Articles | Volume 16, issue 15
https://doi.org/10.5194/acp-16-9533-2016
https://doi.org/10.5194/acp-16-9533-2016
Research article
 | 
01 Aug 2016
Research article |  | 01 Aug 2016

Co-benefits of global and regional greenhouse gas mitigation for US air quality in 2050

Yuqiang Zhang, Jared H. Bowden, Zachariah Adelman, Vaishali Naik, Larry W. Horowitz, Steven J. Smith, and J. Jason West

Related authors

The impact of COVID-19 lockdown on surface air quality changes in major African countries
Zizhen Han, Yuqiang Zhang, Zhou Liu, Kexin Zhang, Zhuyi Wang, Bin Luo, Likun Xue, and Xinfeng Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2951,https://doi.org/10.5194/egusphere-2024-2951, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Spatial-temporal patterns of anthropogenic and biomass burning contributions on air pollution and mortality burden changes in India from 1995 to 2014
Bin Luo, Yuqiang Zhang, Tao Tang, Hongliang Zhang, Jianlin Hu, Jiangshan Mu, Wenxing Wang, and Likun Xue
EGUsphere, https://doi.org/10.5194/egusphere-2024-974,https://doi.org/10.5194/egusphere-2024-974, 2024
Short summary
Diagnosing ozone–NOx–VOC–aerosol sensitivity and uncovering causes of urban–nonurban discrepancies in Shandong, China, using transformer-based estimations
Chenliang Tao, Yanbo Peng, Qingzhu Zhang, Yuqiang Zhang, Bing Gong, Qiao Wang, and Wenxing Wang
Atmos. Chem. Phys., 24, 4177–4192, https://doi.org/10.5194/acp-24-4177-2024,https://doi.org/10.5194/acp-24-4177-2024, 2024
Short summary
The pathway of impacts of aerosol direct effects on secondary inorganic aerosol formation
Jiandong Wang, Jia Xing, Shuxiao Wang, Rohit Mathur, Jiaping Wang, Yuqiang Zhang, Chao Liu, Jonathan Pleim, Dian Ding, Xing Chang, Jingkun Jiang, Peng Zhao, Shovan Kumar Sahu, Yuzhi Jin, David C. Wong, and Jiming Hao
Atmos. Chem. Phys., 22, 5147–5156, https://doi.org/10.5194/acp-22-5147-2022,https://doi.org/10.5194/acp-22-5147-2022, 2022
Short summary
Surface ozone impacts on major crop production in China from 2010 to 2017
Dianyi Li, Drew Shindell, Dian Ding, Xiao Lu, Lin Zhang, and Yuqiang Zhang
Atmos. Chem. Phys., 22, 2625–2638, https://doi.org/10.5194/acp-22-2625-2022,https://doi.org/10.5194/acp-22-2625-2022, 2022
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
The atmospheric oxidizing capacity in China – Part 2: Sensitivity to emissions of primary pollutants
Jianing Dai, Guy P. Brasseur, Mihalis Vrekoussis, Maria Kanakidou, Kun Qu, Yijuan Zhang, Hongliang Zhang, and Tao Wang
Atmos. Chem. Phys., 24, 12943–12962, https://doi.org/10.5194/acp-24-12943-2024,https://doi.org/10.5194/acp-24-12943-2024, 2024
Short summary
Role of chemical production and depositional losses on formaldehyde in the Community Regional Atmospheric Chemistry Multiphase Mechanism (CRACMM)
T. Nash Skipper, Emma L. D'Ambro, Forwood C. Wiser, V. Faye McNeill, Rebecca H. Schwantes, Barron H. Henderson, Ivan R. Piletic, Colleen B. Baublitz, Jesse O. Bash, Andrew R. Whitehill, Lukas C. Valin, Asher P. Mouat, Jennifer Kaiser, Glenn M. Wolfe, Jason M. St. Clair, Thomas F. Hanisco, Alan Fried, Bryan K. Place, and Havala O.T. Pye
Atmos. Chem. Phys., 24, 12903–12924, https://doi.org/10.5194/acp-24-12903-2024,https://doi.org/10.5194/acp-24-12903-2024, 2024
Short summary
Review of source analyses of ambient volatile organic compounds considering reactive losses: methods of reducing loss effects, impacts of losses, and sources
Baoshuang Liu, Yao Gu, Yutong Wu, Qili Dai, Shaojie Song, Yinchang Feng, and Philip K. Hopke
Atmos. Chem. Phys., 24, 12861–12879, https://doi.org/10.5194/acp-24-12861-2024,https://doi.org/10.5194/acp-24-12861-2024, 2024
Short summary
Interpreting summertime hourly variation of NO2 columns with implications for geostationary satellite applications
Deepangsu Chatterjee, Randall V. Martin, Chi Li, Dandan Zhang, Haihui Zhu, Daven K. Henze, James H. Crawford, Ronald C. Cohen, Lok N. Lamsal, and Alexander M. Cede
Atmos. Chem. Phys., 24, 12687–12706, https://doi.org/10.5194/acp-24-12687-2024,https://doi.org/10.5194/acp-24-12687-2024, 2024
Short summary
An investigation into atmospheric nitrous acid (HONO) processes in South Korea
Kiyeon Kim, Kyung Man Han, Chul Han Song, Hyojun Lee, Ross Beardsley, Jinhyeok Yu, Greg Yarwood, Bonyoung Koo, Jasper Madalipay, Jung-Hun Woo, and Seogju Cho
Atmos. Chem. Phys., 24, 12575–12593, https://doi.org/10.5194/acp-24-12575-2024,https://doi.org/10.5194/acp-24-12575-2024, 2024
Short summary

