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Abstract. Samples of fog water were collected at

Baengnyeong Island (BYI) in the Yellow Sea during the sum-

mer of 2014. The most abundant chemical species in the fog

water were NH+4 (mean of 2220 µM), NO−3 (1260 µM), SO−2
4

(730 µM), and Na+ (551 µM), with substantial contributions

from other species consistent with marine and biomass burn-

ing influence on some dates. The pH of the samples ranged

between 3.48 and 5.00, with a mean of 3.94, intermediate

within pH values of fog/cloud water reported previously in

Southeast Asia. Back trajectories (72 h) showed that high rel-

ative humidity (> 80 %) was encountered upwind of the sam-

pling site by all but one of the sampled air masses, and that

the fog composition at BYI can be impacted by several dif-

ferent source regions, including the Sea of Japan, southeast-

ern China, northeastern China, and the East China Sea. Sul-

fur in the collected fog was highly oxidized: low S(IV) con-

centrations were measured (mean of 2.36 µM) in contrast to

SO−2
4 and in contrast to fog/cloud S(IV) concentrations from

pollutant source regions; organosulfate species were also ob-

served and were most likely formed through aging of mainly

biogenic volatile organic compounds. Low-molecular-mass

organic acids were major contributors to total organic car-

bon (TOC; 36–69 %), comprising a fraction of TOC at the

upper end of that seen in fogs and clouds in other polluted

environments. Large contributions were observed from not

only acetic and formic acids but also oxalic, succinic, maleic,

and other organic acids that can be produced in aqueous at-

mospheric organic processing (AAOP) reactions. These sam-

ples of East Asian fog water containing highly oxidized com-

ponents represent fog downwind of pollutant sources and

can provide new insight into the fate of regional emissions.

In particular, these samples demonstrate the result of exten-

sive photochemical aging during multiday transport, includ-

ing oxidation within wet aerosols and fogs.

1 Introduction

The chemistry of the atmosphere occurs within multiple

phases, one of which is the aqueous phase. Atmospheric wa-

ter includes fog droplets, cloud droplets, and wet aerosol par-

ticles, all of which can act as miniature aqueous reaction

vessels. Distinct chemical phenomena occur within the at-

mospheric aqueous phase: formation of organic hydrates and

protonation/deprotonation occur frequently, time spent by re-

actants in proximity to one another increases, and interac-

tions involving metals such as the Fenton reactions and iron

oxalate complexes are possible (Lelieveld and Crutzen, 1991;

Zuo and Hoigné, 1994). The study of carbonaceous species

is particularly pertinent to understanding particle-, gas-, and

aqueous-phase atmospheric processes because the composi-

tion and formation of organics are complex. Particle-phase

organics in particular cannot yet be modeled well by labo-

ratory or computer experiments (Aiken et al., 2008; Chen

et al., 2015; Heald et al., 2005, 2010) and can account for

a large fraction of aerosol mass (Fu et al., 2008; Lin et al.,

2014; Liu et al., 2012). Uptake of organic components into

atmospheric water represents a pathway for their removal

from the atmosphere, via deposition and/or chemical degra-

dation (Collett et al., 2008). Aqueous atmospheric organic
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processing (AAOP) can yield low molecular mass products

with typically increased volatilities, effectively reducing pol-

lutant concentrations in an air mass via chemical water treat-

ment (Brinkmann et al., 2003; Zhang et al., 2003). Some re-

actions of organic material within atmospheric water form

aqueous secondary organic aerosol (aqSOA) by oxidation of

dissolved organic precursors to form lower-volatility prod-

ucts that remain in the particle phase as fog drops evaporate

(Ervens et al., 2011).

The most common approach to studying AAOP reactions

in the lab is to introduce •OH oxidant into a bulk solution of a

standard carbonaceous “precursor” molecule such as glyoxal

and monitor the reaction as it proceeds (Lim et al., 2010).

