Articles | Volume 16, issue 2
https://doi.org/10.5194/acp-16-437-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-16-437-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Fog composition at Baengnyeong Island in the eastern Yellow Sea: detecting markers of aqueous atmospheric oxidations
A. J. Boris
Department of Atmospheric Science, Colorado State University, Fort Collins, CO, 80521, USA
T. Lee
Department of Environmental Science, Hankuk University of Foreign Studies, Yongin, Republic of Korea
Department of Environmental Science, Hankuk University of Foreign Studies, Yongin, Republic of Korea
J. Choi
Climate and Air Quality Research Department, National Institute of Environmental Research, Incheon, Republic of Korea
S. J. Seo
Climate and Air Quality Research Department, National Institute of Environmental Research, Incheon, Republic of Korea
J. L. Collett Jr.
CORRESPONDING AUTHOR
Department of Atmospheric Science, Colorado State University, Fort Collins, CO, 80521, USA
Related authors
Yi Li, Tammy M. Thompson, Martin Van Damme, Xi Chen, Katherine B. Benedict, Yixing Shao, Derek Day, Alexandra Boris, Amy P. Sullivan, Jay Ham, Simon Whitburn, Lieven Clarisse, Pierre-François Coheur, and Jeffrey L. Collett Jr.
Atmos. Chem. Phys., 17, 6197–6213, https://doi.org/10.5194/acp-17-6197-2017, https://doi.org/10.5194/acp-17-6197-2017, 2017
Jong-Uk Park, Hyun-Jae Kim, Jin-Soo Park, Jinsoo Choi, Sang Seo Park, Kangho Bae, Jong-Jae Lee, Chang-Keun Song, Soojin Park, Kyuseok Shim, Yeonsoo Cho, and Sang-Woo Kim
Atmos. Meas. Tech., 17, 197–217, https://doi.org/10.5194/amt-17-197-2024, https://doi.org/10.5194/amt-17-197-2024, 2024
Short summary
Short summary
The high-spatial-resolution NO2 vertical column densities (VCDs) were measured from airborne observations using the low-cost hyperspectral imaging sensor (HIS) at three industrial areas in South Korea with the newly developed versatile NO2 VCD retrieval algorithm apt to be applied to the instruments with volatile optical and radiometric properties. The airborne HIS observations emphasized the intensifying satellite sub-grid variability in NO2 VCDs near the emission sources.
Lixu Jin, Wade Permar, Vanessa Selimovic, Damien Ketcherside, Robert J. Yokelson, Rebecca S. Hornbrook, Eric C. Apel, I-Ting Ku, Jeffrey L. Collett Jr., Amy P. Sullivan, Daniel A. Jaffe, Jeffrey R. Pierce, Alan Fried, Matthew M. Coggon, Georgios I. Gkatzelis, Carsten Warneke, Emily V. Fischer, and Lu Hu
Atmos. Chem. Phys., 23, 5969–5991, https://doi.org/10.5194/acp-23-5969-2023, https://doi.org/10.5194/acp-23-5969-2023, 2023
Short summary
Short summary
Air quality in the USA has been improving since 1970 due to anthropogenic emission reduction. Those gains have been partly offset by increased wildfire pollution in the western USA in the past 20 years. Still, we do not understand wildfire emissions well due to limited measurements. Here, we used a global transport model to evaluate and constrain current knowledge of wildfire emissions with recent observational constraints, showing the underestimation of wildfire emissions in the western USA.
Shixian Zhai, Daniel J. Jacob, Drew C. Pendergrass, Nadia K. Colombi, Viral Shah, Laura Hyesung Yang, Qiang Zhang, Shuxiao Wang, Hwajin Kim, Yele Sun, Jin-Soo Choi, Jin-Soo Park, Gan Luo, Fangqun Yu, Jung-Hun Woo, Younha Kim, Jack E. Dibb, Taehyoung Lee, Jin-Seok Han, Bruce E. Anderson, Ke Li, and Hong Liao
Atmos. Chem. Phys., 23, 4271–4281, https://doi.org/10.5194/acp-23-4271-2023, https://doi.org/10.5194/acp-23-4271-2023, 2023
Short summary
Short summary
Anthropogenic fugitive dust in East Asia not only causes severe coarse particulate matter air pollution problems, but also affects fine particulate nitrate. Due to emission control efforts, coarse PM decreased steadily. We find that the decrease of coarse PM is a major driver for a lack of decrease of fine particulate nitrate, as it allows more nitric acid to form fine particulate nitrate. The continuing decrease of coarse PM requires more stringent ammonia and nitrogen oxides emission controls.
Amy P. Sullivan, Rudra P. Pokhrel, Yingjie Shen, Shane M. Murphy, Darin W. Toohey, Teresa Campos, Jakob Lindaas, Emily V. Fischer, and Jeffrey L. Collett Jr.
Atmos. Chem. Phys., 22, 13389–13406, https://doi.org/10.5194/acp-22-13389-2022, https://doi.org/10.5194/acp-22-13389-2022, 2022
Short summary
Short summary
During the WE-CAN (Western Wildfire Experiment for Cloud Chemistry, Aerosol Absorption and Nitrogen) study, brown carbon (BrC) absorption was measured on the NSF/NCAR C-130 aircraft using a particle-into-liquid sampler and photoacoustic aerosol absorption spectrometer. Approximately 45 % of the BrC absorption in wildfires was observed to be due to water-soluble species. The ratio of BrC absorption to WSOC or ΔCO showed no clear dependence on fire dynamics or the time since emission over 9 h.
Andreas Tilgner, Thomas Schaefer, Becky Alexander, Mary Barth, Jeffrey L. Collett Jr., Kathleen M. Fahey, Athanasios Nenes, Havala O. T. Pye, Hartmut Herrmann, and V. Faye McNeill
Atmos. Chem. Phys., 21, 13483–13536, https://doi.org/10.5194/acp-21-13483-2021, https://doi.org/10.5194/acp-21-13483-2021, 2021
Short summary
Short summary
Feedbacks of acidity and atmospheric multiphase chemistry in deliquesced particles and clouds are crucial for the tropospheric composition, depositions, climate, and human health. This review synthesizes the current scientific knowledge on these feedbacks using both inorganic and organic aqueous-phase chemistry. Finally, this review outlines atmospheric implications and highlights the need for future investigations with respect to reducing emissions of key acid precursors in a changing world.
Chinmoy Sarkar, Gracie Wong, Anne Mielnik, Sanjeevi Nagalingam, Nicole Jenna Gross, Alex B. Guenther, Taehyoung Lee, Taehyun Park, Jihee Ban, Seokwon Kang, Jin-Soo Park, Joonyoung Ahn, Danbi Kim, Hyunjae Kim, Jinsoo Choi, Beom-Keun Seo, Jong-Ho Kim, Jeong-Ho Kim, Soo Bog Park, and Saewung Kim
Atmos. Chem. Phys., 21, 11505–11518, https://doi.org/10.5194/acp-21-11505-2021, https://doi.org/10.5194/acp-21-11505-2021, 2021
Short summary
Short summary
We present experimental proofs illustrating the emission of an unexplored volatile organic compound, tentatively assigned as ketene, in an industrial facility in South Korea. The emission of such a compound has rarely been reported, but our experimental data show that the emission rate is substantial. It potentially has tremendous implications for regional air quality and public health, as it is highly reactive and toxic at the same time.
Havala O. T. Pye, Athanasios Nenes, Becky Alexander, Andrew P. Ault, Mary C. Barth, Simon L. Clegg, Jeffrey L. Collett Jr., Kathleen M. Fahey, Christopher J. Hennigan, Hartmut Herrmann, Maria Kanakidou, James T. Kelly, I-Ting Ku, V. Faye McNeill, Nicole Riemer, Thomas Schaefer, Guoliang Shi, Andreas Tilgner, John T. Walker, Tao Wang, Rodney Weber, Jia Xing, Rahul A. Zaveri, and Andreas Zuend
Atmos. Chem. Phys., 20, 4809–4888, https://doi.org/10.5194/acp-20-4809-2020, https://doi.org/10.5194/acp-20-4809-2020, 2020
Short summary
Short summary
Acid rain is recognized for its impacts on human health and ecosystems, and programs to mitigate these effects have had implications for atmospheric acidity. Historical measurements indicate that cloud and fog droplet acidity has changed in recent decades in response to controls on emissions from human activity, while the limited trend data for suspended particles indicate acidity may be relatively constant. This review synthesizes knowledge on the acidity of atmospheric particles and clouds.
Katherine B. Benedict, Yong Zhou, Barkley C. Sive, Anthony J. Prenni, Kristi A. Gebhart, Emily V. Fischer, Ashley Evanoski-Cole, Amy P. Sullivan, Sara Callahan, Bret A. Schichtel, Huiting Mao, Ying Zhou, and Jeffrey L. Collett Jr.
Atmos. Chem. Phys., 19, 499–521, https://doi.org/10.5194/acp-19-499-2019, https://doi.org/10.5194/acp-19-499-2019, 2019
Short summary
Short summary
Rocky Mountain National Park experiences high ozone concentrations that can exceed the National Ambient Air Quality Standard. As part of the FRAPPÉ field campaign, a suite of volatile organic compounds were measured to characterize the sources of ozone precursors that contribute to high ozone in the park. These measurements indicate emissions from the Front Range in Colorado tied to oil and gas operations, urban areas, and the stratosphere contribute to episodes of elevated ozone.
Benjamin A. Nault, Pedro Campuzano-Jost, Douglas A. Day, Jason C. Schroder, Bruce Anderson, Andreas J. Beyersdorf, Donald R. Blake, William H. Brune, Yonghoon Choi, Chelsea A. Corr, Joost A. de Gouw, Jack Dibb, Joshua P. DiGangi, Glenn S. Diskin, Alan Fried, L. Gregory Huey, Michelle J. Kim, Christoph J. Knote, Kara D. Lamb, Taehyoung Lee, Taehyun Park, Sally E. Pusede, Eric Scheuer, Kenneth L. Thornhill, Jung-Hun Woo, and Jose L. Jimenez
Atmos. Chem. Phys., 18, 17769–17800, https://doi.org/10.5194/acp-18-17769-2018, https://doi.org/10.5194/acp-18-17769-2018, 2018
Short summary
Short summary
Aerosol impacts visibility and human health in large cities. Sources of aerosols are still highly uncertain, especially for cities surrounded by numerous other cities. We use observations collected during the Korea–United States Air Quality study to determine sources of organic aerosol (OA). We find that secondary OA (SOA) is rapidly produced over Seoul, South Korea, and that the sources of the SOA originate from short-lived hydrocarbons, which originate from local emissions.
Yangyang Zhang, Aohan Tang, Dandan Wang, Qingqing Wang, Katie Benedict, Lin Zhang, Duanyang Liu, Yi Li, Jeffrey L. Collett Jr., Yele Sun, and Xuejun Liu
Atmos. Chem. Phys., 18, 16385–16398, https://doi.org/10.5194/acp-18-16385-2018, https://doi.org/10.5194/acp-18-16385-2018, 2018
Short summary
Short summary
Our study is the first to continually monitor the vertical concentration profile of NH3 in urban Beijing. Weekly concentrations averaged 13.3 ± 4.8 μg m−3. The highest NH3 concentrations were always observed between 32 and 63 m, decreasing toward the surface and toward higher altitudes. Our results demonstrate a NH3 rich atmosphere in urban Beijing, from the ground to at least 320 m. Regional transport from the south (intensive agricultural regions) contributed high NH3 concentrations in Beijing.
Ewan Crosbie, Matthew D. Brown, Michael Shook, Luke Ziemba, Richard H. Moore, Taylor Shingler, Edward Winstead, K. Lee Thornhill, Claire Robinson, Alexander B. MacDonald, Hossein Dadashazar, Armin Sorooshian, Andreas Beyersdorf, Alexis Eugene, Jeffrey Collett Jr., Derek Straub, and Bruce Anderson
Atmos. Meas. Tech., 11, 5025–5048, https://doi.org/10.5194/amt-11-5025-2018, https://doi.org/10.5194/amt-11-5025-2018, 2018
Short summary
Short summary
A new aircraft-mounted probe for collecting samples of cloud water has been designed, fabricated, and extensively tested. Cloud drop composition provides valuable insight into atmospheric processes, but separating liquid samples from the airstream in a controlled way at flight speeds has proven difficult. The features of the design have been analysed with detailed numerical flow simulations and the new probe has demonstrated improved efficiency and performance through extensive flight testing.
