. A. Knapp, Stefan Krause, Marie J. Kurz, Jörg Lewandowski, Angang Li, Eugènia Martí, Melinda Miller, Alexander M. Milner, Kerry Neil, Luisa Orsini, Aaron I. Packman, Stephen Plont, Lupita Renteria, Kevin Roche, Todd Royer, Noah M. Schmadel, Catalina Segura, James Stegen, Jason Toyoda, Jacqueline Hager, Nathan I. Wisnoski, and Steven M. Wondzell
Earth Syst. Sci. Data, 11, 1567–1581, https://doi.org/10.5194/essd-11-1567-2019, https://doi.org/10.5194/essd-11-1567-2019, 2019
Short summary
Short summary
Studies of river corridor exchange commonly focus on characterization of the physical, chemical, or biological system. As a result, complimentary systems and context are often lacking, which may limit interpretation. Here, we present a characterization of all three systems at 62 sites in a 5th-order river basin, including samples of surface water, hyporheic water, and sediment. These data will allow assessment of interacting processes in the river corridor.
Aditi Sengupta, Julia Indivero, Cailene Gunn, Malak M. Tfaily, Rosalie K. Chu, Jason Toyoda, Vanessa L. Bailey, Nicholas D. Ward, and James C. Stegen
Biogeosciences, 16, 3911–3928, https://doi.org/10.5194/bg-16-3911-2019, https://doi.org/10.5194/bg-16-3911-2019, 2019
Short summary
Short summary
Coastal terrestrial–aquatic interfaces represent dynamic yet poorly understood zones of biogeochemical cycles. We evaluated associations between the soil salinity gradient, molecular-level soil-C chemistry, and microbial community assembly processes in a coastal watershed on the Olympic Peninsula in Washington, USA. Results revealed salinity-driven gradients in molecular-level C chemistry, with little evidence of an association between C chemistry and microbial community assembly processes.
Mijung Song, Adrian M. Maclean, Yuanzhou Huang, Natalie R. Smith, Sandra L. Blair, Julia Laskin, Alexander Laskin, Wing-Sy Wong DeRieux, Ying Li, Manabu Shiraiwa, Sergey A. Nizkorodov, and Allan K. Bertram
Atmos. Chem. Phys., 19, 12515–12529, https://doi.org/10.5194/acp-19-12515-2019, https://doi.org/10.5194/acp-19-12515-2019, 2019
John W. Halfacre, Paul B. Shepson, and Kerri A. Pratt
Atmos. Chem. Phys., 19, 4917–4931, https://doi.org/10.5194/acp-19-4917-2019, https://doi.org/10.5194/acp-19-4917-2019, 2019
Short summary
Short summary
In this study, we found that a chemical called hydroxyl radical can help create chlorine, bromine, and iodine (i.e., halogens) from acidic frozen imitation seawater. Even more halogens are created if we also add ozone. This result helps our understanding of how halogens are released from the frozen Arctic ice and snow into the atmosphere, where they alter the atmosphere's oxidation ability.
Victoria E. Irish, Sarah J. Hanna, Megan D. Willis, Swarup China, Jennie L. Thomas, Jeremy J. B. Wentzell, Ana Cirisan, Meng Si, W. Richard Leaitch, Jennifer G. Murphy, Jonathan P. D. Abbatt, Alexander Laskin, Eric Girard, and Allan K. Bertram
Atmos. Chem. Phys., 19, 1027–1039, https://doi.org/10.5194/acp-19-1027-2019, https://doi.org/10.5194/acp-19-1027-2019, 2019
Short summary
Short summary
Ice nucleating particles (INPs) are atmospheric particles that catalyse the formation of ice crystals in clouds. INPs influence the Earth's radiative balance and hydrological cycle. In this study we measured the concentrations of INPs in the Canadian Arctic marine boundary layer. Average INP concentrations fell within the range measured in other marine boundary layer locations. We also found that mineral dust is a more important contributor to the INP population than sea spray aerosol.
Chunlin Li, Quanfu He, Julian Schade, Johannes Passig, Ralf Zimmermann, Daphne Meidan, Alexander Laskin, and Yinon Rudich
Atmos. Chem. Phys., 19, 139–163, https://doi.org/10.5194/acp-19-139-2019, https://doi.org/10.5194/acp-19-139-2019, 2019
Jessie M. Creamean, Rachel M. Kirpes, Kerri A. Pratt, Nicholas J. Spada, Maximilian Maahn, Gijs de Boer, Russell C. Schnell, and Swarup China
Atmos. Chem. Phys., 18, 18023–18042, https://doi.org/10.5194/acp-18-18023-2018, https://doi.org/10.5194/acp-18-18023-2018, 2018
Short summary
Short summary
Warm-temperature ice nucleating particles (INPs) were observed during a springtime transition period of the melting of frozen surfaces in Northern Alaska. Such INPs were likely biological and from marine and terrestrial (tundra) sources. Influxes of these efficient INPs may have important implications for Arctic cloud ice formation and, consequently, the surface energy budget.
Michael R. Giordano, Lars E. Kalnajs, J. Douglas Goetz, Anita M. Avery, Erin Katz, Nathaniel W. May, Anna Leemon, Claire Mattson, Kerri A. Pratt, and Peter F. DeCarlo
Atmos. Chem. Phys., 18, 16689–16711, https://doi.org/10.5194/acp-18-16689-2018, https://doi.org/10.5194/acp-18-16689-2018, 2018
Short summary
Short summary
The 2ODIAC field campaign was the first deployment of a high-resolution, real-time mass spectrometer to continental Antarctica. Using the real-time aerosol measurements, we investigate how the composition of Antarctic submicron aerosol changes as a function of meteorological parameters such as wind speed. We observe blowing snow and increasing aerosol concentration and changing composition, in particular halogens, as the wind increases beyond 8 m s−1.
Amy L. Bondy, Daniel Bonanno, Ryan C. Moffet, Bingbing Wang, Alexander Laskin, and Andrew P. Ault
Atmos. Chem. Phys., 18, 12595–12612, https://doi.org/10.5194/acp-18-12595-2018, https://doi.org/10.5194/acp-18-12595-2018, 2018
Short summary
Short summary
To determine important sources of aerosols during the Southern Oxidant and Aerosol Study (SOAS), as well as their mixing with secondary species, individual particles were analyzed with electron and X-ray microscopy to determine size and chemical composition. Secondary organic aerosol, sea spray aerosol, and mineral dust each dominated during different periods. Particles were less similar chemically to each other than is commonly assumed, which is important for air quality and climate models.
Wing-Sy Wong DeRieux, Ying Li, Peng Lin, Julia Laskin, Alexander Laskin, Allan K. Bertram, Sergey A. Nizkorodov, and Manabu Shiraiwa
Atmos. Chem. Phys., 18, 6331–6351, https://doi.org/10.5194/acp-18-6331-2018, https://doi.org/10.5194/acp-18-6331-2018, 2018
Short summary
Short summary
The phase transition of organic particles between glassy and semi-solid states occurs at the glass transition temperature. We developed a method to predict glass transition temperatures and the viscosity of secondary organic aerosols using molecular composition, with consistent results with viscosity measurements. The viscosity of biomass burning particles was also estimated using the chemical composition measured by high-resolution mass spectrometry with two different ionization techniques.
Rachel M. Kirpes, Amy L. Bondy, Daniel Bonanno, Ryan C. Moffet, Bingbing Wang, Alexander Laskin, Andrew P. Ault, and Kerri A. Pratt
Atmos. Chem. Phys., 18, 3937–3949, https://doi.org/10.5194/acp-18-3937-2018, https://doi.org/10.5194/acp-18-3937-2018, 2018
Short summary
Short summary
Arctic atmospheric particles have important climate impacts via cloud formation and precipitation, particularly in the wintertime. We show that sulfate, formed during atmospheric transport, is within individual sea spray particles and organic particles measured in the Alaskan Arctic. Greater contributions of combustion emissions were observed when the wind direction came from the Prudhoe Bay oil fields, showing its regional influence.
Matthew J. Gunsch, Nathaniel W. May, Miao Wen, Courtney L. H. Bottenus, Daniel J. Gardner, Timothy M. VanReken, Steven B. Bertman, Philip K. Hopke, Andrew P. Ault, and Kerri A. Pratt
Atmos. Chem. Phys., 18, 3701–3715, https://doi.org/10.5194/acp-18-3701-2018, https://doi.org/10.5194/acp-18-3701-2018, 2018
Short summary
Short summary
During summer 2014, atmospheric particulate matter in northern Michigan was impacted by wildfire emissions under all air mass conditions (Canadian wildfires, US urban, and Canadian forest influences). Biomass burning particles coated with secondary organic aerosol contributed the majority of the submicron aerosol mass. Given increasing wildfires, the impacts of biomass burning on air quality must be assessed, particularly for downwind areas impacted by long-range transport.
Lauren T. Fleming, Peng Lin, Alexander Laskin, Julia Laskin, Robert Weltman, Rufus D. Edwards, Narendra K. Arora, Ankit Yadav, Simone Meinardi, Donald R. Blake, Ajay Pillarisetti, Kirk R. Smith, and Sergey A. Nizkorodov
Atmos. Chem. Phys., 18, 2461–2480, https://doi.org/10.5194/acp-18-2461-2018, https://doi.org/10.5194/acp-18-2461-2018, 2018
Short summary
Short summary
Household cooking emissions in India, which rely on traditional meal preparation with dung- and brushwood-fueled cookstoves, produce copious amounts of particulate matter. Detailed chemical analysis of the compounds found in this particulate matter detected a large number of previously unidentified nitrogen-containing organic compounds, originating from dung-fueled cookstoves.
Mallory L. Hinks, Julia Montoya-Aguilera, Lucas Ellison, Peng Lin, Alexander Laskin, Julia Laskin, Manabu Shiraiwa, Donald Dabdub, and Sergey A. Nizkorodov
Atmos. Chem. Phys., 18, 1643–1652, https://doi.org/10.5194/acp-18-1643-2018, https://doi.org/10.5194/acp-18-1643-2018, 2018
Short summary
Short summary
We have observed a strong effect of relative humidity on the composition of particulate matter produced from the oxidation of toluene in clean air. At higher relative humidity, there was a significant reduction in the fraction of high-molecular-weight compounds present in the particles. The amount of particulate matter also decreased at higher relative humidity. The main implication of this study is that water vapor participates in the photooxidation of toluene in a complicated way.
Julia Montoya-Aguilera, Jeremy R. Horne, Mallory L. Hinks, Lauren T. Fleming, Véronique Perraud, Peng Lin, Alexander Laskin, Julia Laskin, Donald Dabdub, and Sergey A. Nizkorodov
Atmos. Chem. Phys., 17, 11605–11621, https://doi.org/10.5194/acp-17-11605-2017, https://doi.org/10.5194/acp-17-11605-2017, 2017
Short summary
Short summary
Various plant species emit a chemical compound called indole under stressed conditions or during flowering events. Our experiments show that indole can be oxidized in the atmosphere to produce a brownish haze containing well-known indole-derived dyes, such as indigo dye. An airshed model that includes indole chemistry shows that indole aerosol makes a significant contribution to the total aerosol burden and to visibility.