Some assumptions of this common type of simulation can

also be studied within a lab: for example, real cloud water

constituents have been shown to cause an effective kinetic

slowing, via oxidant competition, of a given organic chemi-

cal reaction (Boris et al., 2014). However, while these com-

monly applied lab simulations are useful for studying specific

AAOP reactions, more accurate representations of fogs and

clouds are needed to validate simulation results and eluci-

date more complex phenomena. Daumit et al. (2014) demon-

strated that microphysical dynamics of in-droplet diffusion

and bidirectional air–water mass transfer are inaccurate in

simple “bulk reactions”: carrying out a reaction within a pho-

toreactor does not allow species, including oxidants, to con-

tinuously partition into and out of solution, as in the real at-

mosphere (Ervens et al., 2003). Bulk photoreactions also do

not correctly simulate differences in chemical constituents

between droplets within a cloud (Bator and Collett, 1997;

Collett et al., 1994), gradients inside individual droplets (Er-

vens et al., 2014), or physical processes of fogs and clouds

such as evaporation and deposition (Collett et al., 2008; Her-

ckes et al., 2002b; Pandis et al., 1990).

Unequivocal evidence of AAOP reactions within the real

atmosphere is challenging to show because no specific

molecular or physical tracers for AAOP have been identi-

fied. Known products of aqueous oxidation reactions includ-

ing oxalic acid and SO−2
4 are frequently used as non-specific

molecular tracers. Successful approaches toward identifying

the location and timing of AAOP reactions have included

the use of coincident non-specific molecular tracers such

as organic acids (Sorooshian et al., 2006, 2013), the pre-

dominance of oxalic acid and SO−2
4 in a size mode gener-

ated from aqueous processes (the droplet size mode, Cra-

han et al., 2004), and high carbon oxidation states (Chen

et al., 2015). Additional observations of AAOP evidence

have been summarized by Blando and Turpin (2000) and

Ervens et al. (2011). Although oxalic acid in particular

has been used as a molecular tracer for AAOP reactions

(Sorooshian et al., 2006; Wonaschuetz et al., 2012; Yu et al.,

2005), other sources for oxalic acid in the atmosphere have

been proposed: gas-phase oxidation of aromatic and anthro-

pogenic molecules (Edney et al., 2000; Kamens et al., 2011;

Kleindienst et al., 1999; Borrás and Tortajada-Genaro, 2012;

Kalberer et al., 2000), diesel exhaust emissions (Kawamura

and Kaplan, 1987), and forest fire emissions (Narukawa and

Kawamura, 1999; Yamasoe et al., 2000).

High aerosol concentrations near major cities in China

have been attributed in large part to secondary aerosol forma-

tion processes from various sources of carbonaceous emis-

sions (Bian et al., 2014; Zheng et al., 2005). Cloud water col-

lected on Mount Tai in Shandong Province (west of the Yel-

low Sea) contained some of the highest total organic carbon

(TOC) concentrations measured in the world (Herckes et al.,

2013; Shen et al., 2012; Wang et al., 2011), consistent with

strong regional organic pollutant sources, including agricul-

tural burning (Desyaterik et al., 2013). AAOP reactions could

produce measurable quantities of aqSOA and low molecular

mass organic acids during atmospheric transport of chemi-

cals, especially at high concentrations and within humid en-

vironments as observed in Southeast Asia. Anthropogenic

emissions from mainland China and Korea frequently impact

remote sites around the Yellow Sea (Kim et al., 2011). Oxy-

genated organic species observed within atmospheric water

and aerosol samples at coastal sites in South Korea (Decesari

et al., 2005; Lee et al., 2015) are evidence for AAOP reac-

tions occurring in this part of the world.

Fog water was collected at BYI to characterize the com-

position of fog formed in aged air masses intercepted in the

eastern Yellow Sea. Frequent sea fog events are observed

at BYI, particularly during the late spring and early sum-

mer (Cho et al., 2000; Zhang et al., 2009). In addition to

gathering new information about the composition of fogs in

this little-studied region, chemical measurements discussed

herein helped to determine whether AAOP reactions oc-

curred at BYI, either within the fog or upwind of the sam-

pling site within cloud droplets/wet aerosol particles. Specif-

ically, it was hypothesized that highly oxidized sulfur and ox-

idized organics (e.g., low molecular mass organic acids such

as oxalic acid) would be measured within the fog water, in-

dicating that AAOP reactions had occurred.

