Articles | Volume 17, issue 17
https://doi.org/10.5194/acp-17-10619-2017
https://doi.org/10.5194/acp-17-10619-2017
Research article
 | 
08 Sep 2017
Research article |  | 08 Sep 2017

Decoupling peroxyacetyl nitrate from ozone in Chinese outflows observed at Gosan Climate Observatory

Jihyun Han, Meehye Lee, Xiaona Shang, Gangwoong Lee, and Louisa K. Emmons

Related authors

Variations of surface ozone at Ieodo Ocean Research Station in the East China Sea and the influence of Asian outflows
J. Han, B. Shin, M. Lee, G. Hwang, J. Kim, J. Shim, G. Lee, and C. Shim
Atmos. Chem. Phys., 15, 12611–12621, https://doi.org/10.5194/acp-15-12611-2015,https://doi.org/10.5194/acp-15-12611-2015, 2015
Short summary
Sources and light absorption of water-soluble organic carbon aerosols in the outflow from northern China
E. N. Kirillova, A. Andersson, J. Han, M. Lee, and Ö. Gustafsson
Atmos. Chem. Phys., 14, 1413–1422, https://doi.org/10.5194/acp-14-1413-2014,https://doi.org/10.5194/acp-14-1413-2014, 2014

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
The impact of organic nitrates on summer ozone formation in Shanghai, China
Chunmeng Li, Xiaorui Chen, Haichao Wang, Tianyu Zhai, Xuefei Ma, Xinping Yang, Shiyi Chen, Min Zhou, Shengrong Lou, Xin Li, Limin Zeng, and Keding Lu
Atmos. Chem. Phys., 25, 3905–3918, https://doi.org/10.5194/acp-25-3905-2025,https://doi.org/10.5194/acp-25-3905-2025, 2025
Short summary
Differences in the key volatile organic compound species between their emitted and ambient concentrations in ozone formation
Xudong Zheng and Shaodong Xie
Atmos. Chem. Phys., 25, 3807–3820, https://doi.org/10.5194/acp-25-3807-2025,https://doi.org/10.5194/acp-25-3807-2025, 2025
Short summary
Mechanistic insights into chloroacetic acid production from atmospheric multiphase volatile organic compound–chlorine chemistry
Mingxue Li, Men Xia, Chunshui Lin, Yifan Jiang, Weihang Sun, Yurun Wang, Yingnan Zhang, Maoxia He, and Tao Wang
Atmos. Chem. Phys., 25, 3753–3764, https://doi.org/10.5194/acp-25-3753-2025,https://doi.org/10.5194/acp-25-3753-2025, 2025
Short summary
Accurate elucidation of oxidation under heavy ozone pollution: a full suite of radical measurements in the chemically complex atmosphere
Renzhi Hu, Guoxian Zhang, Haotian Cai, Jingyi Guo, Keding Lu, Xin Li, Shengrong Lou, Zhaofeng Tan, Changjin Hu, Pinhua Xie, and Wenqing Liu
Atmos. Chem. Phys., 25, 3011–3028, https://doi.org/10.5194/acp-25-3011-2025,https://doi.org/10.5194/acp-25-3011-2025, 2025
Short summary
Emissions of intermediate-volatility and semi-volatile organic compounds (I/SVOCs) from different cumulative-mileage diesel vehicles at various ambient temperatures
Shuwen Guo, Xuan Zheng, Xiao He, Lewei Zeng, Liqiang He, Xian Wu, Yifei Dai, Zihao Huang, Ting Chen, Shupei Xiao, Yan You, Sheng Xiang, Shaojun Zhang, Jingkun Jiang, and Ye Wu
Atmos. Chem. Phys., 25, 2695–2705, https://doi.org/10.5194/acp-25-2695-2025,https://doi.org/10.5194/acp-25-2695-2025, 2025
Short summary

Cited articles

Akimoto, H.: Global air quality and pollution, Science, 302, 1716–1719, https://doi.org/10.1126/science.1092666, 2003.
Aneja, V. P., Hartsell, B. E., Kim, D. S., and Grosjean, D.: Peroxyacetyl nitrate in Atlanta, Georgia: Comparison and analysis of ambient data for suburban and downtown locations, J. Air Waste Manage., 49, 177–184, https://doi.org/10.1080/10473289.1999.10463786, 1999.
Banta, R. M., Senff, C. J., White, A. B., Trainer, M., McNider, R. T., Valente, R. J., Mayor, S. D., Alvarez, R. J., Hardesty, R. M., Parrish, D., and Fehsenfeld, F. C.: Daytime buildup and nighttime transport of urban ozone in the boundary layer during a stagnation episode, J. Geophys. Res.-Atmos., 103, 22519–22544, https://doi.org/10.1029/98jd01020, 1998.
Beine, H. J., Jaffe, D. A., Herring, J. A., Kelley, J. A., Krognes, T., and Stordal, F.: High-latitude springtime photochemistry: 1. NOx, PAN and ozone relationships, J. Atmos. Chem., 27, 127–153, https://doi.org/10.1023/a:1005869900567, 1997.
Download
Short summary
Peroxyacetyl nitrate (PAN) was first measured at Gosan Climate Observatory during the fall of 2010, when PAN was better correlated with PM10 than with O3. In particular, PAN and O3 concentrations were greatly elevated in haze and the Beijing plume and much higher than those from model simulation. This study highlights the decoupling of PAN from O3 in Chinese outflows and suggests PAN as a potential indicator of overall aerosol formation in aged air masses impacted by biomass burning.
Share
Altmetrics
Final-revised paper
Preprint