Yevgeny Derimian, Marie Choël, Yinon Rudich, Karine Deboudt, Oleg Dubovik, Alexander Laskin, Michel Legrand, Bahaiddin Damiri, Ilan Koren, Florin Unga, Myriam Moreau, Meinrat O. Andreae, and Arnon Karnieli
Atmos. Chem. Phys., 17, 11331–11353, https://doi.org/10.5194/acp-17-11331-2017, https://doi.org/10.5194/acp-17-11331-2017, 2017
Short summary
Short summary
We present influence of daily occurrence of the sea breeze flow from the Mediterranean Sea on physicochemical and optical properties of atmospheric aerosol deep inland in the Negev Desert of Israel. Sampled airborne dust was found be internally mixed with sea-salt particles and reacted with anthropogenic pollution, which makes the dust highly hygroscopic and a liquid coating of particles appears. These physicochemical transformations are associated with a change in aerosol radiative properties.
Matthew J. Gunsch, Rachel M. Kirpes, Katheryn R. Kolesar, Tate E. Barrett, Swarup China, Rebecca J. Sheesley, Alexander Laskin, Alfred Wiedensohler, Thomas Tuch, and Kerri A. Pratt
Atmos. Chem. Phys., 17, 10879–10892, https://doi.org/10.5194/acp-17-10879-2017, https://doi.org/10.5194/acp-17-10879-2017, 2017
Short summary
Short summary
Arctic sea ice loss is leading to increasing petroleum extraction and shipping. It is necessary to identify emissions from these activities for improved Arctic air quality and climate assessment. Atmospheric particles were measured from August to September 2015 in Utqiaġvik, AK. For periods influenced by Prudhoe Bay, significant influence associated with combustion emissions was observed, compared to fresh sea spray influence during Arctic Ocean periods.
William R. Simpson, Peter K. Peterson, Udo Frieß, Holger Sihler, Johannes Lampel, Ulrich Platt, Chris Moore, Kerri Pratt, Paul Shepson, John Halfacre, and Son V. Nghiem
Atmos. Chem. Phys., 17, 9291–9309, https://doi.org/10.5194/acp-17-9291-2017, https://doi.org/10.5194/acp-17-9291-2017, 2017
Short summary
Short summary
We investigated Arctic atmospheric bromine chemistry during March–April 2012 to improve understanding of the role of sea ice and cracks in sea ice (leads) in this phenomenon. We find that leads vertically redistribute reactive bromine but that open/re-freezing leads are not major direct reactive halogen sources. Surface ozone depletion affects the vertical distribution and amount of reactive halogens, and aerosol particles are necessary but not sufficient to maintain reactive bromine aloft.
Peter K. Peterson, Denis Pöhler, Holger Sihler, Johannes Zielcke, Stephan General, Udo Frieß, Ulrich Platt, William R. Simpson, Son V. Nghiem, Paul B. Shepson, Brian H. Stirm, Suresh Dhaniyala, Thomas Wagner, Dana R. Caulton, Jose D. Fuentes, and Kerri A. Pratt
Atmos. Chem. Phys., 17, 7567–7579, https://doi.org/10.5194/acp-17-7567-2017, https://doi.org/10.5194/acp-17-7567-2017, 2017
Short summary
Short summary
High-spatial-resolution aircraft measurements in the Arctic showed the sustained transport of reactive bromine in a lofted layer via heterogeneous reactions on aerosol particles. This process provides an explanation for free tropospheric reactive bromine and the significant spatial extent of satellite-observed bromine monoxide. The knowledge gained herein improves our understanding of the fate and transport of atmospheric pollutants in the Arctic.
Adam P. Bateman, Zhaoheng Gong, Tristan H. Harder, Suzane S. de Sá, Bingbing Wang, Paulo Castillo, Swarup China, Yingjun Liu, Rachel E. O'Brien, Brett B. Palm, Hung-Wei Shiu, Glauber G. Cirino, Ryan Thalman, Kouji Adachi, M. Lizabeth Alexander, Paulo Artaxo, Allan K. Bertram, Peter R. Buseck, Mary K. Gilles, Jose L. Jimenez, Alexander Laskin, Antonio O. Manzi, Arthur Sedlacek, Rodrigo A. F. Souza, Jian Wang, Rahul Zaveri, and Scot T. Martin
Atmos. Chem. Phys., 17, 1759–1773, https://doi.org/10.5194/acp-17-1759-2017, https://doi.org/10.5194/acp-17-1759-2017, 2017
Short summary
Short summary
The occurrence of nonliquid and liquid physical states of submicron atmospheric particulate matter (PM) downwind of an urban region in central Amazonia was investigated. Air masses representing background conditions, urban pollution, and regional- and continental-scale biomass were measured. Anthropogenic influences contributed to the presence of nonliquid PM in the atmospheric particle population, while liquid PM dominated during periods of biogenic influence.
Ryan C. Moffet, Rachel E. O'Brien, Peter A. Alpert, Stephen T. Kelly, Don Q. Pham, Mary K. Gilles, Daniel A. Knopf, and Alexander Laskin
Atmos. Chem. Phys., 16, 14515–14525, https://doi.org/10.5194/acp-16-14515-2016, https://doi.org/10.5194/acp-16-14515-2016, 2016
Short summary
Short summary
Atmospheric black carbon (BC), commonly known as soot, is an important constituent of the earth that imparts a warming similar to that of carbon dioxide. However, BC is much shorter lived and has uncertain warming due to its mixture with other solid and liquid components. Here, advanced microscopic methods have provided a detailed look at thousands of BC particles sampled from central California; these measurements will lead towards a better understanding of the effects that BC has on climate.
Maiko Arashiro, Ying-Hsuan Lin, Kenneth G. Sexton, Zhenfa Zhang, Ilona Jaspers, Rebecca C. Fry, William G. Vizuete, Avram Gold, and Jason D. Surratt
Atmos. Chem. Phys., 16, 14079–14090, https://doi.org/10.5194/acp-16-14079-2016, https://doi.org/10.5194/acp-16-14079-2016, 2016
Short summary
Short summary
Atmospheric oxidation of isoprene in the presence of acidic sulfate aerosol yields substantial SOA. Potential adverse health effects resulting from exposure to this aerosol type are largely unknown. Measurements of gene expression of known inflammatory biomarkers interleukin 8 (IL-8) and cyclooxygenase 2 (COX-2) in exposed human lung cells at the air–liquid interface showed that a dose of 0.067 μg cm−2 of isoprene SOA leads to statistically significant increases in IL-8 and COX-2 mRNA levels.
Jiumeng Liu, Peng Lin, Alexander Laskin, Julia Laskin, Shawn M. Kathmann, Matthew Wise, Ryan Caylor, Felisha Imholt, Vanessa Selimovic, and John E. Shilling
Atmos. Chem. Phys., 16, 12815–12827, https://doi.org/10.5194/acp-16-12815-2016, https://doi.org/10.5194/acp-16-12815-2016, 2016
Short summary
Short summary
Light absorbing organic aerosols (BrC) absorb sunlight thereby influencing climate; however, understanding of the link between their optical properties and environmental variables remains limited. Our chamber experiment results suggest that variables including NOx concentration, RH level, and photolysis time have considerable influence on secondary BrC optical properties. The results contribute to a more accurate characterization of the impacts of aerosols on climate, especially in urban areas.
Matthieu Riva, Thais Da Silva Barbosa, Ying-Hsuan Lin, Elizabeth A. Stone, Avram Gold, and Jason D. Surratt
Atmos. Chem. Phys., 16, 11001–11018, https://doi.org/10.5194/acp-16-11001-2016, https://doi.org/10.5194/acp-16-11001-2016, 2016
Short summary
Short summary
Formation of organosulfates (OSs) in secondary organic aerosol from the photooxidation of alkanes is reported from smog chamber experiments. Effects of acidity and relative humidity on OS formation were examined. Most of the OSs identified could be explained by formation of gaseous epoxide and/or hydroperoxide precursors with subsequent acid-catalyzed multiphase chemistry onto sulfate aerosol. The OSs identified here were also observed and quantified in aerosols collected in two urban areas.
Nathaniel W. May, Jessica L. Axson, Alexa Watson, Kerri A. Pratt, and Andrew P. Ault
Atmos. Meas. Tech., 9, 4311–4325, https://doi.org/10.5194/amt-9-4311-2016, https://doi.org/10.5194/amt-9-4311-2016, 2016
Short summary
Short summary
Aerosols are generated every time a wave breaks, as bubbles are formed that rise to the surface and burst. A great deal is known about sea spray aerosol from oceans, but very little is known about particles formed from freshwater, such as lakes and rivers. This study determines how "lake spray aerosol" is formed, which leads to distinctly different sizes and chemical composition from sea spray aerosol. These differences impact climate, weather, and human health near bodies of freshwater.
Weruka Rattanavaraha, Kevin Chu, Sri Hapsari Budisulistiorini, Matthieu Riva, Ying-Hsuan Lin, Eric S. Edgerton, Karsten Baumann, Stephanie L. Shaw, Hongyu Guo, Laura King, Rodney J. Weber, Miranda E. Neff, Elizabeth A. Stone, John H. Offenberg, Zhenfa Zhang, Avram Gold, and Jason D. Surratt
Atmos. Chem. Phys., 16, 4897–4914, https://doi.org/10.5194/acp-16-4897-2016, https://doi.org/10.5194/acp-16-4897-2016, 2016
Short summary
Short summary
The mechanisms by which specific anthropogenic pollutants enhance isoprene SOA in ambient PM2.5 remain unclear. As one aspect of an investigation to examine how anthropogenic pollutants influence isoprene-derived SOA formation, high-volume PM2.5 filter samples were collected from Birmingham, AL, during the 2013 Southern Oxidant and Aerosol Study (SOAS). Isoprene SOA tracers were measured from these samples and compared to gas and aerosol data collected from the SEARCH network.
Lu Yu, Jeremy Smith, Alexander Laskin, Katheryn M. George, Cort Anastasio, Julia Laskin, Ann M. Dillner, and Qi Zhang
Atmos. Chem. Phys., 16, 4511–4527, https://doi.org/10.5194/acp-16-4511-2016, https://doi.org/10.5194/acp-16-4511-2016, 2016
Short summary
Short summary
The chemical evolution of SOA formed during aqueous reactions of phenolic compounds is studied via combined bulk and molecular analysis. Phenolic SOA evolve dynamically during photochemical aging, with different reaction mechanisms (oligomerization, fragmentation, and functionalization) leading to different generations of products that span an enormous range in volatilities and a large range in oxidation state and composition. Aqueous reactions of phenols are likely an important source of ELVOC.
F. Xiong, K. M. McAvey, K. A. Pratt, C. J. Groff, M. A. Hostetler, M. A. Lipton, T. K. Starn, J. V. Seeley, S. B. Bertman, A. P. Teng, J. D. Crounse, T. B. Nguyen, P. O. Wennberg, P. K. Misztal, A. H. Goldstein, A. B. Guenther, A. R. Koss, K. F. Olson, J. A. de Gouw, K. Baumann, E. S. Edgerton, P. A. Feiner, L. Zhang, D. O. Miller, W. H. Brune, and P. B. Shepson
Atmos. Chem. Phys., 15, 11257–11272, https://doi.org/10.5194/acp-15-11257-2015, https://doi.org/10.5194/acp-15-11257-2015, 2015
Short summary
Short summary
Hydroxynitrates from isoprene oxidation were quantified both in the laboratory and through field studies. The yield of hydroxynitrates 9(+4/-3)% derived from chamber experiments was applied in a zero-dimensional model to simulate the production and loss of isoprene hydroxynitrates in an ambient environment during the 2013 Southern Oxidant and Aerosol Study (SOAS). NOx was determined to be the limiting factor for the formation of isoprene hydroxynitrates during SOAS.