2 Methods

2.1 Study overview

Fog water was collected from 29 June through 21 July

2014 on BYI at an established atmospheric research center

(ARC) run by the Korean National Institute for Environmen-

tal Research (NIER; 37◦58′0′′ N, 124◦37′4′′ E). The collec-

tion site was approximately 100 m above sea level (Yoo et al.,

2010; Zhang et al., 2009) and was collocated with a meteo-

rological station and an international Interagency Monitor-

ing of Protected Visual Environments (IMPROVE) network

site. Meteorological data were accessed online (http://rp5.

ru/Weather_archive_on_Baengnyeong_Island). The ARC is

on the northwest corner of the island; to the east and south

are local agricultural sources of emissions and small towns
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that are home to approximately 4 000 total permanent res-

idents. Regular transport of air masses from eastern China

and mainland South Korea were expected to provide a high

loading of pollutants to the island (Kim et al., 2006), and

frequent haze events were indeed encountered during the

study. Three-day (72 h) back trajectories generated using

the NOAA HySPLIT model (online version: http://ready.arl.

noaa.gov/HYSPLIT.php; 0.5◦ global GDAS archived mete-

orological data) were used to determine the upwind histo-

ries of air masses sampled during fog events. The model

was initiated using the coordinates of the research station, a

height of 100 m, and the approximate beginning time of each

fog event. Latitude, longitude, and air mass relative humid-

ity (RH) as estimated by the model were outputted at each

1 h interval. Periods during which large-scale fires may have

impacted fog samples were detected using MODIS archived

graphics retrieved from the Naval Research Lab 7 SEAS

Data Repository (http://www.nrlmry.navy.mil/aerosol-bin/

7seas/view_7seas_by_date_t.cgi) and NASA FIRMS (pro-

duced by the University of Maryland and provided by NASA

FIRMS operated by NASA/GSFC/ESDIS; https://earthdata.

nasa.gov/active-fire-data-tab-content-6).

2.2 Fog collection and handling

A size-fractionating Caltech Active Strand Cloudwater Col-

lector (sf-CASCC; Demoz et al., 1996) was used to collect

small and large fog droplets (diameters predominantly 4–16

and < 16 µm, respectively). The sf-CASCC is a polycarbon-

ate structure outfitted with a fan at the rear to pull droplet-

laden air into the body of the collector (at 19 m3 min−1).

Droplets were impacted onto rows of forward-tilted Teflon

rods and strands and pulled by gravity and aerodynamic drag

into Teflon sampling troughs at the bottom of the collec-

tor. Fog water was collected for durations of 1 to 3 h; four

events (1, 2, 5, and 18 July) were long enough for collec-

tion of multiple fog samples. A Gerber Particulate Volume

Monitor (PVM-100; Gerber, 1991) was used to determine

the liquid water content (LWC) of the atmosphere during

the study; an approximate threshold of 30 mgm−3 was used

to initiate fog sampling. When fog was not present, the sf-

CASCC inlet and outlet were covered to prevent collection

of contaminants onto the inner surfaces of the collector. The

sf-CASCC was cleaned after each fog event: a high-power

sprayer was used to rinse deionized water (approx. 2–3 L)

through the collector body. Field blanks were collected af-

ter each cleaning, and were stored and analyzed in the same

manner as samples. Limits of detection (LODs) were calcu-

lated using these blanks and are tabulated in Table 1. Deep

cleanings were also performed periodically by removing the

Teflon strands, rods, and troughs from the body of the sf-

CASCC and scrubbing all surfaces with Triton X-100 de-

tergent, then thoroughly rinsing all surfaces with deionized

water. Collected fog water was refrigerated for a short period

of time (< 3 h) prior to separation into aliquots for specific

chemical analyses.

Contamination from Triton X-100 detergent in the fog wa-

ter samples between 14 and 19 July and (seven samples)

was discovered by positive ionization HR-ToF-MS analysis.

TOC concentrations are not reported for the affected sam-

ples; however, duplicate analyses of standards of inorganic

ions and organic acids containing Triton X-100 were not dif-

ferent from uncontaminated standards. Peroxides, formalde-

hyde, and S(IV) were also assumed to be unaffected by the

contamination.