Wen Xu, Lei Liu, Miaomiao Cheng, Yuanhong Zhao, Lin Zhang, Yuepeng Pan, Xiuming Zhang, Baojing Gu, Yi Li, Xiuying Zhang, Jianlin Shen, Li Lu, Xiaosheng Luo, Yu Zhao, Zhaozhong Feng, Jeffrey L. Collett Jr., Fusuo Zhang, and Xuejun Liu
Atmos. Chem. Phys., 18, 10931–10954, https://doi.org/10.5194/acp-18-10931-2018, https://doi.org/10.5194/acp-18-10931-2018, 2018
Short summary
Short summary
Our main results demonstrate that atmospheric Nr pollution in eastern China is more serious in the northern region than in the southern region. Any effects of current emission controls are not yet apparent in Nr pollution. NH3 emissions from fertilizer use were the largest contributor (36 %) to total inorganic Nr deposition. Our results provide useful information for policy-makers that mitigation of NH3 emissions should be a priority to tackle serious N deposition.
Eunha Kang, Meehye Lee, William H. Brune, Taehyoung Lee, Taehyun Park, Joonyoung Ahn, and Xiaona Shang
Atmos. Chem. Phys., 18, 6661–6677, https://doi.org/10.5194/acp-18-6661-2018, https://doi.org/10.5194/acp-18-6661-2018, 2018
Short summary
Short summary
A potential aerosol mass (PAM) reactor expedites slow atmospheric oxidation reactions and enables the observation of chemical aging processes and the determination of the aerosol-forming power of an air mass. A PAM reactor was deployed at Baengnyeong Island in the Yellow Sea. Experimental results confirm the key role of SO2 in generating secondary aerosols in northeast Asia, and the contribution of organics to secondary aerosols is more variable during transport in the atmosphere.
Yi Li, Tammy M. Thompson, Martin Van Damme, Xi Chen, Katherine B. Benedict, Yixing Shao, Derek Day, Alexandra Boris, Amy P. Sullivan, Jay Ham, Simon Whitburn, Lieven Clarisse, Pierre-François Coheur, and Jeffrey L. Collett Jr.
Atmos. Chem. Phys., 17, 6197–6213, https://doi.org/10.5194/acp-17-6197-2017, https://doi.org/10.5194/acp-17-6197-2017, 2017
Wen Xu, Wei Song, Yangyang Zhang, Xuejun Liu, Lin Zhang, Yuanhong Zhao, Duanyang Liu, Aohan Tang, Daowei Yang, Dandan Wang, Zhang Wen, Yuepeng Pan, David Fowler, Jeffrey L. Collett Jr., Jan Willem Erisman, Keith Goulding, Yi Li, and Fusuo Zhang
Atmos. Chem. Phys., 17, 31–46, https://doi.org/10.5194/acp-17-31-2017, https://doi.org/10.5194/acp-17-31-2017, 2017
Short summary
Short summary
This paper evaluates the effectiveness of emission control measures implemented in Beijing during the Parade Blue period by integrating our own results, official-released data and modeling data. We demonstrate that emission control measures make a major contribution to air quality improvement in Beijing and surrounding regions. We conclude a joint local and regional control of secondary aerosol precursors to be key to curbing air pollution in Beijing.
Amy P. Sullivan, Natasha Hodas, Barbara J. Turpin, Kate Skog, Frank N. Keutsch, Stefania Gilardoni, Marco Paglione, Matteo Rinaldi, Stefano Decesari, Maria Cristina Facchini, Laurent Poulain, Hartmut Herrmann, Alfred Wiedensohler, Eiko Nemitz, Marsailidh M. Twigg, and Jeffrey L. Collett Jr.
Atmos. Chem. Phys., 16, 8095–8108, https://doi.org/10.5194/acp-16-8095-2016, https://doi.org/10.5194/acp-16-8095-2016, 2016
Short summary
Short summary
This paper presents the results from our measurements and approach for the investigation of aqueous secondary organic aerosol (aqSOA) formation in the ambient atmosphere. When local aqSOA formation was observed, a correlation of water-soluble organic carbon with organic aerosol, aerosol liquid water, relative humidity, and aerosol nitrate was found. Key factors of local aqSOA production include air mass stagnation, formation of local nitrate overnight, and significant amounts of ammonia.
Gregory R. Wentworth, Jennifer G. Murphy, Katherine B. Benedict, Evelyn J. Bangs, and Jeffrey L. Collett Jr.
Atmos. Chem. Phys., 16, 7435–7449, https://doi.org/10.5194/acp-16-7435-2016, https://doi.org/10.5194/acp-16-7435-2016, 2016
Short summary
Short summary
The influence of dew on atmospheric composition is poorly understood. Results from this work show that dew can uptake a significant fraction (roughly two-thirds) of boundary layer gas-phase ammonia. Furthermore, an average of 95 % of the ammonia sequestered in dew is released back to the atmosphere the following morning during dew evaporation. Dew has the ability to affect air quality and N-deposition and should be considered when modelling ammonia concentrations, as well as other soluble gases.
Yunhua Chang, Zhong Zou, Congrui Deng, Kan Huang, Jeffrey L. Collett, Jing Lin, and Guoshun Zhuang
Atmos. Chem. Phys., 16, 3577–3594, https://doi.org/10.5194/acp-16-3577-2016, https://doi.org/10.5194/acp-16-3577-2016, 2016
Short summary
Short summary
This study linked a long-term and near real-time measurement of NH3 at one of China’s flagship supersites with a vehicle source-specific campaign performed inside and outside of a major freeway tunnel in Shanghai. Our results clearly show that vehicle emissions associated with combustion are an important NH3 source in Shanghai urban areas and may have potential implications for PM2.5 pollution in the urban atmosphere.
Dominik van Pinxteren, Khanneh Wadinga Fomba, Stephan Mertes, Konrad Müller, Gerald Spindler, Johannes Schneider, Taehyoung Lee, Jeffrey L. Collett, and Hartmut Herrmann
Atmos. Chem. Phys., 16, 3185–3205, https://doi.org/10.5194/acp-16-3185-2016, https://doi.org/10.5194/acp-16-3185-2016, 2016
A. Hecobian, A. Evanoski-Cole, A. Eiguren-Fernandez, A. P. Sullivan, G. S. Lewis, S. V. Hering, and J. L. Collett Jr.
Atmos. Meas. Tech., 9, 525–533, https://doi.org/10.5194/amt-9-525-2016, https://doi.org/10.5194/amt-9-525-2016, 2016
Short summary
Short summary
A newly developed instrument, the Sequential Spot Sampler (S3) was evaluated in the laboratory and field for the hourly measurement of ambient PM2.5 nitrate and sulfate concentrations. The results from the comparison of two S3s and the S3s with other well-established methods show that this instrument is suitable for deployment; provides high-resolution aerosol nitrate and sulfate concentrations while requiring minimal operator involvement and low power input; and has a small footprint.
A. J. Prenni, D. E. Day, A. R. Evanoski-Cole, B. C. Sive, A. Hecobian, Y. Zhou, K. A. Gebhart, J. L. Hand, A. P. Sullivan, Y. Li, M. I. Schurman, Y. Desyaterik, W. C. Malm, J. L. Collett Jr., and B. A. Schichtel
Atmos. Chem. Phys., 16, 1401–1416, https://doi.org/10.5194/acp-16-1401-2016, https://doi.org/10.5194/acp-16-1401-2016, 2016
Short summary
Short summary
The Bakken formation contains billions of barrels of oil and gas trapped in rock and shale. Horizontal drilling and hydraulic fracturing methods have allowed for extraction of these resources, leading to exponential growth of oil production in the region. Along with this development has come an increase in associated emissions to the atmosphere. This paper describes a field study (BAQS) aimed at better understanding the impacts of these emissions on air quality in nearby federal lands.
W. Xu, X. S. Luo, Y. P. Pan, L. Zhang, A. H. Tang, J. L. Shen, Y. Zhang, K. H. Li, Q. H. Wu, D. W. Yang, Y. Y. Zhang, J. Xue, W. Q. Li, Q. Q. Li, L. Tang, S. H. Lu, T. Liang, Y. A. Tong, P. Liu, Q. Zhang, Z. Q. Xiong, X. J. Shi, L. H. Wu, W. Q. Shi, K. Tian, X. H. Zhong, K. Shi, Q. Y. Tang, L. J. Zhang, J. L. Huang, C. E. He, F. H. Kuang, B. Zhu, H. Liu, X. Jin, Y. J. Xin, X. K. Shi, E. Z. Du, A. J. Dore, S. Tang, J. L. Collett Jr., K. Goulding, Y. X. Sun, J. Ren, F. S. Zhang, and X. J. Liu
Atmos. Chem. Phys., 15, 12345–12360, https://doi.org/10.5194/acp-15-12345-2015, https://doi.org/10.5194/acp-15-12345-2015, 2015
Short summary
Short summary
The annual average concentrations (1.3-47.0µg N m-3) and dry plus wet/bulk deposition fluxes (2.9-83.3kg N ha-1 yr-1) of inorganic Nr species ranked by land use as urban > rural > background sites and by regions as north China > southeast China > southwest China > northeast China > northwest China > Tibetan Plateau, reflecting the impact of anthropogenic Nr emission. Average dry and wet/bulk N deposition fluxes were 20.6 ± 11.2 and 19.3 ± 9.2kg kg N ha-1 yr-1 across China, respectively.
C. G. Nolte, K. W. Appel, J. T. Kelly, P. V. Bhave, K. M. Fahey, J. L. Collett Jr., L. Zhang, and J. O. Young
Geosci. Model Dev., 8, 2877–2892, https://doi.org/10.5194/gmd-8-2877-2015, https://doi.org/10.5194/gmd-8-2877-2015, 2015
Short summary
Short summary
This study is the most comprehensive evaluation of CMAQ inorganic
aerosol size-composition distributions conducted to date. We compare two
methods of inferring PM2.5 concentrations from the model: (1) based on
the sum of the masses in the fine aerosol modes, as is most commonly
done in CMAQ model evaluation; and (2) computed using the simulated size
distributions. Differences are generally less than 1 microgram/m3, and
are largest over the eastern USA during the summer.
K. W. Fomba, D. van Pinxteren, K. Müller, Y. Iinuma, T. Lee, J. L. Collett Jr., and H. Herrmann
Atmos. Chem. Phys., 15, 8751–8765, https://doi.org/10.5194/acp-15-8751-2015, https://doi.org/10.5194/acp-15-8751-2015, 2015
A. A. May, T. Lee, G. R. McMeeking, S. Akagi, A. P. Sullivan, S. Urbanski, R. J. Yokelson, and S. M. Kreidenweis
Atmos. Chem. Phys., 15, 6323–6335, https://doi.org/10.5194/acp-15-6323-2015, https://doi.org/10.5194/acp-15-6323-2015, 2015
Short summary
Short summary
Smoke plumes from some prescribed fires in the southeastern United States were sampled via aircraft to observe changes in organic aerosol (OA) with atmospheric transport. These plumes underwent rapid mixing, and, hence, substantial dilution with background air occurred. Dilution-driven evaporation appears to be the primary driver of OA transformations within the sampled plumes rather than photochemistry.
M. I. Schurman, T. Lee, Y. Sun, B. A. Schichtel, S. M. Kreidenweis, and J. L. Collett Jr.
Atmos. Chem. Phys., 15, 737–752, https://doi.org/10.5194/acp-15-737-2015, https://doi.org/10.5194/acp-15-737-2015, 2015
Short summary
Short summary
Atmospheric particles can contribute to environmental degradation. An aerosol mass spectrometer was used with positive matrix factorization to explore submicron particle sources in Rocky Mountain National Park, finding that ammonium (3.9%), nitrate (4.3%), sulfate (16.6%), and two types of oxidized organic aerosol (66.9% total) are transported on upslope winds from the urban Front Range, while local campfires contribute 8.4% of mass.
A. P. Sullivan, A. A. May, T. Lee, G. R. McMeeking, S. M. Kreidenweis, S. K. Akagi, R. J. Yokelson, S. P. Urbanski, and J. L. Collett Jr.