K. D. Custard, C. R. Thompson, K. A. Pratt, P B. Shepson, J. Liao, L. G. Huey, J. J. Orlando, A. J. Weinheimer, E. Apel, S. R. Hall, F. Flocke, L. Mauldin, R. S. Hornbrook, D. Pöhler, S. General, J. Zielcke, W. R. Simpson, U. Platt, A. Fried, P. Weibring, B. C. Sive, K. Ullmann, C. Cantrell, D. J. Knapp, and D. D. Montzka
Atmos. Chem. Phys., 15, 10799–10809, https://doi.org/10.5194/acp-15-10799-2015, https://doi.org/10.5194/acp-15-10799-2015, 2015
H. M. Allen, D. C. Draper, B. R. Ayres, A. Ault, A. Bondy, S. Takahama, R. L. Modini, K. Baumann, E. Edgerton, C. Knote, A. Laskin, B. Wang, and J. L. Fry
Atmos. Chem. Phys., 15, 10669–10685, https://doi.org/10.5194/acp-15-10669-2015, https://doi.org/10.5194/acp-15-10669-2015, 2015
Short summary
Short summary
We report ion chromatographic measurements of gas- and aerosol-phase inorganic species at the SOAS 2013 field study. Our particular focus is on inorganic nitrate aerosol formation via HNO3 uptake onto coarse-mode dust and sea salt particles, which we find to be the dominant source of episodic inorganic nitrate at this site, due to the high acidity of the particles preventing formation of NH4NO3. We calculate a production rate of inorganic nitrate aerosol.
K. R. Baker, A. G. Carlton, T. E. Kleindienst, J. H. Offenberg, M. R. Beaver, D. R. Gentner, A. H. Goldstein, P. L. Hayes, J. L. Jimenez, J. B. Gilman, J. A. de Gouw, M. C. Woody, H. O. T. Pye, J. T. Kelly, M. Lewandowski, M. Jaoui, P. S. Stevens, W. H. Brune, Y.-H. Lin, C. L. Rubitschun, and J. D. Surratt
Atmos. Chem. Phys., 15, 5243–5258, https://doi.org/10.5194/acp-15-5243-2015, https://doi.org/10.5194/acp-15-5243-2015, 2015
Short summary
Short summary
This work details the evaluation of PM2.5 carbon, VOC precursors, and OH estimated by the CMAQ photochemical transport model using routine and special measurements from the 2010 CalNex field study. Here, CMAQ and most recent emissions inventory (2011 NEI) are used to generate model PM2.5 OC estimates that are examined in novel ways including primary vs. secondary formation, fossil vs. contemporary carbon, OH and HO2 evaluation, and the relationship between key VOC precursors and SOC tracers.
P. K. Peterson, W. R. Simpson, K. A. Pratt, P. B. Shepson, U. Frieß, J. Zielcke, U. Platt, S. J. Walsh, and S. V. Nghiem
Atmos. Chem. Phys., 15, 2119–2137, https://doi.org/10.5194/acp-15-2119-2015, https://doi.org/10.5194/acp-15-2119-2015, 2015
Short summary
Short summary
We developed methods to measure the vertical distribution of bromine monoxide, a gas that oxidizes pollutants, above sea ice based upon MAX-DOAS observations from Barrow, Alaska, and find that atmospheric stability exerts a strong control on BrO's vertical distribution. Specifically, more stable (temperature inversion) situations result in BrO being closer to the ground while more neutral (not inverted) atmospheres allow BrO to ascend further aloft and grow to larger column abundance.
J. W. Halfacre, T. N. Knepp, P. B. Shepson, C. R. Thompson, K. A. Pratt, B. Li, P. K. Peterson, S. J. Walsh, W. R. Simpson, P. A. Matrai, J. W. Bottenheim, S. Netcheva, D. K. Perovich, and A. Richter
Atmos. Chem. Phys., 14, 4875–4894, https://doi.org/10.5194/acp-14-4875-2014, https://doi.org/10.5194/acp-14-4875-2014, 2014
Y.-H. Lin, E. M. Knipping, E. S. Edgerton, S. L. Shaw, and J. D. Surratt
Atmos. Chem. Phys., 13, 8457–8470, https://doi.org/10.5194/acp-13-8457-2013, https://doi.org/10.5194/acp-13-8457-2013, 2013
Related subject area
Subject: Clouds and Precipitation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Molecular composition of clouds: a comparison between samples collected at tropical (Réunion Island, France) and mid-north (Puy de Dôme, France) latitudes
Response patterns of moss to atmospheric nitrogen deposition and nitrogen saturation in an urban–agro–forest transition
Influences of sources and weather dynamics on atmospheric deposition of Se species and other trace elements
Revealing the chemical characteristics of Arctic low-level cloud residuals – in situ observations from a mountain site
Long-term monitoring of cloud water chemistry at Whiteface Mountain: the emergence of a new chemical regime
Measurement report: Closure analysis of aerosol–cloud composition in tropical maritime warm convection
Free amino acid quantification in cloud water at the Puy de Dôme station (France)
Wet deposition in the remote western and central Mediterranean as a source of trace metals to surface seawater
Insights into tropical cloud chemistry in Réunion (Indian Ocean): results from the BIO-MAÏDO campaign
Measurement report: Molecular characteristics of cloud water in southern China and insights into aqueous-phase processes from Fourier transform ion cyclotron resonance mass spectrometry
Total organic carbon and the contribution from speciated organics in cloud water: airborne data analysis from the CAMP2Ex field campaign
A link between the ice nucleation activity and the biogeochemistry of seawater
Impact of convection on the upper-tropospheric composition (water vapor and ozone) over a subtropical site (Réunion island; 21.1° S, 55.5° E) in the Indian Ocean
Chemical characteristics of cloud water and the impacts on aerosol properties at a subtropical mountain site in Hong Kong SAR
Diurnal cycle of iodine, bromine, and mercury concentrations in Svalbard surface snow
Wet deposition of inorganic ions in 320 cities across China: spatio-temporal variation, source apportionment, and dominant factors
Deposition of ionic species and black carbon to the Arctic snowpack: combining snow pit observations with modeling
Mercury and trace metal wet deposition across five stations in Alaska: controlling factors, spatial patterns, and source regions
Drivers of atmospheric deposition of polycyclic aromatic hydrocarbons at European high-altitude sites
Cloud scavenging of anthropogenic refractory particles at a mountain site in North China
Composition of ice particle residuals in mixed-phase clouds at Jungfraujoch (Switzerland): enrichment and depletion of particle groups relative to total aerosol
Snow scavenging and phase partitioning of nitrated and oxygenated aromatic hydrocarbons in polluted and remote environments in central Europe and the European Arctic
Continuous non-marine inputs of per- and polyfluoroalkyl substances to the High Arctic: a multi-decadal temporal record
The single-particle mixing state and cloud scavenging of black carbon: a case study at a high-altitude mountain site in southern China
Composition, size and cloud condensation nuclei activity of biomass burning aerosol from northern Australian savannah fires
Five-year records of mercury wet deposition flux at GMOS sites in the Northern and Southern hemispheres
Atmospheric wet and litterfall mercury deposition at urban and rural sites in China
Hydroxyl radical in/on illuminated polar snow: formation rates, lifetimes, and steady-state concentrations
Cloud water composition during HCCT-2010: Scavenging efficiencies, solute concentrations, and droplet size dependence of inorganic ions and dissolved organic carbon
Fog composition at Baengnyeong Island in the eastern Yellow Sea: detecting markers of aqueous atmospheric oxidations
Wet deposition of atmospheric inorganic nitrogen at five remote sites in the Tibetan Plateau
Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China
Natural or anthropogenic? On the origin of atmospheric sulfate deposition in the Andes of southeastern Ecuador
Temporal variations in rainwater methanol
Comprehensive assessment of meteorological conditions and airflow connectivity during HCCT-2010
Influence of cloud processing on CCN activation behaviour in the Thuringian Forest, Germany during HCCT-2010
Classification of clouds sampled at the puy de Dôme (France) based on 10 yr of monitoring of their physicochemical properties
Preliminary signs of the initiation of deep convection by GNSS
Dissolved organic carbon (DOC) and select aldehydes in cloud and fog water: the role of the aqueous phase in impacting trace gas budgets
Insights into dissolved organic matter complexity in rainwater from continental and coastal storms by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry
Dynamics of the chemical composition of rainwater throughout Hurricane Irene
Spatial and temporal distributions of total and methyl mercury in precipitation in core urban areas, Chongqing, China
Wet and dry deposition of atmospheric nitrogen at ten sites in Northern China
Spatial distribution of mercury deposition fluxes in Wanshan Hg mining area, Guizhou province, China
Molecular characterization of water soluble organic nitrogen in marine rainwater by ultra-high resolution electrospray ionization mass spectrometry
Five-year record of atmospheric precipitation chemistry in urban Beijing, China
Mercury deposition in Southern New Hampshire, 2006–2009
Chemical composition of rainwater at Maldives Climate Observatory at Hanimaadhoo (MCOH)
Chemistry of rain events in West Africa: evidence of dust and biogenic influence in convective systems
Atmospheric deposition of mercury and major ions to the Pensacola (Florida) watershed: spatial, seasonal, and inter-annual variability
Lucas Pailler, Laurent Deguillaume, Hélène Lavanant, Isabelle Schmitz, Marie Hubert, Edith Nicol, Mickaël Ribeiro, Jean-Marc Pichon, Mickaël Vaïtilingom, Pamela Dominutti, Frédéric Burnet, Pierre Tulet, Maud Leriche, and Angelica Bianco
Atmos. Chem. Phys., 24, 5567–5584, https://doi.org/10.5194/acp-24-5567-2024, https://doi.org/10.5194/acp-24-5567-2024, 2024
Short summary
Short summary
The composition of dissolved organic matter of cloud water has been investigated through non-targeted high-resolution mass spectrometry on only a few samples collected in the Northern Hemisphere. In this work, the chemical composition of samples collected at Réunion Island (SH) is investigated and compared to samples collected at Puy de Dôme (NH). Sampling, analysis and data treatment with the same methodology produced a unique dataset for investigating the molecular composition of clouds.
Ouping Deng, Yuanyuan Chen, Jingze Zhao, Xi Li, Wei Zhou, Ting Lan, Dinghua Ou, Yanyan Zhang, Jiang Liu, Ling Luo, Yueqiang He, Hanqing Yang, and Rong Huang
Atmos. Chem. Phys., 24, 5303–5314, https://doi.org/10.5194/acp-24-5303-2024, https://doi.org/10.5194/acp-24-5303-2024, 2024
Short summary
Short summary
Estimating atmospheric nitrogen (N) deposition is critical to understanding the biogeochemical N cycle. Moss has long been considered as a bio-indicator for N deposition due to its accumulation of N from the atmosphere. Here, we improved the method for monitoring atmospheric N deposition using mosses. The sampling frequency and time were optimized. This study contributes to improving the accuracy of the model of quantifying N deposition by using mosses.