Deionized water used in analyses and sample collection

at BYI was obtained from a distillation and ion exchange–

UV light purification system at the ARC. The calculated

charge balance and sample volume were used to determine

whether measurements made from a given fog sample were

accurate and should be included in results (most samples

not containing balanced ionic charges consisted of small liq-

uid volumes). If charge balance, which included all organic

and inorganic ionic species, was not within 1.0± 0.3 (pos-

itive/negative charge), that sample was not included (4 of

17 samples were excluded). Directly after sample collection,

liquid water from samples with only small collected volumes

was dispensed to aliquots according to volume needed and

importance of analysis to the study purpose; therefore, in

some cases, only some analyses could be carried out for a

given sample. For those samples with insufficient volumes

(< 2 mL) of the small droplet fraction due to a predominance

of large droplets in the sampled fog, the large droplet frac-

tion was assumed to be representative of the entire fog wa-

ter sample in data analyses. Chemical and physical inter-

actions differ between droplet sizes, and the collection of

different sizes of droplets helps preserve real differences in

drop composition as compared to bulk fog sampling (Hoag

et al., 1999; Moore et al., 2004a, b; Reilly et al., 2001). Mean

fog constituent concentrations were calculated from the two

droplet fractions (e.g., [(small drop sample volume × small

sample concentration) + (large drop volume × large drop

concentration)]/total sample volume); mean, median, maxi-

mum, and minimum values calculated over the size fraction

weighted values of all samples were used in further discus-

sion of the fog chemical composition. Air equivalent concen-

trations (also referred to as loadings) were calculated from

molar concentrations in water to establish trends in fog water

constituents independent (or less dependent) of the amount

of liquid water present during a given fog event. Equation (1)

was used, where i represents a given chemical constituent of
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Table 1. Mean, minimum, and maximum concentrations of organic and inorganic species quantified in fog samples collected at BYI. Values

below the LOD are shown in italics.