Atmos. Chem. Phys., 14, 10535–10545, https://doi.org/10.5194/acp-14-10535-2014, https://doi.org/10.5194/acp-14-10535-2014, 2014
Related subject area
Subject: Clouds and Precipitation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Molecular composition of clouds: a comparison between samples collected at tropical (Réunion Island, France) and mid-north (Puy de Dôme, France) latitudes
Response patterns of moss to atmospheric nitrogen deposition and nitrogen saturation in an urban–agro–forest transition
Influences of sources and weather dynamics on atmospheric deposition of Se species and other trace elements
Revealing the chemical characteristics of Arctic low-level cloud residuals – in situ observations from a mountain site
Long-term monitoring of cloud water chemistry at Whiteface Mountain: the emergence of a new chemical regime
Measurement report: Closure analysis of aerosol–cloud composition in tropical maritime warm convection
Free amino acid quantification in cloud water at the Puy de Dôme station (France)
Wet deposition in the remote western and central Mediterranean as a source of trace metals to surface seawater
Insights into tropical cloud chemistry in Réunion (Indian Ocean): results from the BIO-MAÏDO campaign
Measurement report: Molecular characteristics of cloud water in southern China and insights into aqueous-phase processes from Fourier transform ion cyclotron resonance mass spectrometry
Total organic carbon and the contribution from speciated organics in cloud water: airborne data analysis from the CAMP2Ex field campaign
A link between the ice nucleation activity and the biogeochemistry of seawater
Impact of convection on the upper-tropospheric composition (water vapor and ozone) over a subtropical site (Réunion island; 21.1° S, 55.5° E) in the Indian Ocean
Chemical characteristics of cloud water and the impacts on aerosol properties at a subtropical mountain site in Hong Kong SAR
Diurnal cycle of iodine, bromine, and mercury concentrations in Svalbard surface snow
Wet deposition of inorganic ions in 320 cities across China: spatio-temporal variation, source apportionment, and dominant factors
Deposition of ionic species and black carbon to the Arctic snowpack: combining snow pit observations with modeling
Mercury and trace metal wet deposition across five stations in Alaska: controlling factors, spatial patterns, and source regions
Drivers of atmospheric deposition of polycyclic aromatic hydrocarbons at European high-altitude sites
Cloud scavenging of anthropogenic refractory particles at a mountain site in North China
Composition of ice particle residuals in mixed-phase clouds at Jungfraujoch (Switzerland): enrichment and depletion of particle groups relative to total aerosol
Snow scavenging and phase partitioning of nitrated and oxygenated aromatic hydrocarbons in polluted and remote environments in central Europe and the European Arctic
Continuous non-marine inputs of per- and polyfluoroalkyl substances to the High Arctic: a multi-decadal temporal record
Biogenic, urban, and wildfire influences on the molecular composition of dissolved organic compounds in cloud water
The single-particle mixing state and cloud scavenging of black carbon: a case study at a high-altitude mountain site in southern China
Composition, size and cloud condensation nuclei activity of biomass burning aerosol from northern Australian savannah fires
Five-year records of mercury wet deposition flux at GMOS sites in the Northern and Southern hemispheres
Atmospheric wet and litterfall mercury deposition at urban and rural sites in China
Hydroxyl radical in/on illuminated polar snow: formation rates, lifetimes, and steady-state concentrations
Cloud water composition during HCCT-2010: Scavenging efficiencies, solute concentrations, and droplet size dependence of inorganic ions and dissolved organic carbon
Wet deposition of atmospheric inorganic nitrogen at five remote sites in the Tibetan Plateau
Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China
Natural or anthropogenic? On the origin of atmospheric sulfate deposition in the Andes of southeastern Ecuador
Temporal variations in rainwater methanol
Comprehensive assessment of meteorological conditions and airflow connectivity during HCCT-2010
Influence of cloud processing on CCN activation behaviour in the Thuringian Forest, Germany during HCCT-2010
Classification of clouds sampled at the puy de Dôme (France) based on 10 yr of monitoring of their physicochemical properties
Preliminary signs of the initiation of deep convection by GNSS
Dissolved organic carbon (DOC) and select aldehydes in cloud and fog water: the role of the aqueous phase in impacting trace gas budgets
Insights into dissolved organic matter complexity in rainwater from continental and coastal storms by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry
Dynamics of the chemical composition of rainwater throughout Hurricane Irene
Spatial and temporal distributions of total and methyl mercury in precipitation in core urban areas, Chongqing, China
Wet and dry deposition of atmospheric nitrogen at ten sites in Northern China
Spatial distribution of mercury deposition fluxes in Wanshan Hg mining area, Guizhou province, China
Molecular characterization of water soluble organic nitrogen in marine rainwater by ultra-high resolution electrospray ionization mass spectrometry
Five-year record of atmospheric precipitation chemistry in urban Beijing, China
Mercury deposition in Southern New Hampshire, 2006–2009
Chemical composition of rainwater at Maldives Climate Observatory at Hanimaadhoo (MCOH)
Chemistry of rain events in West Africa: evidence of dust and biogenic influence in convective systems
Atmospheric deposition of mercury and major ions to the Pensacola (Florida) watershed: spatial, seasonal, and inter-annual variability
Lucas Pailler, Laurent Deguillaume, Hélène Lavanant, Isabelle Schmitz, Marie Hubert, Edith Nicol, Mickaël Ribeiro, Jean-Marc Pichon, Mickaël Vaïtilingom, Pamela Dominutti, Frédéric Burnet, Pierre Tulet, Maud Leriche, and Angelica Bianco
Atmos. Chem. Phys., 24, 5567–5584, https://doi.org/10.5194/acp-24-5567-2024, https://doi.org/10.5194/acp-24-5567-2024, 2024
Short summary
Short summary
The composition of dissolved organic matter of cloud water has been investigated through non-targeted high-resolution mass spectrometry on only a few samples collected in the Northern Hemisphere. In this work, the chemical composition of samples collected at Réunion Island (SH) is investigated and compared to samples collected at Puy de Dôme (NH). Sampling, analysis and data treatment with the same methodology produced a unique dataset for investigating the molecular composition of clouds.
Ouping Deng, Yuanyuan Chen, Jingze Zhao, Xi Li, Wei Zhou, Ting Lan, Dinghua Ou, Yanyan Zhang, Jiang Liu, Ling Luo, Yueqiang He, Hanqing Yang, and Rong Huang
Atmos. Chem. Phys., 24, 5303–5314, https://doi.org/10.5194/acp-24-5303-2024, https://doi.org/10.5194/acp-24-5303-2024, 2024
Short summary
Short summary
Estimating atmospheric nitrogen (N) deposition is critical to understanding the biogeochemical N cycle. Moss has long been considered as a bio-indicator for N deposition due to its accumulation of N from the atmosphere. Here, we improved the method for monitoring atmospheric N deposition using mosses. The sampling frequency and time were optimized. This study contributes to improving the accuracy of the model of quantifying N deposition by using mosses.
Esther S. Breuninger, Julie Tolu, Iris Thurnherr, Franziska Aemisegger, Aryeh Feinberg, Sylvain Bouchet, Jeroen E. Sonke, Véronique Pont, Heini Wernli, and Lenny H. E. Winkel
Atmos. Chem. Phys., 24, 2491–2510, https://doi.org/10.5194/acp-24-2491-2024, https://doi.org/10.5194/acp-24-2491-2024, 2024
Short summary
Short summary
Atmospheric deposition is an important source of selenium (Se) and other health-relevant trace elements in surface environments. We found that the variability in elemental concentrations in atmospheric deposition reflects not only changes in emission sources but also weather conditions during atmospheric removal. Depending on the sources and if Se is derived more locally or from further away, the Se forms can be different, affecting the bioavailability of Se atmospherically supplied to soils.
Yvette Gramlich, Karolina Siegel, Sophie L. Haslett, Gabriel Freitas, Radovan Krejci, Paul Zieger, and Claudia Mohr
Atmos. Chem. Phys., 23, 6813–6834, https://doi.org/10.5194/acp-23-6813-2023, https://doi.org/10.5194/acp-23-6813-2023, 2023
Short summary
Short summary
In this study, we investigate the chemical composition of aerosol particles forming clouds in the Arctic. During year-long observations at a mountain site on Svalbard, we find a large contribution of naturally derived aerosol particles in the fraction forming clouds in the summer. Our observations indicate that most aerosol particles can serve as cloud seeds in this remote environment.
Christopher E. Lawrence, Paul Casson, Richard Brandt, James J. Schwab, James E. Dukett, Phil Snyder, Elizabeth Yerger, Daniel Kelting, Trevor C. VandenBoer, and Sara Lance
Atmos. Chem. Phys., 23, 1619–1639, https://doi.org/10.5194/acp-23-1619-2023, https://doi.org/10.5194/acp-23-1619-2023, 2023
Short summary
Short summary
Atmospheric aqueous chemistry can have profound effects on our environment, as illustrated by historical data from Whiteface Mountain (WFM) that were critical for uncovering the process of acid rain. The current study updates the long-term trends in cloud water composition at WFM for the period 1994 to 2021. We highlight the emergence of a new chemical regime at WFM dominated by organics and ammonium, quite different from the highly acidic regime observed in the past but not necessarily
clean.
Ewan Crosbie, Luke D. Ziemba, Michael A. Shook, Claire E. Robinson, Edward L. Winstead, K. Lee Thornhill, Rachel A. Braun, Alexander B. MacDonald, Connor Stahl, Armin Sorooshian, Susan C. van den Heever, Joshua P. DiGangi, Glenn S. Diskin, Sarah Woods, Paola Bañaga, Matthew D. Brown, Francesca Gallo, Miguel Ricardo A. Hilario, Carolyn E. Jordan, Gabrielle R. Leung, Richard H. Moore, Kevin J. Sanchez, Taylor J. Shingler, and Elizabeth B. Wiggins
Atmos. Chem. Phys., 22, 13269–13302, https://doi.org/10.5194/acp-22-13269-2022, https://doi.org/10.5194/acp-22-13269-2022, 2022
Short summary
Short summary
The linkage between cloud droplet and aerosol particle chemical composition was analyzed using samples collected in a polluted tropical marine environment. Variations in the droplet composition were related to physical and dynamical processes in clouds to assess their relative significance across three cases that spanned a range of rainfall amounts. In spite of the pollution, sea salt still remained a major contributor to the droplet composition and was preferentially enhanced in rainwater.
Pascal Renard, Maxence Brissy, Florent Rossi, Martin Leremboure, Saly Jaber, Jean-Luc Baray, Angelica Bianco, Anne-Marie Delort, and Laurent Deguillaume
Atmos. Chem. Phys., 22, 2467–2486, https://doi.org/10.5194/acp-22-2467-2022, https://doi.org/10.5194/acp-22-2467-2022, 2022
Short summary
Short summary
Amino acids (AAs) have been quantified in cloud water collected at the Puy de Dôme station (France). Concentrations and speciation of those compounds are highly variable among the samples. Sources from the sea surface and atmospheric transformations during the air mass transport, mainly in the free troposphere, have been shown to modulate AA levels in cloud water.
Karine Desboeufs, Franck Fu, Matthieu Bressac, Antonio Tovar-Sánchez, Sylvain Triquet, Jean-François Doussin, Chiara Giorio, Patrick Chazette, Julie Disnaquet, Anaïs Feron, Paola Formenti, Franck Maisonneuve, Araceli Rodríguez-Romero, Pascal Zapf, François Dulac, and Cécile Guieu
Atmos. Chem. Phys., 22, 2309–2332, https://doi.org/10.5194/acp-22-2309-2022, https://doi.org/10.5194/acp-22-2309-2022, 2022
Short summary
Short summary
This article reports the first concurrent sampling of wet deposition samples and surface seawater and was performed during the PEACETIME cruise in the remote Mediterranean (May–June 2017). Through the chemical composition of trace metals (TMs) in these samples, it emphasizes the decrease of atmospheric metal pollution in this area during the last few decades and the critical role of wet deposition as source of TMs for Mediterranean surface seawater, especially for intense dust deposition events.
Pamela A. Dominutti, Pascal Renard, Mickaël Vaïtilingom, Angelica Bianco, Jean-Luc Baray, Agnès Borbon, Thierry Bourianne, Frédéric Burnet, Aurélie Colomb, Anne-Marie Delort, Valentin Duflot, Stephan Houdier, Jean-Luc Jaffrezo, Muriel Joly, Martin Leremboure, Jean-Marc Metzger, Jean-Marc Pichon, Mickaël Ribeiro, Manon Rocco, Pierre Tulet, Anthony Vella, Maud Leriche, and Laurent Deguillaume
Atmos. Chem. Phys., 22, 505–533, https://doi.org/10.5194/acp-22-505-2022, https://doi.org/10.5194/acp-22-505-2022, 2022
Short summary
Short summary
We present here the results obtained during an intensive field campaign conducted in March to April 2019 in Reunion. Our study integrates a comprehensive chemical and microphysical characterization of cloud water. Our investigations reveal that air mass history and cloud microphysical properties do not fully explain the variability observed in their chemical composition. This highlights the complexity of emission sources, multiphasic exchanges, and transformations in clouds.