Esther S. Breuninger, Julie Tolu, Iris Thurnherr, Franziska Aemisegger, Aryeh Feinberg, Sylvain Bouchet, Jeroen E. Sonke, Véronique Pont, Heini Wernli, and Lenny H. E. Winkel
Atmos. Chem. Phys., 24, 2491–2510, https://doi.org/10.5194/acp-24-2491-2024, https://doi.org/10.5194/acp-24-2491-2024, 2024
Short summary
Short summary
Atmospheric deposition is an important source of selenium (Se) and other health-relevant trace elements in surface environments. We found that the variability in elemental concentrations in atmospheric deposition reflects not only changes in emission sources but also weather conditions during atmospheric removal. Depending on the sources and if Se is derived more locally or from further away, the Se forms can be different, affecting the bioavailability of Se atmospherically supplied to soils.
Yvette Gramlich, Karolina Siegel, Sophie L. Haslett, Gabriel Freitas, Radovan Krejci, Paul Zieger, and Claudia Mohr
Atmos. Chem. Phys., 23, 6813–6834, https://doi.org/10.5194/acp-23-6813-2023, https://doi.org/10.5194/acp-23-6813-2023, 2023
Short summary
Short summary
In this study, we investigate the chemical composition of aerosol particles forming clouds in the Arctic. During year-long observations at a mountain site on Svalbard, we find a large contribution of naturally derived aerosol particles in the fraction forming clouds in the summer. Our observations indicate that most aerosol particles can serve as cloud seeds in this remote environment.
Christopher E. Lawrence, Paul Casson, Richard Brandt, James J. Schwab, James E. Dukett, Phil Snyder, Elizabeth Yerger, Daniel Kelting, Trevor C. VandenBoer, and Sara Lance
Atmos. Chem. Phys., 23, 1619–1639, https://doi.org/10.5194/acp-23-1619-2023, https://doi.org/10.5194/acp-23-1619-2023, 2023
Short summary
Short summary
Atmospheric aqueous chemistry can have profound effects on our environment, as illustrated by historical data from Whiteface Mountain (WFM) that were critical for uncovering the process of acid rain. The current study updates the long-term trends in cloud water composition at WFM for the period 1994 to 2021. We highlight the emergence of a new chemical regime at WFM dominated by organics and ammonium, quite different from the highly acidic regime observed in the past but not necessarily
clean.
Ewan Crosbie, Luke D. Ziemba, Michael A. Shook, Claire E. Robinson, Edward L. Winstead, K. Lee Thornhill, Rachel A. Braun, Alexander B. MacDonald, Connor Stahl, Armin Sorooshian, Susan C. van den Heever, Joshua P. DiGangi, Glenn S. Diskin, Sarah Woods, Paola Bañaga, Matthew D. Brown, Francesca Gallo, Miguel Ricardo A. Hilario, Carolyn E. Jordan, Gabrielle R. Leung, Richard H. Moore, Kevin J. Sanchez, Taylor J. Shingler, and Elizabeth B. Wiggins
Atmos. Chem. Phys., 22, 13269–13302, https://doi.org/10.5194/acp-22-13269-2022, https://doi.org/10.5194/acp-22-13269-2022, 2022
Short summary
Short summary
The linkage between cloud droplet and aerosol particle chemical composition was analyzed using samples collected in a polluted tropical marine environment. Variations in the droplet composition were related to physical and dynamical processes in clouds to assess their relative significance across three cases that spanned a range of rainfall amounts. In spite of the pollution, sea salt still remained a major contributor to the droplet composition and was preferentially enhanced in rainwater.
Pascal Renard, Maxence Brissy, Florent Rossi, Martin Leremboure, Saly Jaber, Jean-Luc Baray, Angelica Bianco, Anne-Marie Delort, and Laurent Deguillaume
Atmos. Chem. Phys., 22, 2467–2486, https://doi.org/10.5194/acp-22-2467-2022, https://doi.org/10.5194/acp-22-2467-2022, 2022
Short summary
Short summary
Amino acids (AAs) have been quantified in cloud water collected at the Puy de Dôme station (France). Concentrations and speciation of those compounds are highly variable among the samples. Sources from the sea surface and atmospheric transformations during the air mass transport, mainly in the free troposphere, have been shown to modulate AA levels in cloud water.
Karine Desboeufs, Franck Fu, Matthieu Bressac, Antonio Tovar-Sánchez, Sylvain Triquet, Jean-François Doussin, Chiara Giorio, Patrick Chazette, Julie Disnaquet, Anaïs Feron, Paola Formenti, Franck Maisonneuve, Araceli Rodríguez-Romero, Pascal Zapf, François Dulac, and Cécile Guieu
Atmos. Chem. Phys., 22, 2309–2332, https://doi.org/10.5194/acp-22-2309-2022, https://doi.org/10.5194/acp-22-2309-2022, 2022
Short summary
Short summary
This article reports the first concurrent sampling of wet deposition samples and surface seawater and was performed during the PEACETIME cruise in the remote Mediterranean (May–June 2017). Through the chemical composition of trace metals (TMs) in these samples, it emphasizes the decrease of atmospheric metal pollution in this area during the last few decades and the critical role of wet deposition as source of TMs for Mediterranean surface seawater, especially for intense dust deposition events.
Pamela A. Dominutti, Pascal Renard, Mickaël Vaïtilingom, Angelica Bianco, Jean-Luc Baray, Agnès Borbon, Thierry Bourianne, Frédéric Burnet, Aurélie Colomb, Anne-Marie Delort, Valentin Duflot, Stephan Houdier, Jean-Luc Jaffrezo, Muriel Joly, Martin Leremboure, Jean-Marc Metzger, Jean-Marc Pichon, Mickaël Ribeiro, Manon Rocco, Pierre Tulet, Anthony Vella, Maud Leriche, and Laurent Deguillaume
Atmos. Chem. Phys., 22, 505–533, https://doi.org/10.5194/acp-22-505-2022, https://doi.org/10.5194/acp-22-505-2022, 2022
Short summary
Short summary
We present here the results obtained during an intensive field campaign conducted in March to April 2019 in Reunion. Our study integrates a comprehensive chemical and microphysical characterization of cloud water. Our investigations reveal that air mass history and cloud microphysical properties do not fully explain the variability observed in their chemical composition. This highlights the complexity of emission sources, multiphasic exchanges, and transformations in clouds.
Wei Sun, Yuzhen Fu, Guohua Zhang, Yuxiang Yang, Feng Jiang, Xiufeng Lian, Bin Jiang, Yuhong Liao, Xinhui Bi, Duohong Chen, Jianmin Chen, Xinming Wang, Jie Ou, Ping'an Peng, and Guoying Sheng
Atmos. Chem. Phys., 21, 16631–16644, https://doi.org/10.5194/acp-21-16631-2021, https://doi.org/10.5194/acp-21-16631-2021, 2021
Short summary
Short summary
We sampled cloud water at a remote mountain site and investigated the molecular characteristics. CHON and CHO are dominant in cloud water. No statistical difference in the oxidation state is observed between cloud water and interstitial PM2.5. Most of the formulas are aliphatic and olefinic species. CHON, with aromatic structures and organosulfates, are abundant, especially in nighttime samples. The in-cloud and multi-phase dark reactions likely contribute significantly.
Connor Stahl, Ewan Crosbie, Paola Angela Bañaga, Grace Betito, Rachel A. Braun, Zenn Marie Cainglet, Maria Obiminda Cambaliza, Melliza Templonuevo Cruz, Julie Mae Dado, Miguel Ricardo A. Hilario, Gabrielle Frances Leung, Alexander B. MacDonald, Angela Monina Magnaye, Jeffrey Reid, Claire Robinson, Michael A. Shook, James Bernard Simpas, Shane Marie Visaga, Edward Winstead, Luke Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 21, 14109–14129, https://doi.org/10.5194/acp-21-14109-2021, https://doi.org/10.5194/acp-21-14109-2021, 2021
Short summary
Short summary
A total of 159 cloud water samples were collected and measured for total organic carbon (TOC) during CAMP2Ex. On average, 30 % of TOC was speciated based on carboxylic/sulfonic acids and dimethylamine. Results provide a critical constraint on cloud composition and vertical profiles of TOC and organic species ranging from ~250 m to ~ 7 km and representing a variety of cloud types and air mass source influences such as biomass burning, marine emissions, anthropogenic activity, and dust.
Martin J. Wolf, Megan Goodell, Eric Dong, Lilian A. Dove, Cuiqi Zhang, Lesly J. Franco, Chuanyang Shen, Emma G. Rutkowski, Domenic N. Narducci, Susan Mullen, Andrew R. Babbin, and Daniel J. Cziczo
Atmos. Chem. Phys., 20, 15341–15356, https://doi.org/10.5194/acp-20-15341-2020, https://doi.org/10.5194/acp-20-15341-2020, 2020
Short summary
Short summary
Sea spray is the largest aerosol source on Earth. These aerosol particles can impact climate by inducing ice formation in clouds. The role that ocean biology plays in determining the composition and ice nucleation abilities of sea spray aerosol is unclarified. In this study, we demonstrate that atomized seawater from highly productive ocean regions is more effective at nucleating ice than seawater from lower-productivity regions.
Damien Héron, Stéphanie Evan, Jérôme Brioude, Karen Rosenlof, Françoise Posny, Jean-Marc Metzger, and Jean-Pierre Cammas
Atmos. Chem. Phys., 20, 8611–8626, https://doi.org/10.5194/acp-20-8611-2020, https://doi.org/10.5194/acp-20-8611-2020, 2020
Short summary
Short summary
Using a statistical method, summer variations (between 2013 and 2016) of ozone and water vapor are characterized in the upper troposphere above Réunion island (21° S, 55° E). It suggests a convective influence between 9 and 13 km. As deep convection is rarely observed near Réunion island, this study provides new insights on the long-range impact of deep convective outflow from the Intertropical Convergence Zone (ITCZ) on the upper troposphere over a subtropical site.
Tao Li, Zhe Wang, Yaru Wang, Chen Wu, Yiheng Liang, Men Xia, Chuan Yu, Hui Yun, Weihao Wang, Yan Wang, Jia Guo, Hartmut Herrmann, and Tao Wang
Atmos. Chem. Phys., 20, 391–407, https://doi.org/10.5194/acp-20-391-2020, https://doi.org/10.5194/acp-20-391-2020, 2020
Short summary
Short summary
This work presents a field study of cloud water chemistry and interactions of cloud, gas, and aerosols in the polluted coastal boundary layer in southern China. Substantial dissolved organic matter in the acidic cloud water was observed, and the gas- and aqueous-phase partitioning of carbonyl compounds was investigated. The results demonstrated the significant role of cloud processing in altering aerosol properties, especially in producing aqueous organics and droplet-mode aerosols.
Andrea Spolaor, Elena Barbaro, David Cappelletti, Clara Turetta, Mauro Mazzola, Fabio Giardi, Mats P. Björkman, Federico Lucchetta, Federico Dallo, Katrine Aspmo Pfaffhuber, Hélène Angot, Aurelien Dommergue, Marion Maturilli, Alfonso Saiz-Lopez, Carlo Barbante, and Warren R. L. Cairns
Atmos. Chem. Phys., 19, 13325–13339, https://doi.org/10.5194/acp-19-13325-2019, https://doi.org/10.5194/acp-19-13325-2019, 2019
Short summary
Short summary
The main aims of the study are to (a) detect whether mercury in the surface snow undergoes a daily cycle as determined in the atmosphere, (b) compare the mercury concentration in surface snow with the concentration in the atmosphere, (c) evaluate the effect of snow depositions, (d) detect whether iodine and bromine in the surface snow undergo a daily cycle, and (e) evaluate the role of metereological and atmospheric conditions. Different behaviours were determined during different seasons.