No. of Aqueous concentration Uncertainty Air equivalent concentration

Chemical Unit samples Mean Min Max LOD (95 % CI) Mean Unit

pH – 11 3.94 3.48 5.00 – – 11.8 nmolm−3

NH+
4

µM 13 2220 253 6090 7.41 4 97.8 nmolm−3

NO−
3

µM 13 1260 185 4900 0.34 10 49.0 nmolm−3

SO−2
4

µM 13 730 72.0 2270 7.16 0.4 26.6 nmolm−3

Na+ µM 13 551 24 2920 2.06 2 7.55 nmolm−3

Cl− µM 13 253 22 900 0.76 3 9.29 nmolm−3

K+ µM 13 83 16 172 0.70 2 3.17 nmolm−3

Ca+2 µM 13 77 12 217 0.22 1 3.23 nmolm−3

Mg+2 µM 13 73 13 276 0.54 1 2.53 nmolm−3

Peroxides µM 11 7.8 0.4 58.9 0.17 0.2 0.45 nmolm−3

S(IV) µM 11 2.36 0.25 6.27 0.18 0.001 0.12 nmolm−3

NO−
2

µM 13 2.1 0.3 5.6 0.05 0.9 0.18 nmolm−3

TOC mgCL−1 7 17.0 4.66 24.8 0.26 0.03 413 ngC ,m−3

Acetate µM 11 138 19.3 640 2.36 0.007 4.77 nmolm−3

Formate µM 11 120 1.77 532 1.47 0.05 8.47 nmolm−3

Oxalate µM 11 41.5 5.86 110 1.47 0.03 1.99 nmolm−3

Succinate µM 11 22.9 3.31 52.6 0.74 0.002 1.29 nmolm−3

Maleate µM 11 21.1 3.04 58.8 0.29 0.02 0.72 nmolm−3

Malonate µM 11 10.7 1.48 24.8 0.45 0.002 0.46 nmolm−3

Pyruvate µM 11 9.19 0.79 38.8 0.23 0.02 0.48 nmolm−3

Methanesulfonate µM 11 7.75 1.77 18.6 0.18 0.009 0.30 nmolm−3

HCHO µM 10 7 3 21 4.81 2 0.65 nmolm−3

Glutarate µM 11 6.5 0.92 18.3 0.66 0.02 0.30 nmolm−3

Valerate µM 11 1.03 0.21 3.78 0.06 0.004 0.11 nmolm−3

Propionate µM 11 0.88 0.35 1.36 0.06 0.004 0.11 nmolm−3

Adipate µM 11 0.09 <LOD 0.24 0.006 0.04 0.01 nmolm−3

Salicylate µM 11 0.06 0.001 0.15 0.0003 0.04 0.006 nmolm−3

Benzoate µM 11 0.06 <LOD 0.15 0.002 0.02 0.005 nmolm−3

Pinate µM 11 0.009 <LOD 0.03 0.001 0.01 0.0005 nmolm−3

Azelate µM 11 0.02 <LOD 0.09 0.001 0.03 0.0009 nmolm−3

All organic acids µM 11 379 138 1000 – – 19.0 nmolm−3

interest.

nmol i

m3air
=

µmol i

L sample
×

L

1000 mL
×

mL

1.00 g

×mass sampled (g)×
hr

m3 air
×

1

time sampled (h)

×
1000 nmol i

µmol i
(1)

The collection rate of the sf-CASCC was assumed to be

19.0 m3 airmin−1 (Demoz et al., 1996) and the density of wa-

ter was assumed to be 1.00 gmL−1.

2.3 Fog water analysis

Samples were each weighed and divided into aliquots for

analyses, and remaining fog water was stored frozen in Nal-

gene wide-mouth HDPE plastic bottles (also used for col-

lection). Measurement of fog water pH was carried out at the

BYI ARC using a Cole-Parmer microelectrode and pH meter,

calibrated with pH 4 and 7 buffers. The mean of three repli-

cate measurements was recorded for each sample. Preserva-

tion of other aliquots for chemical analyses (as performed

previously; e.g., Benedict et al., 2012) was as follows:

peroxides were preserved with para-hydroxyphenylacetic

acid (POPHA) and ethylenediaminetetraacetic acid (EDTA),

S(IV) was stabilized using formaldehyde and trans-1,2-

cyclohexylenedinitrilotetraacetic acid (CDTA) and bovine

catalase enzyme was added to eliminate hydrogen peroxide,

formaldehyde was preserved with Na2SO3 and CDTA, sam-

ples for analysis of major ionic species (Cl−, NO−2 , NO−3 ,

SO−2
4 , Na+, NH+4 , K+, Mg+2, Ca+2) were aliquoted with-

out added reagents, and microbial activity was eliminated

for the storage of organic acids and other organic com-

ponents by addition of chloroform. Aliquots for TOC and
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Figure 1. Wind speed and direction during fog sampling period,

shown as vector arrows (top): speed is displayed as the length of

each arrow and direction is displayed as tilt, pointing away from

wind origin. LWC measured during the entire study period is shown

in blue along the bottom of the plot. Fog was not collected in mid-

July during the monsoonal period.

carbohydrates (including levoglucosan) analysis were taken

from thawed samples after arrival at Colorado State Uni-

versity (CSU). Additional organic molecules were identified

and/or quantified via high-performance liquid chromatogra-

phy (HPLC) followed by negative electrospray ionization

high-resolution time-of-flight mass spectrometry ((-)-ESI-

HR-ToF-MS) from the aliquot preserved for organic acids

analysis. Levoglucosan and other carbohydrates were mea-

sured using high-performance anion exchange chromatogra-

phy with pulsed amperometric detection (HPAEC-PAD) as

described previously (Sullivan et al., 2008) from frozen re-

maining fog water samples; only some samples were ana-

lyzed for carbohydrates.

3 Results and discussion

Fog water was collected during nine fog events (17 total sam-

ples) at the BYI ARC during July 2014; seven events and 13

samples were included in mean chemical concentrations cal-

culated over the duration of the sampling campaign and will

be discussed here (Fig. 1). Events on 2 and 18 July persisted

for several hours, allowing collection of up to five samples

per event. Air masses sampled during the seven fog events

traveled either from the south over the Yellow Sea as doc-

umented in Zhang et al. (2009), from the west over eastern

China, from the east over the Sea of Japan, or from the north

over northeastern China (Fig. 2).