Wei Sun, Yuzhen Fu, Guohua Zhang, Yuxiang Yang, Feng Jiang, Xiufeng Lian, Bin Jiang, Yuhong Liao, Xinhui Bi, Duohong Chen, Jianmin Chen, Xinming Wang, Jie Ou, Ping'an Peng, and Guoying Sheng
Atmos. Chem. Phys., 21, 16631–16644, https://doi.org/10.5194/acp-21-16631-2021, https://doi.org/10.5194/acp-21-16631-2021, 2021
Short summary
Short summary
We sampled cloud water at a remote mountain site and investigated the molecular characteristics. CHON and CHO are dominant in cloud water. No statistical difference in the oxidation state is observed between cloud water and interstitial PM2.5. Most of the formulas are aliphatic and olefinic species. CHON, with aromatic structures and organosulfates, are abundant, especially in nighttime samples. The in-cloud and multi-phase dark reactions likely contribute significantly.
Connor Stahl, Ewan Crosbie, Paola Angela Bañaga, Grace Betito, Rachel A. Braun, Zenn Marie Cainglet, Maria Obiminda Cambaliza, Melliza Templonuevo Cruz, Julie Mae Dado, Miguel Ricardo A. Hilario, Gabrielle Frances Leung, Alexander B. MacDonald, Angela Monina Magnaye, Jeffrey Reid, Claire Robinson, Michael A. Shook, James Bernard Simpas, Shane Marie Visaga, Edward Winstead, Luke Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 21, 14109–14129, https://doi.org/10.5194/acp-21-14109-2021, https://doi.org/10.5194/acp-21-14109-2021, 2021
Short summary
Short summary
A total of 159 cloud water samples were collected and measured for total organic carbon (TOC) during CAMP2Ex. On average, 30 % of TOC was speciated based on carboxylic/sulfonic acids and dimethylamine. Results provide a critical constraint on cloud composition and vertical profiles of TOC and organic species ranging from ~250 m to ~ 7 km and representing a variety of cloud types and air mass source influences such as biomass burning, marine emissions, anthropogenic activity, and dust.
Martin J. Wolf, Megan Goodell, Eric Dong, Lilian A. Dove, Cuiqi Zhang, Lesly J. Franco, Chuanyang Shen, Emma G. Rutkowski, Domenic N. Narducci, Susan Mullen, Andrew R. Babbin, and Daniel J. Cziczo
Atmos. Chem. Phys., 20, 15341–15356, https://doi.org/10.5194/acp-20-15341-2020, https://doi.org/10.5194/acp-20-15341-2020, 2020
Short summary
Short summary
Sea spray is the largest aerosol source on Earth. These aerosol particles can impact climate by inducing ice formation in clouds. The role that ocean biology plays in determining the composition and ice nucleation abilities of sea spray aerosol is unclarified. In this study, we demonstrate that atomized seawater from highly productive ocean regions is more effective at nucleating ice than seawater from lower-productivity regions.
Damien Héron, Stéphanie Evan, Jérôme Brioude, Karen Rosenlof, Françoise Posny, Jean-Marc Metzger, and Jean-Pierre Cammas
Atmos. Chem. Phys., 20, 8611–8626, https://doi.org/10.5194/acp-20-8611-2020, https://doi.org/10.5194/acp-20-8611-2020, 2020
Short summary
Short summary
Using a statistical method, summer variations (between 2013 and 2016) of ozone and water vapor are characterized in the upper troposphere above Réunion island (21° S, 55° E). It suggests a convective influence between 9 and 13 km. As deep convection is rarely observed near Réunion island, this study provides new insights on the long-range impact of deep convective outflow from the Intertropical Convergence Zone (ITCZ) on the upper troposphere over a subtropical site.
Tao Li, Zhe Wang, Yaru Wang, Chen Wu, Yiheng Liang, Men Xia, Chuan Yu, Hui Yun, Weihao Wang, Yan Wang, Jia Guo, Hartmut Herrmann, and Tao Wang
Atmos. Chem. Phys., 20, 391–407, https://doi.org/10.5194/acp-20-391-2020, https://doi.org/10.5194/acp-20-391-2020, 2020
Short summary
Short summary
This work presents a field study of cloud water chemistry and interactions of cloud, gas, and aerosols in the polluted coastal boundary layer in southern China. Substantial dissolved organic matter in the acidic cloud water was observed, and the gas- and aqueous-phase partitioning of carbonyl compounds was investigated. The results demonstrated the significant role of cloud processing in altering aerosol properties, especially in producing aqueous organics and droplet-mode aerosols.
Andrea Spolaor, Elena Barbaro, David Cappelletti, Clara Turetta, Mauro Mazzola, Fabio Giardi, Mats P. Björkman, Federico Lucchetta, Federico Dallo, Katrine Aspmo Pfaffhuber, Hélène Angot, Aurelien Dommergue, Marion Maturilli, Alfonso Saiz-Lopez, Carlo Barbante, and Warren R. L. Cairns
Atmos. Chem. Phys., 19, 13325–13339, https://doi.org/10.5194/acp-19-13325-2019, https://doi.org/10.5194/acp-19-13325-2019, 2019
Short summary
Short summary
The main aims of the study are to (a) detect whether mercury in the surface snow undergoes a daily cycle as determined in the atmosphere, (b) compare the mercury concentration in surface snow with the concentration in the atmosphere, (c) evaluate the effect of snow depositions, (d) detect whether iodine and bromine in the surface snow undergo a daily cycle, and (e) evaluate the role of metereological and atmospheric conditions. Different behaviours were determined during different seasons.
Rui Li, Lulu Cui, Yilong Zhao, Ziyu Zhang, Tianming Sun, Junlin Li, Wenhui Zhou, Ya Meng, Kan Huang, and Hongbo Fu
Atmos. Chem. Phys., 19, 11043–11070, https://doi.org/10.5194/acp-19-11043-2019, https://doi.org/10.5194/acp-19-11043-2019, 2019
Short summary
Short summary
Acid deposition is still an important environmental issue in China. Rainwater samples in 320 cities in China were collected to determine the acidic ion concentrations and identify their spatiotemporal variations and sources. The higher acidic ions showed higher concentrations in winter. Furthermore, the highest acidic ion concentrations were mainly distributed in YRD and SB. These acidic ions were mainly sourced from industrial emissions and agricultural activities.
Hans-Werner Jacobi, Friedrich Obleitner, Sophie Da Costa, Patrick Ginot, Konstantinos Eleftheriadis, Wenche Aas, and Marco Zanatta
Atmos. Chem. Phys., 19, 10361–10377, https://doi.org/10.5194/acp-19-10361-2019, https://doi.org/10.5194/acp-19-10361-2019, 2019
Short summary
Short summary
By combining atmospheric, precipitation, and snow measurements with snowpack simulations for a high Arctic site in Svalbard, we find that during wintertime the transfer of sea salt components to the snowpack was largely dominated by wet deposition. However, dry deposition contributed significantly for nitrate, non-sea-salt sulfate, and black carbon. The comparison of monthly deposition and snow budgets indicates an important redistribution of the impurities in the snowpack even during winter.
Christopher Pearson, Dean Howard, Christopher Moore, and Daniel Obrist
Atmos. Chem. Phys., 19, 6913–6929, https://doi.org/10.5194/acp-19-6913-2019, https://doi.org/10.5194/acp-19-6913-2019, 2019
Short summary
Short summary
Precipitation-based deposition of mercury and other trace metals throughout Alaska provides a significant input of pollutants. Deposition shows significant seasonal and spatial variability, largely driven by precipitation patterns. Annual wet deposition of Hg at all AK collection sites is consistently lower than other monitoring stations throughout the CONUS. Hg showed no clear relationship to other metals, likely due to its highly volatile nature and capability of long-range transport.
Lourdes Arellano, Pilar Fernández, Barend L. van Drooge, Neil L. Rose, Ulrike Nickus, Hansjoerg Thies, Evzen Stuchlík, Lluís Camarero, Jordi Catalan, and Joan O. Grimalt
Atmos. Chem. Phys., 18, 16081–16097, https://doi.org/10.5194/acp-18-16081-2018, https://doi.org/10.5194/acp-18-16081-2018, 2018
Short summary
Short summary
Mountain areas are key for studying the impact of diffuse pollution due to human activities on the continental areas. Polycyclic aromatic hydrocarbons (PAHs), human carcinogens with increased levels since the 1950s, are significant constituents of this pollution. We determined PAHs in monthly atmospheric deposition collected in European high mountain areas. The number of sites, period of study and sampling frequency provide the most comprehensive description of PAH fallout at remote sites.
Lei Liu, Jian Zhang, Liang Xu, Qi Yuan, Dao Huang, Jianmin Chen, Zongbo Shi, Yele Sun, Pingqing Fu, Zifa Wang, Daizhou Zhang, and Weijun Li
Atmos. Chem. Phys., 18, 14681–14693, https://doi.org/10.5194/acp-18-14681-2018, https://doi.org/10.5194/acp-18-14681-2018, 2018
Short summary
Short summary
Using transmission electron microscopy, we studied individual cloud droplet residual and interstitial particles collected in cloud events at Mt. Tai in the polluted North China region. We found that individual cloud droplets were an extremely complicated mixture containing abundant refractory soot (i.e., black carbon), fly ash, and metals. The complicated cloud droplets have not been reported in clean continental or marine air before.
Stine Eriksen Hammer, Stephan Mertes, Johannes Schneider, Martin Ebert, Konrad Kandler, and Stephan Weinbruch
Atmos. Chem. Phys., 18, 13987–14003, https://doi.org/10.5194/acp-18-13987-2018, https://doi.org/10.5194/acp-18-13987-2018, 2018
Short summary
Short summary
It is important to study ice-nucleating particles in the environment to learn more about cloud formation. We studied the composition of ice particle residuals and total aerosol particles sampled in parallel during mixed-phase cloud events at Jungfraujoch and discovered that soot and complex secondary particles were not present. In contrast, silica, aluminosilicates, and other aluminosilicates were the most important ice particle residual groups at site temperatures between −11 and −18 °C.
Pourya Shahpoury, Zoran Kitanovski, and Gerhard Lammel
Atmos. Chem. Phys., 18, 13495–13510, https://doi.org/10.5194/acp-18-13495-2018, https://doi.org/10.5194/acp-18-13495-2018, 2018
Heidi M. Pickard, Alison S. Criscitiello, Christine Spencer, Martin J. Sharp, Derek C. G. Muir, Amila O. De Silva, and Cora J. Young
Atmos. Chem. Phys., 18, 5045–5058, https://doi.org/10.5194/acp-18-5045-2018, https://doi.org/10.5194/acp-18-5045-2018, 2018
Short summary
Short summary
Perfluoroalkyl acids (PFAAs) are persistent, bioaccumulative compounds found in the environment far from source regions, including the remote Arctic. We collected a 15 m ice core from the Canadian High Arctic to measure a 38-year deposition record of PFAAs, proving information about major pollutant sources and production changes over time. Our results demonstrate that PFAAs have continuous and increasing deposition, despite recent North American regulations and phase-outs.
Ryan D. Cook, Ying-Hsuan Lin, Zhuoyu Peng, Eric Boone, Rosalie K. Chu, James E. Dukett, Matthew J. Gunsch, Wuliang Zhang, Nikola Tolic, Alexander Laskin, and Kerri A. Pratt
Atmos. Chem. Phys., 17, 15167–15180, https://doi.org/10.5194/acp-17-15167-2017, https://doi.org/10.5194/acp-17-15167-2017, 2017
Short summary
Short summary
Reactions occur within water in both atmospheric particles and cloud droplets, yet little is known about the organic compounds in cloud water. In this work, cloud water samples were collected at Whiteface Mountain, New York, and analyzed using ultra-high-resolution mass spectrometry to investigate the molecular composition of the dissolved organic compounds. The results focus on changes in cloud water composition with air mass origin – influences of forest, urban, and wildfire emissions.
Guohua Zhang, Qinhao Lin, Long Peng, Xinhui Bi, Duohong Chen, Mei Li, Lei Li, Fred J. Brechtel, Jianxin Chen, Weijun Yan, Xinming Wang, Ping'an Peng, Guoying Sheng, and Zhen Zhou
Atmos. Chem. Phys., 17, 14975–14985, https://doi.org/10.5194/acp-17-14975-2017, https://doi.org/10.5194/acp-17-14975-2017, 2017
Short summary
Short summary
The mixing state of black carbon (BC)-containing particles and the mass scavenging efficiency of BC in cloud were investigated at a mountain site (1690 m a.s.l.) in southern China. The measured BC-containing particles were internally mixed extensively with sulfate, and thus the number fraction of scavenged BC-containing particles is close to that of all the measured particles. BC-containing particles with higher fractions of organics were scavenged relatively less.