Rui Li, Lulu Cui, Yilong Zhao, Ziyu Zhang, Tianming Sun, Junlin Li, Wenhui Zhou, Ya Meng, Kan Huang, and Hongbo Fu
Atmos. Chem. Phys., 19, 11043–11070, https://doi.org/10.5194/acp-19-11043-2019, https://doi.org/10.5194/acp-19-11043-2019, 2019
Short summary
Short summary
Acid deposition is still an important environmental issue in China. Rainwater samples in 320 cities in China were collected to determine the acidic ion concentrations and identify their spatiotemporal variations and sources. The higher acidic ions showed higher concentrations in winter. Furthermore, the highest acidic ion concentrations were mainly distributed in YRD and SB. These acidic ions were mainly sourced from industrial emissions and agricultural activities.
Hans-Werner Jacobi, Friedrich Obleitner, Sophie Da Costa, Patrick Ginot, Konstantinos Eleftheriadis, Wenche Aas, and Marco Zanatta
Atmos. Chem. Phys., 19, 10361–10377, https://doi.org/10.5194/acp-19-10361-2019, https://doi.org/10.5194/acp-19-10361-2019, 2019
Short summary
Short summary
By combining atmospheric, precipitation, and snow measurements with snowpack simulations for a high Arctic site in Svalbard, we find that during wintertime the transfer of sea salt components to the snowpack was largely dominated by wet deposition. However, dry deposition contributed significantly for nitrate, non-sea-salt sulfate, and black carbon. The comparison of monthly deposition and snow budgets indicates an important redistribution of the impurities in the snowpack even during winter.
Christopher Pearson, Dean Howard, Christopher Moore, and Daniel Obrist
Atmos. Chem. Phys., 19, 6913–6929, https://doi.org/10.5194/acp-19-6913-2019, https://doi.org/10.5194/acp-19-6913-2019, 2019
Short summary
Short summary
Precipitation-based deposition of mercury and other trace metals throughout Alaska provides a significant input of pollutants. Deposition shows significant seasonal and spatial variability, largely driven by precipitation patterns. Annual wet deposition of Hg at all AK collection sites is consistently lower than other monitoring stations throughout the CONUS. Hg showed no clear relationship to other metals, likely due to its highly volatile nature and capability of long-range transport.
Lourdes Arellano, Pilar Fernández, Barend L. van Drooge, Neil L. Rose, Ulrike Nickus, Hansjoerg Thies, Evzen Stuchlík, Lluís Camarero, Jordi Catalan, and Joan O. Grimalt
Atmos. Chem. Phys., 18, 16081–16097, https://doi.org/10.5194/acp-18-16081-2018, https://doi.org/10.5194/acp-18-16081-2018, 2018
Short summary
Short summary
Mountain areas are key for studying the impact of diffuse pollution due to human activities on the continental areas. Polycyclic aromatic hydrocarbons (PAHs), human carcinogens with increased levels since the 1950s, are significant constituents of this pollution. We determined PAHs in monthly atmospheric deposition collected in European high mountain areas. The number of sites, period of study and sampling frequency provide the most comprehensive description of PAH fallout at remote sites.
Lei Liu, Jian Zhang, Liang Xu, Qi Yuan, Dao Huang, Jianmin Chen, Zongbo Shi, Yele Sun, Pingqing Fu, Zifa Wang, Daizhou Zhang, and Weijun Li
Atmos. Chem. Phys., 18, 14681–14693, https://doi.org/10.5194/acp-18-14681-2018, https://doi.org/10.5194/acp-18-14681-2018, 2018
Short summary
Short summary
Using transmission electron microscopy, we studied individual cloud droplet residual and interstitial particles collected in cloud events at Mt. Tai in the polluted North China region. We found that individual cloud droplets were an extremely complicated mixture containing abundant refractory soot (i.e., black carbon), fly ash, and metals. The complicated cloud droplets have not been reported in clean continental or marine air before.
Stine Eriksen Hammer, Stephan Mertes, Johannes Schneider, Martin Ebert, Konrad Kandler, and Stephan Weinbruch
Atmos. Chem. Phys., 18, 13987–14003, https://doi.org/10.5194/acp-18-13987-2018, https://doi.org/10.5194/acp-18-13987-2018, 2018
Short summary
Short summary
It is important to study ice-nucleating particles in the environment to learn more about cloud formation. We studied the composition of ice particle residuals and total aerosol particles sampled in parallel during mixed-phase cloud events at Jungfraujoch and discovered that soot and complex secondary particles were not present. In contrast, silica, aluminosilicates, and other aluminosilicates were the most important ice particle residual groups at site temperatures between −11 and −18 °C.
Pourya Shahpoury, Zoran Kitanovski, and Gerhard Lammel
Atmos. Chem. Phys., 18, 13495–13510, https://doi.org/10.5194/acp-18-13495-2018, https://doi.org/10.5194/acp-18-13495-2018, 2018
Heidi M. Pickard, Alison S. Criscitiello, Christine Spencer, Martin J. Sharp, Derek C. G. Muir, Amila O. De Silva, and Cora J. Young
Atmos. Chem. Phys., 18, 5045–5058, https://doi.org/10.5194/acp-18-5045-2018, https://doi.org/10.5194/acp-18-5045-2018, 2018
Short summary
Short summary
Perfluoroalkyl acids (PFAAs) are persistent, bioaccumulative compounds found in the environment far from source regions, including the remote Arctic. We collected a 15 m ice core from the Canadian High Arctic to measure a 38-year deposition record of PFAAs, proving information about major pollutant sources and production changes over time. Our results demonstrate that PFAAs have continuous and increasing deposition, despite recent North American regulations and phase-outs.
Guohua Zhang, Qinhao Lin, Long Peng, Xinhui Bi, Duohong Chen, Mei Li, Lei Li, Fred J. Brechtel, Jianxin Chen, Weijun Yan, Xinming Wang, Ping'an Peng, Guoying Sheng, and Zhen Zhou
Atmos. Chem. Phys., 17, 14975–14985, https://doi.org/10.5194/acp-17-14975-2017, https://doi.org/10.5194/acp-17-14975-2017, 2017
Short summary
Short summary
The mixing state of black carbon (BC)-containing particles and the mass scavenging efficiency of BC in cloud were investigated at a mountain site (1690 m a.s.l.) in southern China. The measured BC-containing particles were internally mixed extensively with sulfate, and thus the number fraction of scavenged BC-containing particles is close to that of all the measured particles. BC-containing particles with higher fractions of organics were scavenged relatively less.
Marc D. Mallet, Luke T. Cravigan, Andelija Milic, Joel Alroe, Zoran D. Ristovski, Jason Ward, Melita Keywood, Leah R. Williams, Paul Selleck, and Branka Miljevic
Atmos. Chem. Phys., 17, 3605–3617, https://doi.org/10.5194/acp-17-3605-2017, https://doi.org/10.5194/acp-17-3605-2017, 2017
Short summary
Short summary
This paper presents data on the size, composition and concentration of aerosol particles emitted from north Australian savannah fires and how these properties influence cloud condensation nuclei (CCN) concentrations. Both the size and composition of aerosol were found to be important in determining CCN. Despite large CCNc enhancements during periods of close biomass burning, the aerosol was very weakly hygroscopic which should be accounted for in climate models to avoid large CCNc overestimates.
Francesca Sprovieri, Nicola Pirrone, Mariantonia Bencardino, Francesco D'Amore, Helene Angot, Carlo Barbante, Ernst-Günther Brunke, Flor Arcega-Cabrera, Warren Cairns, Sara Comero, María del Carmen Diéguez, Aurélien Dommergue, Ralf Ebinghaus, Xin Bin Feng, Xuewu Fu, Patricia Elizabeth Garcia, Bernd Manfred Gawlik, Ulla Hageström, Katarina Hansson, Milena Horvat, Jože Kotnik, Casper Labuschagne, Olivier Magand, Lynwill Martin, Nikolay Mashyanov, Thumeka Mkololo, John Munthe, Vladimir Obolkin, Martha Ramirez Islas, Fabrizio Sena, Vernon Somerset, Pia Spandow, Massimiliano Vardè, Chavon Walters, Ingvar Wängberg, Andreas Weigelt, Xu Yang, and Hui Zhang
Atmos. Chem. Phys., 17, 2689–2708, https://doi.org/10.5194/acp-17-2689-2017, https://doi.org/10.5194/acp-17-2689-2017, 2017
Short summary
Short summary
The results on total mercury (THg) wet deposition flux obtained within the GMOS network have been presented and discussed to understand the atmospheric Hg cycling and its seasonal depositional patterns over the 2011–2015 period. The data set provides new insight into baseline concentrations of THg concentrations in precipitation particularly in regions where wet deposition and atmospheric Hg species were not investigated before, opening the way for additional measurements and modeling studies.
Xuewu Fu, Xu Yang, Xiaofang Lang, Jun Zhou, Hui Zhang, Ben Yu, Haiyu Yan, Che-Jen Lin, and Xinbin Feng
Atmos. Chem. Phys., 16, 11547–11562, https://doi.org/10.5194/acp-16-11547-2016, https://doi.org/10.5194/acp-16-11547-2016, 2016
Zeyuan Chen, Liang Chu, Edward S. Galbavy, Keren Ram, and Cort Anastasio
Atmos. Chem. Phys., 16, 9579–9590, https://doi.org/10.5194/acp-16-9579-2016, https://doi.org/10.5194/acp-16-9579-2016, 2016
Short summary
Short summary
We made the first measurements of the concentrations of hydroxyl radical (•OH), a dominant environmental oxidant, in snow grains. Concentrations of •OH in snow at Summit, Greenland, are comparable to values reported for midlatitude cloud and fog drops, even though impurity levels in the snow are much lower. At these concentrations, the lifetimes of organics and bromide in Summit snow are approximately 3 days and 7 h, respectively, suggesting that OH is a major oxidant for both species.
Dominik van Pinxteren, Khanneh Wadinga Fomba, Stephan Mertes, Konrad Müller, Gerald Spindler, Johannes Schneider, Taehyoung Lee, Jeffrey L. Collett, and Hartmut Herrmann
Atmos. Chem. Phys., 16, 3185–3205, https://doi.org/10.5194/acp-16-3185-2016, https://doi.org/10.5194/acp-16-3185-2016, 2016
A. J. Boris, T. Lee, T. Park, J. Choi, S. J. Seo, and J. L. Collett Jr.
Atmos. Chem. Phys., 16, 437–453, https://doi.org/10.5194/acp-16-437-2016, https://doi.org/10.5194/acp-16-437-2016, 2016
Short summary
Short summary
Samples of fog water collected in the Yellow Sea during summer 2014 represent fog downwind of polluted regions and provide new insight into the fate of regional emissions. Organic and inorganic components reveal contributions from urban, biogenic, marine, and biomass burning emissions, as well as evidence of aqueous organic processing reactions. Many fog components are products of extensive photochemical aging during multiday transport, including oxidation within wet aerosols or fogs.
Y. W. Liu, Xu-Ri, Y. S. Wang, Y. P. Pan, and S. L. Piao
Atmos. Chem. Phys., 15, 11683–11700, https://doi.org/10.5194/acp-15-11683-2015, https://doi.org/10.5194/acp-15-11683-2015, 2015
Short summary
Short summary
We investigated inorganic N wet deposition at five sites in the Tibetan Plateau (TP). Combining in situ measurements in this and previous studies, the average wet deposition of NH4+-N, NO3--N, and inorganic N in the TP was estimated to be 1.06, 0.51, and 1.58 kg N ha−1 yr−1, respectively. Results suggest that earlier estimations based on chemical transport model simulations and/or limited field measurements likely overestimated substantially the regional inorganic N wet deposition in the TP.