3.1 Fog characteristics and major contributing species

A moderately acidic pH was observed (study mean 3.94,

ranging between 3.48 and 5.00). This value is intermedi-

ate between values measured in fog and cloud samples from

Southeast Asia (Mount Tai: pH 3.68, Wang et al., 2011; Jeju

Island, Korea: pH 5.2, Kim et al., 2006; Daekwanreung, Ko-

rea: pH 4.7, Kim et al., 2006; and Shanghai, China: pH 5.97,

Li et al., 2011a). Major inorganic species contributing to the

measured acidity of the fog water at BYI (Table 1; Fig. 3)

were NH+4 (mean concentration of 2220 µM), followed by

NO−3 (1260 µM) and SO−2
4 (730 µM); these concentrations

were elevated compared to fog and cloud samples collected

globally (e.g., Collett et al., 2002; Raja et al., 2008; Wang

et al., 2011). Sea salt was also an abundant constituent of the

fog water (mean concentrations of 551 µM Na+ and 253 µM

Cl−), as was organic matter (mean 276 µM, estimated using

a molecular mass of 100 gmol−1 and OM/OC=1.8 Zhang

et al., 2005). The mean NH+4 concentration measured at BYI

was within the upper range of measured NH+4 in fog and

cloud samples (similar to, for example, the Po Valley, Italy

(Fuzzi et al., 1992) and Baton Rouge, Louisiana; Raja et al.,

2008). Although agriculture was a main land use on BYI, no

correlation between wind direction and fog NH+4 concentra-

tions was observed (Fig. SI-1 in the Supplement), suggest-

ing long-range transport of fine particle NH+4 as an impor-

tant source. The concentrations of Ca+2 (mean 77 µM) were

within the range of previous studies in other, remote parts of

the world (Benedict et al., 2012; Munger et al., 1989), in-

dicating that inputs to fog water chemistry by mineral dust

were likely unimportant during the study period (Arimoto

et al., 2004; Mattigod et al., 1990; Kawamura et al., 2004).

Concentrations of nearly all species were highest in sam-

ples with westerly back trajectories (Fig. 4). Anthropogenic

influence was likely greatest from this sector because of the

large number of urban areas and major industry in Shan-

dong Province and surrounding regions (Cao et al., 2006).

The lowest concentrations of most species originated from

the east (note that only one sample included in the analy-

ses originated from the east). The only exceptions were Na+,

from the north, and H+, which was least abundant from the

west due to the contribution of NH+4 to fog acidity.

3.2 Marine source contribution

Evidence of a marine contribution to fog composition was

clear. Upwind trajectories of all air masses sampled included

some duration over the Yellow Sea, and in some cases the Sea

of Japan (Fig. 2). Measured Ca+2 was contributed in part by

sea salt particle scavenging: 21 % was attributed to sea salt

(Fig. SI-2) using an observed ratio in seawater of 0.022 mol

Ca+2/mol Na+ (Lee, 2007; Radojevic and Bashkin, 2006).

Depletion of particle-phase Cl− appears to have occurred

in some scavenged sea salt particles, likely due to displace-

ment of HCl to the gas phase by NO−3 and SO−2
4 (Mouri

and Okada, 1993) or organic acids (Wang et al., 2015). Mea-

sured Cl−/Na+ molar ratios ranged as low as 0.08, with a

mean value of 1.20; this mean value is within measurement

error (Table 1) of the typical sea salt ratio of 1.16 (Radoje-

vic and Bashkin, 2006). In some samples, the Cl− concen-

tration was in excess of the sea salt ratio, indicating possible

contributions from other sources such as incineration or coal

combustion (McCulloch et al., 1999). Small contributions of

K+ (study mean concentration 83 µM) and SO−2
4 were esti-

mated to derive from scavenged sea salt particles: only 12 %

of the measured K+ and 6 % of the SO−2
4 were attributed to

www.atmos-chem-phys.net/16/437/2016/ Atmos. Chem. Phys., 16, 437–453, 2016
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Figure 2. Back trajectories of air masses intercepted during fog

events (72 h at 1 h time resolution; HySPLIT). Locations labeled on

plot include Mount Tai, where previous atmospheric water chemi-

cal measurements were made, and the highest throughput shipping

ports in the region pictured. The BYI ARC is shown as a gold dia-

mond. Sectors were defined to determine whether particular source

regions existed for chemical constituents of the fog: northerly (30

June and 1 July), westerly (2, 14, and 15 July), southerly (18 and

20 July), and easterly (5 July). Each trajectory was initiated at the

approximate beginning of a fog event. Imagery from NASA Blue

Marble; plot generated using Python Matplotlib Toolkit BaseMap.