Marc D. Mallet, Luke T. Cravigan, Andelija Milic, Joel Alroe, Zoran D. Ristovski, Jason Ward, Melita Keywood, Leah R. Williams, Paul Selleck, and Branka Miljevic
Atmos. Chem. Phys., 17, 3605–3617, https://doi.org/10.5194/acp-17-3605-2017, https://doi.org/10.5194/acp-17-3605-2017, 2017
Short summary
Short summary
This paper presents data on the size, composition and concentration of aerosol particles emitted from north Australian savannah fires and how these properties influence cloud condensation nuclei (CCN) concentrations. Both the size and composition of aerosol were found to be important in determining CCN. Despite large CCNc enhancements during periods of close biomass burning, the aerosol was very weakly hygroscopic which should be accounted for in climate models to avoid large CCNc overestimates.
Francesca Sprovieri, Nicola Pirrone, Mariantonia Bencardino, Francesco D'Amore, Helene Angot, Carlo Barbante, Ernst-Günther Brunke, Flor Arcega-Cabrera, Warren Cairns, Sara Comero, María del Carmen Diéguez, Aurélien Dommergue, Ralf Ebinghaus, Xin Bin Feng, Xuewu Fu, Patricia Elizabeth Garcia, Bernd Manfred Gawlik, Ulla Hageström, Katarina Hansson, Milena Horvat, Jože Kotnik, Casper Labuschagne, Olivier Magand, Lynwill Martin, Nikolay Mashyanov, Thumeka Mkololo, John Munthe, Vladimir Obolkin, Martha Ramirez Islas, Fabrizio Sena, Vernon Somerset, Pia Spandow, Massimiliano Vardè, Chavon Walters, Ingvar Wängberg, Andreas Weigelt, Xu Yang, and Hui Zhang
Atmos. Chem. Phys., 17, 2689–2708, https://doi.org/10.5194/acp-17-2689-2017, https://doi.org/10.5194/acp-17-2689-2017, 2017
Short summary
Short summary
The results on total mercury (THg) wet deposition flux obtained within the GMOS network have been presented and discussed to understand the atmospheric Hg cycling and its seasonal depositional patterns over the 2011–2015 period. The data set provides new insight into baseline concentrations of THg concentrations in precipitation particularly in regions where wet deposition and atmospheric Hg species were not investigated before, opening the way for additional measurements and modeling studies.
Xuewu Fu, Xu Yang, Xiaofang Lang, Jun Zhou, Hui Zhang, Ben Yu, Haiyu Yan, Che-Jen Lin, and Xinbin Feng
Atmos. Chem. Phys., 16, 11547–11562, https://doi.org/10.5194/acp-16-11547-2016, https://doi.org/10.5194/acp-16-11547-2016, 2016
Zeyuan Chen, Liang Chu, Edward S. Galbavy, Keren Ram, and Cort Anastasio
Atmos. Chem. Phys., 16, 9579–9590, https://doi.org/10.5194/acp-16-9579-2016, https://doi.org/10.5194/acp-16-9579-2016, 2016
Short summary
Short summary
We made the first measurements of the concentrations of hydroxyl radical (•OH), a dominant environmental oxidant, in snow grains. Concentrations of •OH in snow at Summit, Greenland, are comparable to values reported for midlatitude cloud and fog drops, even though impurity levels in the snow are much lower. At these concentrations, the lifetimes of organics and bromide in Summit snow are approximately 3 days and 7 h, respectively, suggesting that OH is a major oxidant for both species.
Dominik van Pinxteren, Khanneh Wadinga Fomba, Stephan Mertes, Konrad Müller, Gerald Spindler, Johannes Schneider, Taehyoung Lee, Jeffrey L. Collett, and Hartmut Herrmann
Atmos. Chem. Phys., 16, 3185–3205, https://doi.org/10.5194/acp-16-3185-2016, https://doi.org/10.5194/acp-16-3185-2016, 2016
Y. W. Liu, Xu-Ri, Y. S. Wang, Y. P. Pan, and S. L. Piao
Atmos. Chem. Phys., 15, 11683–11700, https://doi.org/10.5194/acp-15-11683-2015, https://doi.org/10.5194/acp-15-11683-2015, 2015
Short summary
Short summary
We investigated inorganic N wet deposition at five sites in the Tibetan Plateau (TP). Combining in situ measurements in this and previous studies, the average wet deposition of NH4+-N, NO3--N, and inorganic N in the TP was estimated to be 1.06, 0.51, and 1.58 kg N ha−1 yr−1, respectively. Results suggest that earlier estimations based on chemical transport model simulations and/or limited field measurements likely overestimated substantially the regional inorganic N wet deposition in the TP.
Y. P. Pan and Y. S. Wang
Atmos. Chem. Phys., 15, 951–972, https://doi.org/10.5194/acp-15-951-2015, https://doi.org/10.5194/acp-15-951-2015, 2015
Short summary
Short summary
This paper presents the first concurrent measurements of wet and dry deposition of various trace elements in Northern China, covering an extensive area over 3 years in a global hotspot of air pollution. The unique field data can serve as a sound basis for the validation of regional emission inventories and biogeochemical or atmospheric chemistry models. The findings are very important for policy makers to create legislation to reduce the emissions and protect soil and water from air pollution.
S. Makowski Giannoni, R. Rollenbeck, K. Trachte, and J. Bendix
Atmos. Chem. Phys., 14, 11297–11312, https://doi.org/10.5194/acp-14-11297-2014, https://doi.org/10.5194/acp-14-11297-2014, 2014
J. D. Felix, S. B. Jones, G. B. Avery, J. D. Willey, R. N. Mead, and R. J. Kieber
Atmos. Chem. Phys., 14, 10509–10516, https://doi.org/10.5194/acp-14-10509-2014, https://doi.org/10.5194/acp-14-10509-2014, 2014
A. Tilgner, L. Schöne, P. Bräuer, D. van Pinxteren, E. Hoffmann, G. Spindler, S. A. Styler, S. Mertes, W. Birmili, R. Otto, M. Merkel, K. Weinhold, A. Wiedensohler, H. Deneke, R. Schrödner, R. Wolke, J. Schneider, W. Haunold, A. Engel, A. Wéber, and H. Herrmann
Atmos. Chem. Phys., 14, 9105–9128, https://doi.org/10.5194/acp-14-9105-2014, https://doi.org/10.5194/acp-14-9105-2014, 2014
S. Henning, K. Dieckmann, K. Ignatius, M. Schäfer, P. Zedler, E. Harris, B. Sinha, D. van Pinxteren, S. Mertes, W. Birmili, M. Merkel, Z. Wu, A. Wiedensohler, H. Wex, H. Herrmann, and F. Stratmann
Atmos. Chem. Phys., 14, 7859–7868, https://doi.org/10.5194/acp-14-7859-2014, https://doi.org/10.5194/acp-14-7859-2014, 2014
L. Deguillaume, T. Charbouillot, M. Joly, M. Vaïtilingom, M. Parazols, A. Marinoni, P. Amato, A.-M. Delort, V. Vinatier, A. Flossmann, N. Chaumerliac, J. M. Pichon, S. Houdier, P. Laj, K. Sellegri, A. Colomb, M. Brigante, and G. Mailhot
Atmos. Chem. Phys., 14, 1485–1506, https://doi.org/10.5194/acp-14-1485-2014, https://doi.org/10.5194/acp-14-1485-2014, 2014
H. Brenot, J. Neméghaire, L. Delobbe, N. Clerbaux, P. De Meutter, A. Deckmyn, A. Delcloo, L. Frappez, and M. Van Roozendael
Atmos. Chem. Phys., 13, 5425–5449, https://doi.org/10.5194/acp-13-5425-2013, https://doi.org/10.5194/acp-13-5425-2013, 2013
B. Ervens, Y. Wang, J. Eagar, W. R. Leaitch, A. M. Macdonald, K. T. Valsaraj, and P. Herckes
Atmos. Chem. Phys., 13, 5117–5135, https://doi.org/10.5194/acp-13-5117-2013, https://doi.org/10.5194/acp-13-5117-2013, 2013
R. N. Mead, K. M. Mullaugh, G. Brooks Avery, R. J. Kieber, J. D. Willey, and D. C. Podgorski
Atmos. Chem. Phys., 13, 4829–4838, https://doi.org/10.5194/acp-13-4829-2013, https://doi.org/10.5194/acp-13-4829-2013, 2013
K. M. Mullaugh, J. D. Willey, R. J. Kieber, R. N. Mead, and G. B. Avery Jr.
Atmos. Chem. Phys., 13, 2321–2330, https://doi.org/10.5194/acp-13-2321-2013, https://doi.org/10.5194/acp-13-2321-2013, 2013
Y. M. Wang, D. Y. Wang, B. Meng, Y. L. Peng, L. Zhao, and J. S. Zhu
Atmos. Chem. Phys., 12, 9417–9426, https://doi.org/10.5194/acp-12-9417-2012, https://doi.org/10.5194/acp-12-9417-2012, 2012
Y. P. Pan, Y. S. Wang, G. Q. Tang, and D. Wu
Atmos. Chem. Phys., 12, 6515–6535, https://doi.org/10.5194/acp-12-6515-2012, https://doi.org/10.5194/acp-12-6515-2012, 2012
Z. H. Dai, X. B. Feng, J. Sommar, P. Li, and X. W. Fu
Atmos. Chem. Phys., 12, 6207–6218, https://doi.org/10.5194/acp-12-6207-2012, https://doi.org/10.5194/acp-12-6207-2012, 2012
K. E. Altieri, M. G. Hastings, A. J. Peters, and D. M. Sigman
Atmos. Chem. Phys., 12, 3557–3571, https://doi.org/10.5194/acp-12-3557-2012, https://doi.org/10.5194/acp-12-3557-2012, 2012
F. Yang, J. Tan, Z. B. Shi, Y. Cai, K. He, Y. Ma, F. Duan, T. Okuda, S. Tanaka, and G. Chen
Atmos. Chem. Phys., 12, 2025–2035, https://doi.org/10.5194/acp-12-2025-2012, https://doi.org/10.5194/acp-12-2025-2012, 2012
M. A. S. Lombard, J. G. Bryce, H. Mao, and R. Talbot
Atmos. Chem. Phys., 11, 7657–7668, https://doi.org/10.5194/acp-11-7657-2011, https://doi.org/10.5194/acp-11-7657-2011, 2011
R. Das, L. Granat, C. Leck, P. S. Praveen, and H. Rodhe
Atmos. Chem. Phys., 11, 3743–3755, https://doi.org/10.5194/acp-11-3743-2011, https://doi.org/10.5194/acp-11-3743-2011, 2011
K. Desboeufs, E. Journet, J.-L. Rajot, S. Chevaillier, S. Triquet, P. Formenti, and A. Zakou
Atmos. Chem. Phys., 10, 9283–9293, https://doi.org/10.5194/acp-10-9283-2010, https://doi.org/10.5194/acp-10-9283-2010, 2010
J. M. Caffrey, W. M. Landing, S. D. Nolek, K. J. Gosnell, S. S. Bagui, and S. C. Bagui
Atmos. Chem. Phys., 10, 5425–5434, https://doi.org/10.5194/acp-10-5425-2010, https://doi.org/10.5194/acp-10-5425-2010, 2010
Cited articles
Aiken, A. C., Decarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A.,
Docherty, K. S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Super, D., Sun, Y.,
Zhang, Q., Trimborn, A., Northway, M., Zieman, P. J., Canagaratna, M. R.,
Onasch, T. B., Alfarra, M. R., Prevot, A. S. H., Dommen, J., Duplissy, J.,
Metzger, A., Baltensperger, U., and Jimenez, J. L.: O/C and OM/OC Ratios of
Primary, Secondary, and Ambient Organic Aerosols with High-Resolution
Time-of-Flight Aerosol Mass Spectrometry, Environ. Sci. Technol., 42, 4478–4485, https://doi.org/10.1021/es703009q, 2008.
Altieri, K. E., Turpin, B. J., and Seitzinger, S. P.: Oligomers, organosulfates, and nitrooxy organosulfates in rainwater
identified by ultra-high resolution electrospray ionization FT-ICR mass spectrometry, Atmos. Chem. Phys., 9, 2533–2542, https://doi.org/10.5194/acp-9-2533-2009, 2009.
Andreae, M. O.: Soot carbon and excess fine potassium: Long-range transport of
combustion-derived aerosols, Science, 220, 1148–1151,
https://doi.org/10.1126/science.220.4602.1148, 1983.