Y. P. Pan and Y. S. Wang
Atmos. Chem. Phys., 15, 951–972, https://doi.org/10.5194/acp-15-951-2015, https://doi.org/10.5194/acp-15-951-2015, 2015
Short summary
Short summary
This paper presents the first concurrent measurements of wet and dry deposition of various trace elements in Northern China, covering an extensive area over 3 years in a global hotspot of air pollution. The unique field data can serve as a sound basis for the validation of regional emission inventories and biogeochemical or atmospheric chemistry models. The findings are very important for policy makers to create legislation to reduce the emissions and protect soil and water from air pollution.
S. Makowski Giannoni, R. Rollenbeck, K. Trachte, and J. Bendix
Atmos. Chem. Phys., 14, 11297–11312, https://doi.org/10.5194/acp-14-11297-2014, https://doi.org/10.5194/acp-14-11297-2014, 2014
J. D. Felix, S. B. Jones, G. B. Avery, J. D. Willey, R. N. Mead, and R. J. Kieber
Atmos. Chem. Phys., 14, 10509–10516, https://doi.org/10.5194/acp-14-10509-2014, https://doi.org/10.5194/acp-14-10509-2014, 2014
A. Tilgner, L. Schöne, P. Bräuer, D. van Pinxteren, E. Hoffmann, G. Spindler, S. A. Styler, S. Mertes, W. Birmili, R. Otto, M. Merkel, K. Weinhold, A. Wiedensohler, H. Deneke, R. Schrödner, R. Wolke, J. Schneider, W. Haunold, A. Engel, A. Wéber, and H. Herrmann
Atmos. Chem. Phys., 14, 9105–9128, https://doi.org/10.5194/acp-14-9105-2014, https://doi.org/10.5194/acp-14-9105-2014, 2014
S. Henning, K. Dieckmann, K. Ignatius, M. Schäfer, P. Zedler, E. Harris, B. Sinha, D. van Pinxteren, S. Mertes, W. Birmili, M. Merkel, Z. Wu, A. Wiedensohler, H. Wex, H. Herrmann, and F. Stratmann
Atmos. Chem. Phys., 14, 7859–7868, https://doi.org/10.5194/acp-14-7859-2014, https://doi.org/10.5194/acp-14-7859-2014, 2014
L. Deguillaume, T. Charbouillot, M. Joly, M. Vaïtilingom, M. Parazols, A. Marinoni, P. Amato, A.-M. Delort, V. Vinatier, A. Flossmann, N. Chaumerliac, J. M. Pichon, S. Houdier, P. Laj, K. Sellegri, A. Colomb, M. Brigante, and G. Mailhot
Atmos. Chem. Phys., 14, 1485–1506, https://doi.org/10.5194/acp-14-1485-2014, https://doi.org/10.5194/acp-14-1485-2014, 2014
H. Brenot, J. Neméghaire, L. Delobbe, N. Clerbaux, P. De Meutter, A. Deckmyn, A. Delcloo, L. Frappez, and M. Van Roozendael
Atmos. Chem. Phys., 13, 5425–5449, https://doi.org/10.5194/acp-13-5425-2013, https://doi.org/10.5194/acp-13-5425-2013, 2013
B. Ervens, Y. Wang, J. Eagar, W. R. Leaitch, A. M. Macdonald, K. T. Valsaraj, and P. Herckes
Atmos. Chem. Phys., 13, 5117–5135, https://doi.org/10.5194/acp-13-5117-2013, https://doi.org/10.5194/acp-13-5117-2013, 2013
R. N. Mead, K. M. Mullaugh, G. Brooks Avery, R. J. Kieber, J. D. Willey, and D. C. Podgorski
Atmos. Chem. Phys., 13, 4829–4838, https://doi.org/10.5194/acp-13-4829-2013, https://doi.org/10.5194/acp-13-4829-2013, 2013
K. M. Mullaugh, J. D. Willey, R. J. Kieber, R. N. Mead, and G. B. Avery Jr.
Atmos. Chem. Phys., 13, 2321–2330, https://doi.org/10.5194/acp-13-2321-2013, https://doi.org/10.5194/acp-13-2321-2013, 2013
Y. M. Wang, D. Y. Wang, B. Meng, Y. L. Peng, L. Zhao, and J. S. Zhu
Atmos. Chem. Phys., 12, 9417–9426, https://doi.org/10.5194/acp-12-9417-2012, https://doi.org/10.5194/acp-12-9417-2012, 2012
Y. P. Pan, Y. S. Wang, G. Q. Tang, and D. Wu
Atmos. Chem. Phys., 12, 6515–6535, https://doi.org/10.5194/acp-12-6515-2012, https://doi.org/10.5194/acp-12-6515-2012, 2012
Z. H. Dai, X. B. Feng, J. Sommar, P. Li, and X. W. Fu
Atmos. Chem. Phys., 12, 6207–6218, https://doi.org/10.5194/acp-12-6207-2012, https://doi.org/10.5194/acp-12-6207-2012, 2012
K. E. Altieri, M. G. Hastings, A. J. Peters, and D. M. Sigman
Atmos. Chem. Phys., 12, 3557–3571, https://doi.org/10.5194/acp-12-3557-2012, https://doi.org/10.5194/acp-12-3557-2012, 2012
F. Yang, J. Tan, Z. B. Shi, Y. Cai, K. He, Y. Ma, F. Duan, T. Okuda, S. Tanaka, and G. Chen
Atmos. Chem. Phys., 12, 2025–2035, https://doi.org/10.5194/acp-12-2025-2012, https://doi.org/10.5194/acp-12-2025-2012, 2012
M. A. S. Lombard, J. G. Bryce, H. Mao, and R. Talbot
Atmos. Chem. Phys., 11, 7657–7668, https://doi.org/10.5194/acp-11-7657-2011, https://doi.org/10.5194/acp-11-7657-2011, 2011
R. Das, L. Granat, C. Leck, P. S. Praveen, and H. Rodhe
Atmos. Chem. Phys., 11, 3743–3755, https://doi.org/10.5194/acp-11-3743-2011, https://doi.org/10.5194/acp-11-3743-2011, 2011
K. Desboeufs, E. Journet, J.-L. Rajot, S. Chevaillier, S. Triquet, P. Formenti, and A. Zakou
Atmos. Chem. Phys., 10, 9283–9293, https://doi.org/10.5194/acp-10-9283-2010, https://doi.org/10.5194/acp-10-9283-2010, 2010
J. M. Caffrey, W. M. Landing, S. D. Nolek, K. J. Gosnell, S. S. Bagui, and S. C. Bagui
Atmos. Chem. Phys., 10, 5425–5434, https://doi.org/10.5194/acp-10-5425-2010, https://doi.org/10.5194/acp-10-5425-2010, 2010
Cited articles
Aleksic, N. and Dukett, J. E.: Probabilistic relationship between liquid water content and ion concentrations in cloud water, Atmos. Res., 98, 400–405, https://doi.org/10.1016/j.atmosres.2010.08.003, 2010.
Aleksic, N., Roy, K., Sistla, G., Dukett, J., Houck, N., and Casson, P.: Analysis of cloud and precipitation chemistry at Whiteface Mountain, NY, Atmos. Environ., 43, 2709–2716, https://doi.org/10.1016/j.atmosenv.2009.02.053, 2009.
Aljawhary, D., Zhao, R., Lee, A. K. Y., Wang, C., and Abbatt, J. P. D.: Kinetics, Mechanism, and Secondary Organic Aerosol Yield of Aqueous Phase Photo-oxidation of α-Pinene Oxidation Products, J. Phys. Chem. A, 120, 1395–1407, https://doi.org/10.1021/acs.jpca.5b06237, 2016.
Altieri, K. E., Carlton, A. G., Lim, H.-J., Turpin, B. J., and Seitzinger, S. P.: Evidence for Oligomer Formation in Clouds: Reactions of Isoprene Oxidation Products, Environ. Sci. Technol., 40, 4956–4960, https://doi.org/10.1021/es052170n, 2006.
Altieri, K. E., Seitzinger, S. P., Carlton, A. G., Turpin, B. J., Klein, G. C., and Marshall, A. G.: Oligomers formed through in-cloud methylglyoxal reactions: Chemical composition, properties, and mechanisms investigated by ultra-high resolution FT-ICR mass spectrometry, Atmos. Environ., 42, 1476–1490, https://doi.org/10.1016/j.atmosenv.2007.11.015, 2008.
Artaxo, P., Gerab, F., Yamasoe, M. A., and Martins, J. V.: Fine mode aerosol composition at three long-term atmospheric monitoring sites in the Amazon Basin, J. Geophys. Res.-Atmos., 99, 22857–22868, https://doi.org/10.1029/94JD01023, 1994.
Baumgardner, R. E., Isil, S. S., Lavery, T. F., Rogers, C. M., and Mohnen, V. A.: Estimates of Cloud Water Deposition at Mountain Acid Deposition Program Sites in the Appalachian Mountains, J. Air Waste Manage. Assoc., 53, 291–308, https://doi.org/10.1080/10473289.2003.10466153, 2003.
Blando, J. D. and Turpin, B. J.: Secondary organic aerosol formation in cloud and fog droplets: a literature evaluation of plausibility, Atmos. Environ., 34, 1623–1632, https://doi.org/10.1016/S1352-2310(99)00392-1, 2000.
Boone, E. J., Laskin, A., Laskin, J., Wirth, C., Shepson, P. B., Stirm, B. H., and Pratt, K. A.: Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling, Environ. Sci. Technol., 49, 8523–8530, https://doi.org/10.1021/acs.est.5b01639, 2015.
Carlton, A. G., Turpin, B. J., Altieri, K. E., Seitzinger, S. P., Mathur, R., Roselle, S. J., and Weber, R. J.: CMAQ Model Performance Enhanced When In-Cloud Secondary Organic Aerosol is Included: Comparisons of Organic Carbon Predictions with Measurements, Environ. Sci. Technol., 42, 8798–8802, https://doi.org/10.1021/es801192n, 2008.
Chen, Q., Heald, C. L., Jimenez, J. L., Canagaratna, M. R., Zhang, Q., He, L.-Y., Huang, X.-F., Campuzano-Jost, P., Palm, B. B., Poulain, L., Kuwata, M., Martin, S. T., Abbatt, J. P. D., Lee, A. K. Y., and Liggio, J.: Elemental composition of organic aerosol: The gap between ambient and laboratory measurements, Geophys. Res. Lett., 42, 4182–4189, https://doi.org/10.1002/2015GL063693, 2015.
Darer, A. I., Cole-Filipiak, N. C., O'Connor, A. E., and Elrod, M. J.: Formation and Stability of Atmospherically Relevant Isoprene-Derived Organosulfates and Organonitrates, Environ. Sci. Technol., 45, 1895–1902, https://doi.org/10.1021/es103797z, 2011.
Dukett, J. E., Aleksic, N., Houck, N., Snyder, P., Casson, P., and Cantwell, M.: Progress toward clean cloud water at Whiteface Mountain New York, Atmos. Environ., 45, 6669–6673, https://doi.org/10.1016/j.atmosenv.2011.08.070, 2011.