a marine source on average. This estimate of nss-SO−2
4 does

not account for SO−2
4 formed via oxidation of biogenic, ma-

rine dimethyl sulfide, which could be as much as 12 % (Yang

et al., 2009). Elevated concentrations of cations including K+

in aerosol have also been associated with the influence of

biomass burning activities (Andreae, 1983; Lee et al., 2010),

mineral dust from arid regions (Zhang et al., 1993), and/or

construction in urban areas (Li et al., 2011b).

3.3 Inorganic sulfur

Aqueous sulfur oxidation in the pH range measured in this

study (3.48–5.00) is expected to be dominated by reaction

with H2O2 (Rao and Collett, 1995). The mean concentrations

of total peroxides and S(IV) (7.8 and 2.36 µM, respectively;

Table 1) were low compared to the mean S(IV) and peroxides

concentrations measured during summer 2007 and 2008 field

campaigns at Mount Tai, China (Shen et al., 2012), consistent

with a low potential for additional S(IV) oxidation within the

BYI fog samples (Fig. 5). Since Mount Tai is located west

across the Yellow Sea from BYI and is influenced by the

abundant SO2 sources in Shandong Province, including large

numbers of coal-fired power plants, these observations are

consistent with extensive aging of S(IV) during transport to
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Figure 3. Concentrations of major components quantified in BYI

fog samples. Boxes show 25th and 75th percentiles with the median

bar in the center, and whiskers show outliers. Total organic mat-

ter was calculated from measured TOC using a ratio of 1.8 g/1.0 g

OM/OC (Zhang et al., 2005) and an estimated mean molecular mass

of 100 gmol−1. Note that for most ions, n= 13; for pH, S(IV), and

peroxides, n= 11; for formaldehyde, n= 10; and for total organic

matter, n= 7.

the BYI fog collection site. In contrast to BYI measurements,

cloud samples from remote areas contain high concentrations

of peroxides and low concentrations of S(IV) (1.9–610 µM

peroxides, < 0.91–3.7 µM S(IV); Straub et al., 2007; Bene-

dict et al., 2012). Measured SO−2
4 was abundant within BYI

samples, demonstrating that sources of atmospheric sulfur

existed upwind, and that oxidation of sulfur occurred prior to

arrival at BYI. Between 98.9 and 99.8 % of sulfur measured

(as the sum of SO−2
4 and S(IV)) was in the form of SO−2

4 .

International shipping lanes could also contribute to the mea-

sured SO−2
4 concentrations in BYI fog: some of the world’s

largest shipping ports are located in the Yellow Sea (Streets

et al., 2000). The contribution of fine particle (< 1 µm diam-

eter) SO−2
4 has been estimated at ≤15 % from ship oil com-

bustion in this region (Lauer et al., 2007), and shipping routes

in the Yellow Sea have been identified as major SO2 source

regions (Kang et al., 2006). Shipping emissions have also

been associated with elevated concentrations of other atmo-

spheric constituents, including NO−3 (Prabhakar et al., 2014).