Arimoto, R., Zhang, X. Y., Huebert, B. J., Kang, C. H., Savoie, D. L.,
Prospero, J. M., Sage, S. K., Schloesslin, C. A., Khaing, H. M., and Oh,
S. N.: Chemical composition of atmospheric aerosols from Zhenbeitai, China,
and Gosan, South Korea, during ACE-Asia, J. Geophys. Res.,
109, D19S04, https://doi.org/10.1029/2003JD004323, 2004.
Bator, A. and Collett, J. L.: Cloud chemistry varies with drop size, J. Geophys. Res., 102, 28071–28078, https://doi.org/10.1029/97JD02306,
1997.
Benedict, K. B., Lee, T., and Collett, J. L.: Cloud water composition over the
southeastern Pacific Ocean during the VOCALS regional experiment,
Atmos. Environ., 46, 104–114, https://doi.org/10.1016/j.atmosenv.2011.10.029,
2012.
Bian, Q., Huang, X. H. H., and Yu, J. Z.: One-year observations of size distribution characteristics of major
aerosol constituents at a coastal receptor site in Hong Kong – Part 1: Inorganic ions and oxalate, Atmos. Chem. Phys., 14, 9013–9027, https://doi.org/10.5194/acp-14-9013-2014, 2014.
Blando, J. and Turpin, B.: Secondary organic aerosol formation in cloud and
fog droplets: A literature evaluation of plausibility, Atmos. Environ., 34, 1623–1632, 2000.
Boris, A. J., Desyaterik, Y., and Collett, J. L.: How do components of real
cloud water affect aqueous pyruvate oxidation?, Atmos. Res., 143,
95–106, https://doi.org/10.1016/j.atmosres.2014.02.004, 2014.
Borrás, E. and Tortajada-Genaro, L. A.: Secondary organic aerosol
formation from the photo-oxidation of benzene, Atmos. Environ., 47,
154–163, https://doi.org/10.1016/j.atmosenv.2011.11.020, 2012.
Brinkmann, T., Hörsch, P., Sartorius, D., and Frimmel, F. H.:
Photoformation of low-molecular-weight organic acids from brown water
dissolved organic matter, Environ. Sci. Technol., 37,
4190–4198, https://doi.org/10.1021/es0263339, 2003.
Cao, G., Zhang, X., and Zheng, F.: Inventory of black carbon and organic
carbon emissions from China, Atmos. Environ., 40, 6516–6527,
https://doi.org/10.1016/j.atmosenv.2006.05.070, 2006.
Chen, Q., Heald, C. L., Jimenez, J. L., Canagaratna, M. R., He, L.-y., Huang,
X.-f., Campuzano-jost, P., Palm, B. B., Poulain, L., Kuwata, M., Martin,
S. T., Abbatt, J. P. D., Lee, A. K. Y., and Liggio, J.: Elemental
Composition of Organic Aerosol: The Gap Between Ambient and Laboratory
Measurements, Geophys. Res. Lett., 42, 1–8,
https://doi.org/10.1002/2015GL063693, 2015.
Cho, Y., Kim, M., and Kim, B.: Sea fog around the Korean Peninsula, J. Appl. Meteorol., 39, 2473–2479,
https://doi.org/10.1175/1520-0450(2000)039< 2473:SFATKP>2.0.CO;2, 2000.
Claeys, M., Iinuma, Y., Szmigielski, R., Surratt, J. D., Blockhuys, F., Van
Alsenoy, C., Böge, O., Sierau, B., Gómez-González, Y.,
Vermeylen, R., Van der Veken, P., Shahgholi, M., Chan, A. W. H., Herrmann,
H., Seinfeld, J. H., and Maenhaut, W.: Terpenylic acid and related compounds
from the oxidation of alpha-pinene: implications for new particle formation
and growth above forests., Environ. Sci. Technol., 43,
6976–82, https://doi.org/10.1021/es9007596, 2009.
Collett, J. L., Bator, A., Rao, X., and Demoz, B. B.: Acidity variations
across the cloud drop size spectrum and their influence on rates of
atmospheric sulfate production, Geophys. Res. Lett., 21,
2393–2396, https://doi.org/10.1029/94GL02480, 1994.
Collett, J. L., Bator, A., Sherman, D. E., Moore, K. F., Hoag, K. J., Demoz,
B. B., Rao, X., and Reilly, J. E.: The chemical composition of fogs and
intercepted clouds in the United States, Atmos. Res., 64, 29–40,
https://doi.org/10.1016/S0169-8095(02)00077-7, 2002.
Collett, J. L., Herckes, P., Youngster, S., and Lee, T.: Processing of
atmospheric organic matter by California radiation fogs, Atmos. Res., 87, 232–241, https://doi.org/10.1016/j.atmosres.2007.11.005, 2008.
Crahan, K. K., Hegg, D., Covert, D. S., and Jonsson, H.: An exploration of
aqueous oxalic acid production in the coastal marine atmosphere, Atmos. Environ., 38, 3757–3764, https://doi.org/10.1016/j.atmosenv.2004.04.009, 2004.
Daumit, K. E., Carrasquillo, A. J., Hunter, J. F., and Kroll, J. H.: Laboratory studies of the aqueous-phase oxidation of
polyols: submicron particles vs. bulk aqueous solution, Atmos. Chem. Phys., 14, 10773–10784, https://doi.org/10.5194/acp-14-10773-2014, 2014.
Decesari, S., Facchini, M., Fuzzi, S., Mcfiggans, G., Coe, H., and Bower, K.:
The water-soluble organic component of size-segregated aerosol, cloud water
and wet depositions from Jeju Island during ACE-Asia, Atmos. Environ., 39, 211–222, https://doi.org/10.1016/j.atmosenv.2004.09.049, 2005.
Degefie, D., El-Madany, T.-S., Hejkal, J., Held, M., Dupont, J.-C., Haeffelin,
M., and Klemm, O.: Microphysics and energy and water fluxes of various fog
types at SIRTA, France, Atmos. Res., 151, 162–175,
https://doi.org/10.1016/j.atmosres.2014.03.016, 2015.
Demoz, B., Collett, J., and Daube, B.: On the Caltech Active Strand Cloudwater
Collectors, Atmos. Res., 41, 47–62,
https://doi.org/10.1016/0169-8095(95)00044-5, 1996.
Desyaterik, Y., Sun, Y., Shen, X., Lee, T., Wang, X., Wang, T., and Collett,
J. L.: Speciation of “brown” carbon in cloud water impacted by
agricultural biomass burning in eastern China, J. Geophys. Res.-Atmos., 118, 7389–7399, https://doi.org/10.1002/jgrd.50561, 2013.
Edney, E. O., Driscoll, D. J., Speer, R. E., Weathers, W. S., Kleindienst,
T. E., Li, W., and Smith, D. F.: Impact of aerosol liquid water on secondary
organic aerosol yields of irradiated toluene/propylene/NOx/(NH4)2SO4/air
mixtures, Atmos. Environ., 34, 3907–3919, 2000.
Ervens, B.: Modeling the Processing of Aerosol and Trace Gases in Clouds and
Fogs, Chem. Rev., 115, 4157–4198, https://doi.org/10.1021/cr5005887, 2015.
Ervens, B., Herckes, P., Feingold, G., Lee, T., Collett, J. L., and
Kreidenweis, S. M.: On the drop-size dependence of organic acid and
formaldehyde concentrations in fog, J. Atmos. Chem., 46,
239–269, https://doi.org/10.1023/A:1026393805907, 2003.
Ervens, B., Turpin, B. J., and Weber, R. J.: Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA):
a review of laboratory, field and model studies, Atmos. Chem. Phys., 11, 11069–11102, https://doi.org/10.5194/acp-11-11069-2011, 2011.
Ervens, B., Renard, P., Ravier, S., Clément, J.-L., and Monod, A.: Aqueous phase oligomerization of
methyl vinyl ketone through photooxidation – Part 2: Development of the chemical mechanism and atmospheric
implications, Atmos. Chem. Phys. Discuss., 14, 21565–21609, https://doi.org/10.5194/acpd-14-21565-2014, 2014.
Fahey, K., Pandis, S., Collett, J., and Herckes, P.: The influence of
size-dependent droplet composition on pollutant processing by fogs,
Atmos. Environ., 39, 4561–4574,
https://doi.org/10.1016/j.atmosenv.2005.04.006, 2005.
Fu, T.-M., Jacob, D. J., Wittrock, F., Burrows, J. P., Vrekoussis, M., and
Henze, D. K.: Global budgets of atmospheric glyoxal and methylglyoxal, and
implications for formation of secondary organic aerosols, J. Geophys. Res., 113, D15303, https://doi.org/10.1029/2007JD009505, 2008.
Fuzzi, S., Facchini, M. C., Orsi, G., Lind, J. A., Wobrock, W., Kessell, M.,
Maser, R., Jaeschke, W., Enderle, K. H., Arends, B. G., Berner, A., Solly,
I., Kruisz, C., Reischl, G., Pahl, S., Kaminski, U., Winkler, P., Ogren,
J. A., Noone, K. J., Hallberg, A., Fierlinger-Oberlinninger, H., Puxbaum, H.,
Marzorati, A., Hansson, H.-C., Wiedensohler, A., Svenningsson, I. B.,
Martinsson, B. G., Schell, D., and Georgii, H. W.: The Po Valley Fog
Experiment 1989: An Overview, Tellus B, 44B, 448–468,
https://doi.org/10.1034/j.1600-0889.1992.t01-4-00002.x, 1992.
Gerber, H.: Direct measurement of suspended particulate volume concentration
and far-infrared extinction coefficient with a laser-diffraction
instrument, Applied Opt., 30, 4824–31, https://doi.org/10.1364/AO.30.004824, 1991.
Heald, C. L., Jacob, D. J., Park, R. J., Russell, L. M., Huebert, B. J.,
Seinfeld, J. H., Liao, H., and Weber, R. J.: A large organic aerosol source
in the free troposphere missing from current models, Geophys. Res. Lett., 32, 2–5, https://doi.org/10.1029/2005GL023831, 2005.
Heald, C. L., Kroll, J. H., Jimenez, J. L., Docherty, K. S., DeCarlo, P. F.,
Aiken, A. C., Chen, Q., Martin, S. T., and Farmer, D. K.: A simplified
description of the evolution of organic aerosol composition in the
atmosphere, Geophys. Res. Lett., 37,
L08803, https://doi.org/10.1029/2010GL042737,
2010.
Hegg, D. A. and Larson, T. V.: The effects of microphysical parameterization
on model predictions of sulfate production in clouds, Tellus, 42B, 272–284,
1990.
Herckes, P., Hannigan, M. P., Trenary, L., Lee, T., and Collett, J. L.:
Organic compounds in radiation fogs in Davis (California), Atmos. Res., 64, 99–108, https://doi.org/10.1016/S0169-8095(02)00083-2,
2002a.
Herckes, P., Lee, T., Trenary, L., and Kang, G.: Organic Matter in Central
California Radiation Fogs, Environ. Sci. Technol., 36,
4777–4782, 2002b.
Herckes, P., Chang, H., Lee, T., and Collett, J. L.: Air Pollution Processing
by Radiation Fogs, Water Air Soil Pollut., 181, 65–75,
https://doi.org/10.1007/s11270-006-9276-x, 2007.
Herckes, P., Valsaraj, K. T., and Collett, J. L.: A review of observations of
organic matter in fogs and clouds: Origin, processing and fate, Atmos. Res., 132-133, 434–449, https://doi.org/10.1016/j.atmosres.2013.06.005, 2013.
Hoag, K. J., Collett, J. L., and Pandis, S. N.: The influence of drop
size-dependent fog chemistry on aerosol processing by San Joaquin Valley
fogs, Atmos. Environ., 33, 4817–4832,
https://doi.org/10.1016/S1352-2310(99)00268-X, 1999.
Kahnt, A., Behrouzi, S., Vermeylen, R., Safi Shalamzari, M., Vercauteren, J.,
Roekens, E., Claeys, M., and Maenhaut, W.: One-year study of nitro-organic
compounds and their relation to wood burning in PM10 aerosol from a rural
site in Belgium, Atmos. Environ., 81, 561–568,
https://doi.org/10.1016/j.atmosenv.2013.09.041, 2013.
Kalberer, M., Yu, J., Cocker, D. R., Flagan, R. C., and Seinfeld, J. H.:
Aerosol Formation in the Cyclohexene-Ozone System, Environ. Sci. Technol., 34, 4894–4901, https://doi.org/10.1021/es001180f, 2000.