Ervens, B., Turpin, B. J., and Weber, R. J.: Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies, Atmos. Chem. Phys., 11, 11069–11102, https://doi.org/10.5194/acp-11-11069-2011, 2011.
Ervens, B., Renard, P., Tlili, S., Ravier, S., Clément, J.-L., and Monod, A.: Aqueous-phase oligomerization of methyl vinyl ketone through photooxidation – Part 2: Development of the chemical mechanism and atmospheric implications, Atmos. Chem. Phys., 15, 9109–9127, https://doi.org/10.5194/acp-15-9109-2015, 2015.
Feng, J. and Möller, D.: Characterization of Water-Soluble Macromolecular Substances in Cloud Water, J. Atmos. Chem., 48, 217–233, https://doi.org/10.1023/B:JOCH.0000044377.93748.e4, 2004.
Fu, T.-M., Jacob, D. J., Wittrock, F., Burrows, J. P., Vrekoussis, M., and Henze, D. K.: Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols, J. Geophys. Res.-Atmos., 113, D15303, https://doi.org/10.1029/2007JD009505, 2008.
Fu, T.-M., Jacob, D. J., and Heald, C. L.: Aqueous-phase reactive uptake of dicarbonyls as a source of organic aerosol over eastern North America, Atmos. Environ., 43, 1814–1822, https://doi.org/10.1016/j.atmosenv.2008.12.029, 2009.
Gilardoni, S., Massoli, P., Paglione, M., Giulianelli, L., Carbone, C., Rinaldi, M., Decesari, S., Sandrini, S., Costabile, F., Gobbi, G. P., Pietrogrande, M. C., Visentin, M., Scotto, F., Fuzzi, S., and Facchini, M. C.: Direct observation of aqueous secondary organic aerosol from biomass-burning emissions, P. Natl. Acad. Sci. USA, 113, 10013–10018, https://doi.org/10.1073/pnas.1602212113, 2016.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
Hallquist, M., Wenger, J. C., Baltensperger, U., Rudich, Y., Simpson, D., Claeys, M., Dommen, J., Donahue, N. M., George, C., Goldstein, A. H., Hamilton, J. F., Herrmann, H., Hoffmann, T., Iinuma, Y., Jang, M., Jenkin, M. E., Jimenez, J. L., Kiendler-Scharr, A., Maenhaut, W., McFiggans, G., Mentel, Th. F., Monod, A., Prévôt, A. S. H., Seinfeld, J. H., Surratt, J. D., Szmigielski, R., and Wildt, J.: The formation, properties and impact of secondary organic aerosol: current and emerging issues, Atmos. Chem. Phys., 9, 5155–5236, https://doi.org/10.5194/acp-9-5155-2009, 2009.
Hamilton, J. F., Alfarra, M. R., Robinson, N., Ward, M. W., Lewis, A. C., McFiggans, G. B., Coe, H., and Allan, J. D.: Linking biogenic hydrocarbons to biogenic aerosol in the Borneo rainforest, Atmos. Chem. Phys., 13, 11295–11305, https://doi.org/10.5194/acp-13-11295-2013, 2013.
Heaton, K. J., Sleighter, R. L., Hatcher, P. G., and Wall, W. A.: Composition Domains in Monoterpene Secondary Organic Aerosol, Environ. Sci. Technol., 43, 7797–7802, https://doi.org/10.1021/es901214p, 2009.
Herckes, P., Valsaraj, K. T., and Collett Jr., J. L.: A review of observations of organic matter in fogs and clouds: Origin, processing and fate, Atmos. Res., 132–133, 434–449, https://doi.org/10.1016/j.atmosres.2013.06.005, 2013.
Herrmann, H., Schaefer, T., Tilgner, A., Styler, S. A., Weller, C., Teich, M., and Otto, T.: Tropospheric Aqueous-Phase Chemistry: Kinetics, Mechanisms, and Its Coupling to a Changing Gas Phase, Chem. Rev., 115, 4259–4334, https://doi.org/10.1021/cr500447k, 2015.
Hu, K. S., Darer, A. I., and Elrod, M. J.: Thermodynamics and kinetics of the hydrolysis of atmospherically relevant organonitrates and organosulfates, Atmos. Chem. Phys., 11, 8307–8320, https://doi.org/10.5194/acp-11-8307-2011, 2011.
Iinuma, Y., Müller, C., Berndt, T., Böge, O., Claeys, M., and Herrmann, H.: Evidence for the Existence of Organosulfates from β-Pinene Ozonolysis in Ambient Secondary Organic Aerosol, Environ. Sci. Technol., 41, 6678–6683, https://doi.org/10.1021/es070938t, 2007a.
Iinuma, Y., Müller, C., Böge, O., Gnauk, T., and Herrmann, H.: The formation of organic sulfate esters in the limonene ozonolysis secondary organic aerosol (SOA) under acidic conditions, Atmos. Environ., 41, 5571–5583, https://doi.org/10.1016/j.atmosenv.2007.03.007, 2007b.
Iinuma, Y., Boge, O., Kahnt, A., and Herrmann, H.: Laboratory chamber studies on the formation of organosulfates from reactive uptake of monoterpene oxides, Phys. Chem. Chem. Phys., 11, 7985–7997, https://doi.org/10.1039/B904025K, 2009.
Kourtchev, I., Godoi, R. H. M., Connors, S., Levine, J. G., Archibald, A. T., Godoi, A. F. L., Paralovo, S. L., Barbosa, C. G. G., Souza, R. A. F., Manzi, A. O., Seco, R., Sjostedt, S., Park, J.-H., Guenther, A., Kim, S., Smith, J., Martin, S. T., and Kalberer, M.: Molecular composition of organic aerosols in central Amazonia: an ultra-high-resolution mass spectrometry study, Atmos. Chem. Phys., 16, 11899–11913, https://doi.org/10.5194/acp-16-11899-2016, 2016.
Kristensen, K. and Glasius, M.: Organosulfates and oxidation products from biogenic hydrocarbons in fine aerosols from a forest in North West Europe during spring, Atmos. Environ., 45, 4546–4556, https://doi.org/10.1016/j.atmosenv.2011.05.063, 2011.
Kristensen, K., Bilde, M., Aalto, P. P., Petäjä, T., and Glasius, M.: Denuder/filter sampling of organic acids and organosulfates at urban and boreal forest sites: Gas/particle distribution and possible sampling artifacts, Atmos. Environ., 130, 36–53, https://doi.org/10.1016/j.atmosenv.2015.10.046, 2016.
Kroflič, A., Grilc, M., and Grgić, I.: Does toxicity of aromatic pollutants increase under remote atmospheric conditions?, Sci. Rep., 5, 8859, https://doi.org/10.1038/srep08859, 2015.
Kujawinski, E. B. and Behn, M. D.: Automated Analysis of Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectra of Natural Organic Matter, Anal. Chem., 78, 4363–4373, https://doi.org/10.1021/ac0600306, 2006.
Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of Atmospheric Brown Carbon, Chem. Rev., 115, 4335–4382, https://doi.org/10.1021/cr5006167, 2015.
Lee, A. K. Y., Herckes, P., Leaitch, W. R., Macdonald, A. M., and Abbatt, J. P. D.: Aqueous OH oxidation of ambient organic aerosol and cloud water organics: Formation of highly oxidized products, Geophys. Res. Lett., 38, L11805, https://doi.org/10.1029/2011GL047439, 2011.
Lee, A. K. Y., Hayden, K. L., Herckes, P., Leaitch, W. R., Liggio, J., Macdonald, A. M. and Abbatt, J. P. D.: Characterization of aerosol and cloud water at a mountain site during WACS 2010: secondary organic aerosol formation through oxidative cloud processing, Atmos. Chem. Phys., 12, 7103–7116, https://doi.org/10.5194/acp-12-7103-2012, 2012.
Lim, Y. B., Tan, Y., and Turpin, B. J.: Chemical insights, explicit chemistry, and yields of secondary organic aerosol from OH radical oxidation of methylglyoxal and glyoxal in the aqueous phase, Atmos. Chem. Phys., 13, 8651–8667, https://doi.org/10.5194/acp-13-8651-2013, 2013.
Lin, P., Yu, J. Z., Engling, G., and Kalberer, M.: Organosulfates in Humic-like Substance Fraction Isolated from Aerosols at Seven Locations in East Asia: A Study by Ultra-High-Resolution Mass Spectrometry, Environ. Sci. Technol., 46, 13118–13127, https://doi.org/10.1021/es303570v, 2012.
Loeffler, K. W., Koehler, C. A., Paul, N. M., and De Haan, D. O.: Oligomer Formation in Evaporating Aqueous Glyoxal and Methyl Glyoxal Solutions, Environ. Sci. Technol., 40, 6318–6323, https://doi.org/10.1021/es060810w, 2006.
Mazzoleni, L. R., Ehrmann, B. M., Shen, X., Marshall, A. G., and Collett, J. L.: Water-Soluble Atmospheric Organic Matter in Fog: Exact Masses and Chemical Formula Identification by Ultrahigh-Resolution Fourier Transform Ion Cyclotron Resonance Mass Spectrometry, Environ. Sci. Technol., 44, 3690–3697, https://doi.org/10.1021/es903409k, 2010.
Mazzoleni, L. R., Saranjampour, P., Dalbec, M. M., Samburova, V., Hallar, A. G., Zielinska, B., Lowenthal, D. H., and Kohl, S.: Identification of water-soluble organic carbon in non-urban aerosols using ultrahigh-resolution FT-ICR mass spectrometry: organic anions, Environ. Chem., 9, 285–297, https://doi.org/10.1071/EN11167, 2012.
McNeill, V. F., Woo, J. L., Kim, D. D., Schwier, A. N., Wannell, N. J., Sumner, A. J., and Barakat, J. M.: Aqueous-Phase Secondary Organic Aerosol and Organosulfate Formation in Atmospheric Aerosols: A Modeling Study, Environ. Sci. Technol., 46, 8075–8081, https://doi.org/10.1021/es3002986, 2012.
Minerath, E. C. and Elrod, M. J.: Assessing the Potential for Diol and Hydroxy Sulfate Ester Formation from the Reaction of Epoxides in Tropospheric Aerosols, Environ. Sci. Technol., 43, 1386–1392, https://doi.org/10.1021/es8029076, 2009.
Minerath, E. C., Casale, M. T., and Elrod, M. J.: Kinetics Feasibility Study of Alcohol Sulfate Esterification Reactions in Tropospheric Aerosols, Environ. Sci. Technol., 42, 4410–4415, https://doi.org/10.1021/es8004333, 2008.
Minor, E. C., Steinbring, C. J., Longnecker, K., and Kujawinski, E. B.: Characterization of dissolved organic matter in Lake Superior and its watershed using ultrahigh resolution mass spectrometry, Org. Geochem., 43, 1–11, https://doi.org/10.1016/j.orggeochem.2011.11.007, 2012.
Mohnen, V. A. and Kadlecek, J. A.: Cloud chemistry research at Whiteface Mountain, Tellus B, 41, 79–91, https://doi.org/10.1111/j.1600-0889.1989.tb00127.x, 1989.
Nguyen, T. B., Laskin, A., Laskin, J., and Nizkorodov, S. A.: Direct aqueous photochemistry of isoprene high-NOx secondary organic aerosol, Phys. Chem. Chem. Phys., 14, 9702–9714, https://doi.org/10.1039/C2CP40944E, 2012a.