Cited articles

Appel, K. W., Bhave, P. V., Gilliland, A. B., Sarwar, G., and Roselle, S. J.: Evaluation of the community multiscale air quality (CMAQ) model version 4.5: Sensitivities impacting model performance; Part II-particulate matter, Atmos. Environ., 42, 6057–6066, https://doi.org/10.1016/j.atmosenv.2008.03.036, 2008.
Appel, K. W., Roselle, S. J., Gilliam, R. C., and Pleim, J. E.: Sensitivity of the Community Multiscale Air Quality (CMAQ) model v4.7 results for the eastern United States to MM5 and WRF meteorological drivers, Geosci. Model Dev., 3, 169–188, https://doi.org/10.5194/gmd-3-169-2010, 2010.
Appel, K. W., Foley, K. M., Bash, J. O., Pinder, R. W., Dennis, R. L., Allen, D. J., and Pickering, K.: A multi-resolution assessment of the Community Multiscale Air Quality (CMAQ) model v4.7 wet deposition estimates for 2002-2006, Geosci. Model Dev., 4, 357–371, https://doi.org/10.5194/gmd-4-357-2011, 2011.
Appel, K. W., Pouliot, G. A., Simon, H., Sarwar, G., Pye, H. O. T., Napelenok, S. L., Akhtar, F., and Roselle, S. J.: Evaluation of dust and trace metal estimates from the Community Multiscale Air Quality (CMAQ) model version 5.0, Geosci. Model Dev., 6, 883–899, https://doi.org/10.5194/gmd-6-883-2013, 2013.
Avise, J., Chen, J., Lamb, B., Wiedinmyer, C., Guenther, A., Salathé, E., and Mass, C.: Attribution of projected changes in summertime US ozone and PM2.5 concentrations to global changes, Atmos. Chem. Phys., 9, 1111–1124, https://doi.org/10.5194/acp-9-1111-2009, 2009.
Download
Short summary
Reducing greenhouse gas (GHG) emissions can also improve air quality. We estimate the co-benefits of global GHG mitigation for US air quality in 2050 at fine resolution by downscaling from a previous global study. Foreign GHG mitigation under RCP4.5 contributes more to the US O3 reduction (76 % of the total) than domestic mitigation and contributes 26 % of the PM2.5 reduction. Therefore, the US gains significantly greater air quality co-benefits by coordinating GHG controls internationally.
Altmetrics
Final-revised paper
Preprint