Kamens, R. M., Zhang, H., Chen, E. H., Zhou, Y., Parikh, H. M., Wilson, R. L.,
Galloway, K. E., and Rosen, E. P.: Secondary organic aerosol formation from
toluene in an atmospheric hydrocarbon mixture: Water and particle seed
effects, Atmos. Environ., 45, 2324–2334,
https://doi.org/10.1016/j.atmosenv.2010.11.007, 2011.
Kang, C.-M., Kang, B.-W., and Lee, H. S.: Source identification and trends in
concentrations of gaseous and fine particulate principal species in Seoul,
South Korea., J. Air Waste Manage. Assoc.,
56, 911–921, https://doi.org/10.1080/10473289.2006.10464506, 2006.
Kawamura, K. and Ikushima, K.: Seasonal changes in the distribution of
dicarboxylic acids in the urban atmosphere, Environ. Sci. Technol., 27, 2227–2235, https://doi.org/10.1021/es00047a033, 1993.
Kawamura, K. and Kaplan, I.: Motor exhaust emissions as a primary source for
dicarboxylic acids in Los Angeles ambient air, Environ. Sci. Technol., 21, 105–110, https://doi.org/10.1021/es00155a014, 1987.
Kawamura, K., Kobayashi, M., Tsubonuma, N., Mochida, M., Watanabe, T., and Lee,
M.: Organic and inorganic compositions of marine aerosols from East Asia:
Seasonal variations of water-soluble dicarboxylic acids, major ions, total
carbon and nitrogen, and stable C and N isotopic composition, in:
Geochemical Investigations in Earth and Space Science: A Tribute to Isaac R.
Kaplan, The Geochemical Society, Amsterdam, The Netherlands,
first edn., 243–265, 2004.
Kim, J. H., Yum, S. S., Shim, S., Yoon, S.-C., Hudson, J. G., Park, J., and Lee, S.-J.: On aerosol hygroscopicity,
cloud condensation nuclei (CCN) spectra and critical supersaturation measured at two remote islands of Korea between
2006 and 2009, Atmos. Chem. Phys., 11, 12627–12645, https://doi.org/10.5194/acp-11-12627-2011, 2011.
Kim, M.-G., Lee, B.-K., and Kim, H.-J.: Cloud/Fog Water Chemistry at a High
Elevation Site in South Korea, J. Atmos. Chem., 55, 13–29,
https://doi.org/10.1007/s10874-005-9004-8, 2006.
Kleindienst, T. E., Smith, D. F., Li, W., Edney, E. O., Driscoll, D. J., Speer,
R. E., and Weathers, W. S.: Secondary organic aerosol formation from the
oxidation of aromatic hydrocarbons in the presence of dry submicron ammonium
sulfate aerosol, Atmos. Environ., 33, 3669–3681,
https://doi.org/10.1016/S1352-2310(99)00121-1, 1999.
Kroll, J. H., Smith, J. D., Dung, L. C., Kessler, S. H., Worsnop, D. R., and
Wilson, K. R.: Measurement of fragmentation and functionalization pathways
in the heterogeneous oxidation of oxidized organic aerosol, Phys. Chem. Chem. Phys., 11, 8005–8014, https://doi.org/10.1039/b916865f, 2009.
Kukui, A., Borissenko, D., Laverdet, G., and Le Bras, G.: Gas-phase
reactions of OH radicals with dimethyl sulfoxide and methane sulfinic acid
using turbulent flow reactor and chemical ionization mass spectrometry,
J. Phys. Chem. A, 107, 5732–5742, https://doi.org/10.1021/jp0276911,
2003.
Lauer, A., Eyring, V., Hendricks, J., Jöckel, P., and Lohmann, U.: Global model simulations of the impact of
ocean-going ships on aerosols, clouds, and the radiation budget, Atmos. Chem. Phys. Discuss., 7, 9419–9464, https://doi.org/10.5194/acpd-7-9419-2007, 2007.
Lee, T.: Characterizing ionic components of aerosol in rural environments:
temporal variability, size distributions, and the form of particle nitrate,
Ph.D. thesis, Colorado State University, 4–7, 117–135, 2007.
Lee, T., Sullivan, A. P., Mack, L., Jimenez, J. L., Kreidenweis, S. M., Onasch,
T. B., Worsnop, D. R., Malm, W., Wold, C. E., Hao, W. M., and Collett, J. L.:
Chemical Smoke Marker Emissions During Flaming and Smoldering Phases of
Laboratory Open Burning of Wildland Fuels, Aerosol Sci. Technol.,
44, i–v, https://doi.org/10.1080/02786826.2010.499884, 2010.
Lee, T. T., Choi, J. J., Lee, G., Ahn, J. J. Y., Park, J. S., Atwood, S. A.,
Schurman, M., Choi, Y., Chung, Y., Collett, J. L., Choi, J. J., Ahn, J.
J. Y., Park, J. S., Atwood, S. A., Schurman, M., Chung, Y., and Collett,
J. L.: Characterization of Aerosol Composition, Concentrations, and Sources
at Baengnyeong Island, Korea using an Aerosol Mass Spectrometer, Atmos. Environ., 120, 297–306, 2015.
Lelieveld, J. and Crutzen, P.: The role of clouds in tropospheric
photochemistry, J. Atmos. Chem., 12, 229–267,
https://doi.org/10.1007/BF00048075, 1991.
Li, P., Li, X., Yang, C., Wang, X., Chen, J., and Collett, J. L.: Fog water
chemistry in Shanghai, Atmos. Environ., 45, 4034–4041,
https://doi.org/10.1016/j.atmosenv.2011.04.036, 2011a.
Li, W. J., Zhang, D. Z., Shao, L. Y., Zhou, S. Z., and Wang, W. X.: Individual particle analysis of aerosols collected under haze and non-haze conditions at
a high-elevation mountain site in the North China plain, Atmos. Chem. Phys., 11, 11733–11744, https://doi.org/10.5194/acp-11-11733-2011, 2011b.
Lim, H.-J., Carlton, A. G., and Turpin, B. J.: Isoprene Forms Secondary
Organic Aerosol through Cloud Processing: Model Simulations, Environ. Sci. Technol., 39, 4441–4446, https://doi.org/10.1021/es048039h, 2005.
Lim, Y. B., Tan, Y., Perri, M. J., Seitzinger, S. P., and Turpin, B. J.: Aqueous chemistry and its role in secondary
organic aerosol (SOA) formation, Atmos. Chem. Phys., 10, 10521–10539, https://doi.org/10.5194/acp-10-10521-2010, 2010.
Lim, Y. B., Tan, Y., and Turpin, B. J.: Chemical insights, explicit chemistry, and yields of secondary organic aerosol
from OH radical oxidation of methylglyoxal and glyoxal in the aqueous phase, Atmos. Chem. Phys., 13, 8651–8667, https://doi.org/10.5194/acp-13-8651-2013, 2013.
Lin, G., Sillman, S., Penner, J. E., and Ito, A.: Global modeling of SOA: the use of different mechanisms
for aqueous-phase formation, Atmos. Chem. Phys., 14, 5451–5475, https://doi.org/10.5194/acp-14-5451-2014, 2014.
Liu, Y., Monod, A., Tritscher, T., Praplan, A. P., DeCarlo, P. F., Temime-Roussel, B., Quivet, E., Marchand, N.,
Dommen, J., and Baltensperger, U.: Aqueous phase processing of secondary organic aerosol from isoprene photooxidation,
Atmos. Chem. Phys., 12, 5879–5895, https://doi.org/10.5194/acp-12-5879-2012, 2012.
Mattigod, S., Rai, D., Eary, L., and Ainsworth, C.: Geochemical factors
controlling the mobilisation of inorganic constituents from fossil fuel
combustion residues: I, Review of the major elements, J. Environ. Qual., 19, 188–201, 1990.
Mazzoleni, L. R., Ehrmann, B. M., Shen, X., Marshall, A. G., and Collett,
J. L.: Water-soluble atmospheric organic matter in fog: Exact masses and
chemical formula identification by ultrahigh-resolution fourier transform ion
cyclotron resonance mass spectrometry, Environ. Sci. Technol., 44, 3690–3697, https://doi.org/10.1021/es903409k, 2010.
McCulloch, A., Aucott, M. L., Benkovitz, C. M., Graedel, T. E., Kleiman, G.,
Midgley, P. M., and Li, Y.-F.: Global emissions of hydrogen chloride and
chloromethane from coal combustion, incineration and industrial activities:
Reactive Chlorine Emissions Inventory, J. Geophys. Res., 104,
8391–8403, https://doi.org/10.1029/1999JD900025, 1999.
McNeill, V. F.: Aqueous organic chemistry in the atmosphere: Sources and
chemical processing of organic aerosols, Environ. Sci. Technol., 49, 1237–1244, https://doi.org/10.1021/es5043707, 2015.
Moore, K. F., Sherman, D. E., Reilly, J. E., and Collett, J. L.: Drop
size-dependent chemical composition in clouds and fogs. Part I.
Observations, Atmos. Environ., 38, 1389–1402,
https://doi.org/10.1016/j.atmosenv.2003.12.013, 2004a.
Moore, K. F., Sherman, D. E., Reilly, J. E., Hannigan, M. P., Lee, T., and
Collett, J. L.: Drop size-dependent chemical composition of clouds and fogs.
Part II: Relevance to interpreting the aerosol/trace gas/fog system,
Atmos. Environ., 38, 1403–1415,
https://doi.org/10.1016/j.atmosenv.2003.12.014, 2004b.
Mouri, H. and Okada, K.: Shattering and modification of sea-salt particles in
the marine atmosphere, Geophys. Res. Lett., 20, 49–52,
https://doi.org/10.2467/mripapers.57.47, 1993.
Munger, J., Collett, J., Daube, B., and Hoffmann, M.: Carboxylic acids and
carbonyl compounds in southern California clouds and fogs, Tellus B, 41B,
230–242, https://doi.org/10.1111/j.1600-0889.1989.tb00303.x, 1989.
Narukawa, M. and Kawamura, K.: Distribution of dicarboxylic acids and carbon
isotopic compositions in aerosols from 1997 Indonesian forest fires,
Geophys. Res. Lett., 26, 3101–3104, https://doi.org/10.1029/1999GL010810,
1999.
Ng, N. L., Canagaratna, M. R., Jimenez, J. L., Chhabra, P. S., Seinfeld, J. H., and Worsnop, D. R.: Changes in
organic aerosol composition with aging inferred from aerosol mass spectra, Atmos. Chem. Phys., 11, 6465–6474, https://doi.org/10.5194/acp-11-6465-2011, 2011.
Nguyen, Q. T., Christensen, M. K., Cozzi, F., Zare, A., Hansen, A. M. K., Kristensen, K., Tulinius, T. E.,
Madsen, H. H., Christensen, J. H., Brandt, J., Massling, A., Nøjgaard, J. K., and Glasius, M.: Understanding
the anthropogenic influence on formation of biogenic secondary organic aerosols in Denmark via analysis of organosulfates
and related oxidation products, Atmos. Chem. Phys., 14, 8961–8981, https://doi.org/10.5194/acp-14-8961-2014, 2014.
Noziere, B., Kalberer, M., Claeys, M., Allan, J., Anna, B. D., Decesari, S.,
Finessi, E., Glasius, M., Grgic, I., Hamilton, J. F., Ho, T., Iinuma, Y.,
Jaoui, M., Kahnt, A., Kampf, C. J., Kourtchev, I., Maenhaut, W., Marsden, N.,
Saarikoski, S., Schnelle-kreis, J., Surratt, J. D., Szidat, S., Szmigielski,
R., and Wisthaler, A.: The molecular identification of organic compounds in
the atmosphere: State of the art and challenges, Chem. Rev., 115,
3919–3983, https://doi.org/10.1021/cr5003485, 2015.
Pandis, S. N., Seinfeld, J. H., and Pilinis, C.: The smog-fog-smog cycle and
acid deposition, J. Geophys. Res., 95, 18489–18500,
https://doi.org/10.1029/JD095iD11p18489, 1990.
Prabhakar, G., Ervens, B., Wang, Z., Maudlin, L., Coggon, M., Jonsson, H.,
Seinfeld, J., and Sorooshian, A.: Sources of nitrate in stratocumulus cloud
water: Airborne measurements during the 2011 E-PEACE and 2013 NiCE studies,
Atmos. Environ., 97, 166–173, https://doi.org/10.1016/j.atmosenv.2014.08.019,
2014.