Nguyen, T. B., Lee, P. B., Updyke, K. M., Bones, D. L., Laskin, J., Laskin, A., and Nizkorodov, S. A.: Formation of nitrogen- and sulfur-containing light-absorbing compounds accelerated by evaporation of water from secondary organic aerosols, J. Geophys. Res.-Atmos., 117, D01207, https://doi.org/10.1029/2011JD016944, 2012b.
Nozière, B., Ekström, S., Alsberg, T., and Holmström, S.: Radical-initiated formation of organosulfates and surfactants in atmospheric aerosols, Geophys. Res. Lett., 37, L05806, https://doi.org/10.1029/2009GL041683, 2010.
O'Brien, R. E., Laskin, A., Laskin, J., Rubitschun, C. L., Surratt, J. D., and Goldstein, A. H.: Molecular characterization of S- and N-containing organic constituents in ambient aerosols by negative ion mode high-resolution Nanospray Desorption Electrospray Ionization Mass Spectrometry: CalNex 2010 field study, J. Geophys. Res.-Atmos., 119, 12706–12720, https://doi.org/10.1002/2014JD021955, 2014.
Perri, M. J., Lim, Y. B., Seitzinger, S. P., and Turpin, B. J.: Organosulfates from glycolaldehyde in aqueous aerosols and clouds: Laboratory studies, Atmos. Environ., 44, 2658–2664, https://doi.org/10.1016/j.atmosenv.2010.03.031, 2010.
Pratt, K. A., Fiddler, M. N., Shepson, P. B., Carlton, A. G., and Surratt, J. D.: Organosulfates in cloud water above the Ozarks' isoprene source region, Atmos. Environ., 77, 231–238, https://doi.org/10.1016/j.atmosenv.2013.05.011, 2013.
Purohit, V. and Basu, A. K.: Mutagenicity of Nitroaromatic Compounds, Chem. Res. Toxicol., 13, 673–692, https://doi.org/10.1021/tx000002x, 2000.
Renard, P., Siekmann, F., Salque, G., Demelas, C., Coulomb, B., Vassalo, L., Ravier, S., Temime-Roussel, B., Voisin, D., and Monod, A.: Aqueous-phase oligomerization of methyl vinyl ketone through photooxidation – Part 1: Aging processes of oligomers, Atmos. Chem. Phys., 15, 21–35, https://doi.org/10.5194/acp-15-21-2015, 2015.
Riva, M., Da Silva Barbosa, T., Lin, Y.-H., Stone, E. A., Gold, A., and Surratt, J. D.: Chemical characterization of organosulfates in secondary organic aerosol derived from the photooxidation of alkanes, Atmos. Chem. Phys., 16, 11001–11018, https://doi.org/10.5194/acp-16-11001-2016, 2016.
Sagona, J. A., Dukett, J. E., Hawley, H. A., and Mazurek, M. A.: Sequential derivatization of polar organic compounds in cloud water using O-(2,3,4,5,6-pentafluorobenzyl)hydroxylamine hydrochloride, N,O-bis(trimethylsilyl)trifluoroacetamide, and gas-chromatography/mass spectrometry analysis, J. Chromatogr. A, 1362, 16–24, https://doi.org/10.1016/j.chroma.2014.08.001, 2014.
Schindelka, J., Iinuma, Y., Hoffmann, D., and Herrmann, H.: Sulfate radical-initiated formation of isoprene-derived organosulfates in atmospheric aerosols, Faraday Discuss., 165, 237–259, https://doi.org/10.1039/C3FD00042G, 2013.
Schwab, J. J., Casson, P., Brandt, R., Husain, L., Dutkewicz, V., Wolfe, D., Demerjian, K. L., Civerolo, K. L., Rattigan, O. V., Felton, H. D., and Dukett, J. E.: Atmospheric Chemistry Measurements at Whiteface Mountain, NY: Cloud Water Chemistry, Precipitation Chemistry, and Particulate Matter, Aerosol Air Qual. Res., 16, 841–854, https://doi.org/10.4209/aaqr.2015.05.0344, 2016a.
Schwab, J. J., Wolfe, D., Casson, P., Brandt, R., Demerjian, K. L., Husain, L., Dutkiewicz, V. A., Civerolo, K. L., and Rattigan, O. V.: Atmospheric Science Research at Whiteface Mountain, NY: Site Description and History, Aerosol Air Qual. Res., 16, 827–840, https://doi.org/10.4209/aaqr.2015.05.0343, 2016b.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.: NOAA's HYSPLIT Atmospheric Transport and Dispersion Modeling System, B. Am. Meteorol. Soc., 96, 2059–2077, https://doi.org/10.1175/BAMS-D-14-00110.1, 2015.
Stone, E. A., Yang, L., Yu, L. E., and Rupakheti, M.: Characterization of organosulfates in atmospheric aerosols at Four Asian locations, Atmos. Environ., 47, 323–329, https://doi.org/10.1016/j.atmosenv.2011.10.058, 2012.
Surratt, J. D., Gómez-González, Y., Chan, A. W. H., Vermeylen, R., Shahgholi, M., Kleindienst, T. E., Edney, E. O., Offenberg, J. H., Lewandowski, M., Jaoui, M., Maenhaut, W., Claeys, M., Flagan, R. C., and Seinfeld, J. H.: Organosulfate Formation in Biogenic Secondary Organic Aerosol, J. Phys. Chem. A, 112, 8345–8378, https://doi.org/10.1021/jp802310p, 2008.
Surratt, J. D., Chan, A. W. H., Eddingsaas, N. C., Chan, M., Loza, C. L., Kwan, A. J., Hersey, S. P., Flagan, R. C., Wennberg, P. O., and Seinfeld, J. H.: Reactive intermediates revealed in secondary organic aerosol formation from isoprene, P. Natl. Acad. Sci. USA, 107, 6640–6645, https://doi.org/10.1073/pnas.0911114107, 2010.
Tan, Y., Carlton, A. G., Seitzinger, S. P., and Turpin, B. J.: {SOA}from methylglyoxal in clouds and wet aerosols: Measurement and prediction of key products, Atmos. Environ., 44, 5218–5226, https://doi.org/10.1016/j.atmosenv.2010.08.045, 2010.
Tao, S., Lu, X., Levac, N., Bateman, A. P., Nguyen, T. B., Bones, D. L., Nizkorodov, S. A., Laskin, J., Laskin, A., and Yang, X.: Molecular Characterization of Organosulfates in Organic Aerosols from Shanghai and Los Angeles Urban Areas by Nanospray-Desorption Electrospray Ionization High-Resolution Mass Spectrometry, Environ. Sci. Technol., 48, 10993–11001, https://doi.org/10.1021/es5024674, 2014.
Tfaily, M. M., Podgorski, D. C., Corbett, J. E., Chanton, J. P., and Cooper, W. T.: Influence of acidification on the optical properties and molecular composition of dissolved organic matter, Anal. Chim. Acta, 706, 261–267, https://doi.org/10.1016/j.aca.2011.08.037, 2011.
Tfaily, M. M., Hodgkins, S., Podgorski, D. C., Chanton, J. P., and Cooper, W. T.: Comparison of dialysis and solid-phase extraction for isolation and concentration of dissolved organic matter prior to Fourier transform ion cyclotron resonance mass spectrometry, Anal. Bioanal. Chem., 404, 447–457, https://doi.org/10.1007/s00216-012-6120-6, 2012.
Tfaily, M. M., Hamdan, R., Corbett, J. E., Chanton, J. P., Glaser, P. H., and Cooper, W. T.: Investigating dissolved organic matter decomposition in northern peatlands using complimentary analytical techniques, Geochim. Cosmochim. Ac., 112, 116–129, https://doi.org/10.1016/j.gca.2013.03.002, 2013.
Tfaily, M. M., Chu, R. K., Tolić, N., Roscioli, K. M., Anderton, C. R., Paša-Tolić, L., Robinson, E. W., and Hess, N. J.: Advanced Solvent Based Methods for Molecular Characterization of Soil Organic Matter by High-Resolution Mass Spectrometry, Anal. Chem., 87, 5206–5215, https://doi.org/10.1021/acs.analchem.5b00116, 2015.
van Pinxteren, D., Fomba, K. W., Mertes, S., Müller, K., Spindler, G., Schneider, J., Lee, T., Collett, J. L., and Herrmann, H.: Cloud water composition during HCCT-2010: Scavenging efficiencies, solute concentrations, and droplet size dependence of inorganic ions and dissolved organic carbon, Atmos. Chem. Phys., 16, 3185–3205, https://doi.org/10.5194/acp-16-3185-2016, 2016.
Yasmeen, F., Vermeylen, R., Szmigielski, R., Iinuma, Y., Böge, O., Herrmann, H., Maenhaut, W., and Claeys, M.: Terpenylic acid and related compounds: precursors for dimers in secondary organic aerosol from the ozonolysis of α- and β-pinene, Atmos. Chem. Phys., 10, 9383–9392, https://doi.org/10.5194/acp-10-9383-2010, 2010.
Yu, L., Smith, J., Laskin, A., Anastasio, C., Laskin, J., and Zhang, Q.: Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical, Atmos. Chem. Phys., 14, 13801–13816, https://doi.org/10.5194/acp-14-13801-2014, 2014.
Yu, L., Smith, J., Laskin, A., George, K. M., Anastasio, C., Laskin, J., Dillner, A. M., and Zhang, Q.: Molecular transformations of phenolic SOA during photochemical aging in the aqueous phase: competition among oligomerization, functionalization, and fragmentation, Atmos. Chem. Phys., 16, 4511–4527, https://doi.org/10.5194/acp-16-4511-2016, 2016.
Zhang, X., Lin, Y.-H., Surratt, J. D., Zotter, P., Prévôt, A. S. H., and Weber, R. J.: Light-absorbing soluble organic aerosol in Los Angeles and Atlanta: A contrast in secondary organic aerosol, Geophys. Res. Lett., 38, L21810, https://doi.org/10.1029/2011GL049385, 2011.
Zhang, X., Lin, Y.-H., Surratt, J. D., and Weber, R. J.: Sources, Composition and Absorption Ångström Exponent of Light-absorbing Organic Components in Aerosol Extracts from the Los Angeles Basin, Environ. Sci. Technol., 47, 3685–3693, https://doi.org/10.1021/es305047b, 2013.
Zhao, J., Levitt, N. P., Zhang, R., and Chen, J.: Heterogeneous Reactions of Methylglyoxal in Acidic Media: Implications for Secondary Organic Aerosol Formation, Environ. Sci. Technol., 40, 7682–7687, https://doi.org/10.1021/es060610k, 2006.
Zhao, Y., Hallar, A. G., and Mazzoleni, L. R.: Atmospheric organic matter in clouds: exact masses and molecular formula identification using ultrahigh-resolution FT-ICR mass spectrometry, Atmos. Chem. Phys., 13, 12343–12362, https://doi.org/10.5194/acp-13-12343-2013, 2013.
Short summary
Reactions occur within water in both atmospheric particles and cloud droplets, yet little is known about the organic compounds in cloud water. In this work, cloud water samples were collected at Whiteface Mountain, New York, and analyzed using ultra-high-resolution mass spectrometry to investigate the molecular composition of the dissolved organic compounds. The results focus on changes in cloud water composition with air mass origin – influences of forest, urban, and wildfire emissions.
Reactions occur within water in both atmospheric particles and cloud droplets, yet little is...
Altmetrics
Final-revised paper
Preprint