Praplan, A. P., Hegyi-Gaeggeler, K., Barmet, P., Pfaffenberger, L., Dommen, J., and Baltensperger, U.: Online
measurements of water-soluble organic acids in the gas and aerosol phase from the photooxidation of 1,3,5-trimethylbenzene, Atmos. Chem. Phys., 14, 8665–8677, https://doi.org/10.5194/acp-14-8665-2014, 2014.
Radojevic, M. and Bashkin, V. N.: Practical Environmental Analysis, The Royal
Society of Chemistry, Cambridge, UK, 44–73, 2006.
Raja, S., Raghunathan, R., Yu, X.-Y., Lee, T., Chen, J., Kommalapati, R. R.,
Murugesan, K., Shen, X., Qingzhong, Y., Valsaraj, K. T., and Collett, J. L.:
Fog chemistry in the Texas-Louisiana Gulf Coast corridor, Atmos. Environ., 42, 2048–2061, https://doi.org/10.1016/j.atmosenv.2007.12.004, 2008.
Rao, X. and Collett, J. L.: Behavior of S(IV) and formaldehyde in a chemically
heterogeneous cloud, Environ. Sci. Technol., 29, 1023–1031,
https://doi.org/10.1021/es00004a024, 1995.
Rao, X. and Collett, J. L.: The drop size-dependence of iron and manganese
concentrations in clouds and fogs: Implications for sulfate production,
J. Atmos. Chem., 30, 273–289,
https://doi.org/10.1023/A:1006044614291, 1998.
Reilly, J. E., Rattigan, O. V., Moore, K. F., Judd, C., Eli Sherman, D.,
Dutkiewicz, V. a., Kreidenweis, S. M., Husain, L., and Collett, J. L.: Drop
size-dependent S(IV) oxidation in chemically heterogeneous radiation fogs,
Atmos. Environ., 35, 5717–5728, https://doi.org/10.1016/S1352-2310(01)00373-9,
2001.
Sareen, N., Schwier, A. N., Shapiro, E. L., Mitroo, D., and McNeill, V. F.: Secondary organic material formed by methylglyoxal
in aqueous aerosol mimics, Atmos. Chem. Phys., 10, 997–1016, https://doi.org/10.5194/acp-10-997-2010, 2010.
Scaduto, R. C. J.: Oxidation of DMSO and methanesulfinic acid by the hydroxyl
radical, Free Radical Biology & Medicine, 18, 271–277,
https://doi.org/10.1016/0891-5849(94)E0139-A, 1995.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air
Pollution to Climate Change, vol. 2nd, John Wiley & Sons, Inc., Hoboken,
New Jersey, 267–270, 964–965, 2006.
Shen, X.: Aqueous Phase Sulfate Production in Clouds at Mt. Tai in Eastern
China, Ph.D. thesis, Colorado State University, 53–55, 2011.
Shen, X., Lee, T., Guo, J., Wang, X., Li, P., Xu, P., Wang, Y., Ren, Y., Wang,
W., Wang, T., Li, Y., Carn, S. A., and Collett, J. L.: Aqueous phase sulfate
production in clouds in eastern China, Atmos. Environ., 62,
502–511, https://doi.org/10.1016/j.atmosenv.2012.07.079, 2012.
Sorooshian, A., Varutbangkul, V., Brechtel, F. J., Ervens, B., Feingold, G., Bahreini, R., Murphy, S. M., Holloway, J.
S.,
Atlas, E. L., Buzorius, G., Jonsson, H., Flagan, R. C., and Seinfeld, J. H.: Oxalic acid in clear and cloudy atmospheres: Analysis of
data from International Consortium for Atmospheric Research on Transport and Transformation 2004, J. Geophys. Res. 111, D23S45,
https://doi.org/10.1029/2005JD006880, 2006.
Sorooshian, A., Wang, Z., Coggon, M. M., Jonsson, H. H., and Ervens, B.:
Observations of Sharp Oxalate Reductions in Stratocumulus Clouds at Variable
Altitudes: Organic Acid and Metal Measurements During the 2011 E-PEACE
Campaign, Environ. Sci. Technol., 47, 7747–7756, 2013.
Straub, D. J., Lee, T., and Collett, J. L.: Chemical composition of marine
stratocumulus clouds over the eastern Pacific Ocean, J. Geophys. Res., 112, D04307, https://doi.org/10.1029/2006JD007439, 2007.
Streets, D. G., Guttikunda, S. K., and Carmichael, G. R.: The growing
contribution of sulfur emissions from ships in Asian waters, 1988–1995,
Atmos. Environ., 34, 4425–4439, https://doi.org/10.1016/S1352-2310(00)00175-8,
2000.
Sullivan, A. P., Holden, A. S., Patterson, L. A., McMeeking, G. R.,
Kreidenweis, S. M., Malm, W. C., Hao, W. M., Wold, C. E., and Collett, J. L.:
A method for smoke marker measurements and its potential application for
determining the contribution of biomass burning from wildfires and prescribed
fires to ambient PM 2.5 organic carbon, J. Geophys. Res.,
113, D22302, https://doi.org/10.1029/2008JD010216, 2008.
Surratt, J. D., Gómez-González, Y., Chan, A. W. H., Vermeylen, R.,
Shahgholi, M., Kleindienst, T. E., Edney, E. O., Offenberg, J. H.,
Lewandowski, M., Jaoui, M., Maenhaut, W., Claeys, M., Flagan, R. C., and
Seinfeld, J. H.: Organosulfate formation in biogenic secondary organic
aerosol, J. Phys. Chem. A, 112, 8345–78,
https://doi.org/10.1021/jp802310p, 2008.
Szmigielski, R., Surratt, J. D., Gómez-González, Y., van der Veken,
P., Kourtchev, I., Vermeylen, R., Blockhuys, F., Jaoui, M., Kleindienst,
T. E., Lewandowski, M., Offenberg, J. H., Edney, E. O., Seinfeld, J. H.,
Maenhaut, W., and Claeys, M.: 3-methyl-1,2,3-butanetricarboxylic acid: An
atmospheric tracer for terpene secondary organic aerosol, Geophys. Res. Lett., 34, 2–7, https://doi.org/10.1029/2007GL031338, 2007.
Varutbangkul, V., Brechtel, F. J., Bahreini, R., Ng, N. L., Keywood, M. D., Kroll, J. H., Flagan, R. C., Seinfeld, J. H.,
Lee, A., and Goldstein, A. H.: Hygroscopicity of secondary organic aerosols formed by oxidation of cycloalkenes,
monoterpenes, sesquiterpenes, and related compounds, Atmos. Chem. Phys., 6, 2367–2388, https://doi.org/10.5194/acp-6-2367-2006, 2006.
Wang, B., O'Brien, R. E., Kelly, S. T., Shilling, J. E., Moffet, R. C., Gilles,
M. K., and Laskin, A.: Reactivity of Liquid and Semisolid Secondary Organic
Carbon with Chloride and Nitrate in Atmospheric Aerosols, J. Phys. Chem. A, 119, 4498–4508, https://doi.org/10.1021/jp510336q, 2015.
Wang, Y., Guo, J., Wang, T., Ding, A., Gao, J., Zhou, Y., Collett, J. L., and
Wang, W.: Influence of regional pollution and sandstorms on the chemical
composition of cloud/fog at the summit of Mt. Taishan in northern China,
Atmos. Res., 99, 434–442, https://doi.org/10.1016/j.atmosres.2010.11.010,
2011.
Weber, R. J., Sullivan, A. P., Peltier, R. E., Russell, A., Yan, B., Zheng, M.,
de Gouw, J., Warneke, C., Brock, C., Holloway, J. S., Atlas, E. L., and
Edgerton, E.: A study of secondary organic aerosol formation in the
anthropogenic-influenced southeastern United States, J. Geophys. Res.-Atmos., 112, D11032, https://doi.org/10.1029/2007JD008408, 2007.
Wise, M. E., Surratt, J. D., Curtis, D. B., Shilling, J. E., and Tolbert,
M. A.: Hygroscopic growth of ammonium sulfate/dicarboxylic acids, J. Geophys. Res., 108, 4368–4376, https://doi.org/10.1029/2003JD003775, 2003.
Wonaschuetz, A., Sorooshian, A., Ervens, B., Chuang, P. Y., Feingold, G.,
Murphy, S. M., de Gouw, J., Warneke, C., and Jonsson, H. H.: Aerosol and gas
re-distribution by shallow cumulus clouds: An investigation using airborne
measurements, J. Geophys. Res., 117, D17202,
https://doi.org/10.1029/2012JD018089, 2012.
Yamasoe, M., Artaxo, P., Miguel, A., and Allen, A.: Chemical composition of
aerosol particles from direct emissions of vegetation fires in the Amazon
Basin: water-soluble species and trace elements, Atmos. Environ.,
34, 1641–1653, https://doi.org/10.1016/S1352-2310(99)00329-5, 2000.
Yang, G.-P., Zhang, H.-H., Su, L.-P., and Zhou, L.-M.: Biogenic emission of
dimethylsulfide (DMS) from the North Yellow Sea, China and its contribution
to sulfate in aerosol during summer, Atmos. Environ., 43,
2196–2203, https://doi.org/10.1016/j.atmosenv.2009.01.011, 2009.
Yasmeen, F., Vermeylen, R., Szmigielski, R., Iinuma, Y., Böge, O., Herrmann, H., Maenhaut, W.,
and Claeys, M.: Terpenylic acid and related compounds: precursors for dimers in secondary organic aerosol
from the ozonolysis of α- and β-pinene, Atmos. Chem. Phys., 10, 9383–9392, https://doi.org/10.5194/acp-10-9383-2010, 2010.
Yoo, J.-M., Jeong, M.-J., Hur, Y. M., and Shin, D.-B.: Improved fog detection
from satellite in the presence of clouds, Asia-Pac. J. Atmos. Sci., 46, 29–40, https://doi.org/10.1007/s13143-010-0004-5, 2010.
Yu, J. Z., Huang, X.-F., Xu, J., and Hu, M.: When aerosol sulfate goes up, so
does oxalate: implication for the formation mechanisms of oxalate,
Environ. Sci. Technol., 39, 128–133, https://doi.org/10.1021/es049559f,
2005.
Zhang, Q., Worsnop, D. R., Canagaratna, M. R., and Jimenez, J. L.: Hydrocarbon-like and oxygenated organic
aerosols in Pittsburgh: insights into sources and processes of organic aerosols, Atmos. Chem. Phys., 5, 3289–3311, https://doi.org/10.5194/acp-5-3289-2005, 2005.
Zhang, S.-P., Xie, S.-P., Liu, Q.-Y., Yang, Y.-Q., Wang, X.-G., and Ren, Z.-P.:
Seasonal Variations of Yellow Sea Fog: Observations and Mechanisms, J. Climate, 22, 6758–6772, https://doi.org/10.1175/2009JCLI2806.1, 2009.
Zhang, W., Xiao, X., An, T., and Song, Z.: Kinetics, degradation pathway and
reaction mechanism of advanced oxidation of 4-nitrophenol in water by a
UV/H2O2 process, J. Chem. Technol. Biotechnol., 794,
788–794, https://doi.org/10.1002/jctb.864, 2003.
Zhang, X., Arimoto, R., An, Z., Chen, T., Zhang, G., Zhu, G., and Wang, X.:
Atmospheric trace elements over source regions for Chinese dust:
concentrations, sources and atmospheric deposition on the Loess plateau,
Atmos. Environ. A-Gen., 27, 2051–2067,
https://doi.org/10.1016/0960-1686(93)90277-6, 1993.
Zheng, M., Salmon, L. G., Schauer, J. J., Zeng, L., Kiang, C. S., Zhang, Y.,
and Cass, G. R.: Seasonal trends in PM2.5 source contributions in Beijing,
China, Atmos. Environ., 39, 3967–3976,
https://doi.org/10.1016/j.atmosenv.2005.03.036, 2005.
Zuo, Y. and Hoigné, J.: Photochemical decomposition of oxalic, glyoxalic
and pyruvic acid catalysed by iron in atmospheric waters, Atmos. Environ., 2, 1231–1239, https://doi.org/10.1016/1352-2310(94)90270-4, 1994.
Short summary
Samples of fog water collected in the Yellow Sea during summer 2014 represent fog downwind of polluted regions and provide new insight into the fate of regional emissions. Organic and inorganic components reveal contributions from urban, biogenic, marine, and biomass burning emissions, as well as evidence of aqueous organic processing reactions. Many fog components are products of extensive photochemical aging during multiday transport, including oxidation within wet aerosols or fogs.
Samples of fog water collected in the Yellow Sea during summer 2014 represent fog downwind of...
Altmetrics
Final-revised paper
Preprint