Methanesulfonic acid (MSA) was also observed within all

fog samples collected at BYI, indicating that oxidation of

marine emissions via either •OH or •NO3 reaction occurred

upwind of fog collection at BYI (Seinfeld and Pandis, 2006;

Kukui et al., 2003; Scaduto, 1995).
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Figure 4. Sector analysis of most abundant inorganic fog water components, as well as selected organic acids. Highest concentrations of

most species originated from the west. For Na+ and Cl−, high concentrations were also observed from the south. Ca+2 concentrations were

also heightened within samples with northerly trajectories, which may suggest a continental dust source. In agreement with high measured

NH+
4

concentrations, pH was highest from the west. Note that samples were low in volume in some cases so that pH analyses were not

performed. For inorganic species except pH, n= 1 easterly, n= 3 northerly, n= 4 southerly, and n= 5 for westerly trajectories. For organic

species and pH, n= 0 easterly, n= 2 northerly, n= 3 southerly, and n= 4 westerly.
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Figure 5. Droplet size-segregated concentrations of S(IV) and per-

oxides quantified in BYI fog samples. S(IV) concentrations were

low in BYI fog as compared to those measured at Mount Tai (sum-

mer 2007 and 2008; Shen et al., 2012). For both species, n= 11.

3.4 Total organic carbon

Concentrations of fog water TOC measured at BYI were

4.66–24.8 mgCL−1, with a mean of 17.0 mgCL−1, compa-

rable to concentrations measured in polluted environments

globally (Herckes et al., 2013). Although the mean BYI TOC

was also similar to that measured in cloud water from Mount

Tai during the summer of 2008 (15.8 mgCL−1), several sam-

ples impacted by agricultural burning were collected during

the latter campaign ranging between 100 and 200 mgCL−1

(Shen, 2011).

3.5 Organic acids

The products of AAOP reactions commonly include C2–C4

(two to four carbon) oxo- and dicarboxylic acid molecules

(Lim et al., 2010). The percent BYI fog TOC accounted for

by organic acids was 36–69 % (mean 52 % by mole; n= 6),

which is at the upper end of values typical for fog samples

(e.g., 16 % at Davis, CA, Herckes et al., 2002a; 18 % at An-

giola, CA, Ervens et al., 2003; 43 % at Fresno, CA, Collett

et al., 2008; and 44 % at Baton Rouge, LA, and 51 % at Hous-

ton, TX, Raja et al., 2008). Among the organic acids quanti-

fied, major contributions to TOC came not only from acetate

and formate but also succinate, maleate and oxalate, with

lesser but substantial contributions from other acids (Fig. 6).

Concentrations of low molecular mass organic acids were

strongly correlated with one another (air equivalent concen-

trations): r2
= 0.83 on average, with probability p ≤0.01 of

random correlation, ranging from 0.47 to 0.99 (p ≤0.001

to 0.2) for C1–C6 mono- and diacids. The predominance of
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Figure 6. Concentrations of major carbonaceous components quan-

tified in BYI fog samples. Box-and-whisker plot shows 25th and

75th percentiles with the median bar in the center, and whiskers

at the min and max. Note that for C1–C5 organic acids, n = 11;

for formaldehyde, n= 10; and for components with C6 or greater,

n= 11. Pie chart (inset) shows carbonaceous composition as a per-

centage of TOC (only those samples with results from all organic

analyses included, n= 6).

succinate suggests a major anthropogenic source of organic

acids at BYI (Kawamura and Ikushima, 1993). While sub-

stantial contributions of oxalate to TOC suggest that AAOP

reactions took place, they are not unequivocal evidence of it,

since other atmospheric sources for oxalate have been docu-

mented (e.g., Kawamura and Kaplan, 1987; Yamasoe et al.,

2000). The presence of MSA in the observed samples and

its correlation with other measured organic acids (r2
≤ 0.7

and p ≤ 0.02 with all low molecular mass organic acids,

r2
= 0.88 and p ≤ 0.001 with oxalate) additionally supports

the occurrence of AAOP upwind of fog water collection.

3.6 Mass spectral analysis

Polar organic components of the fog water with ≥C4

were tentatively identified using HPLC-(-)-ESI-HR-ToF-

MS. These compounds were biogenic and anthropogenic

in origin, including pinic acid and monoterpene-derived

organosulfates, and phthalic acid (Table 2). Dicarboxylic and

hydroxy dicarboxylic acids are prominent within the polar

organic matter of the BYI fog samples. A van Krevelen dia-

gram (Chen et al., 2015; Heald et al., 2010; Mazzoleni et al.,

2010; Noziere et al., 2015) was used to illustrate the distribu-

tion of organic species identified within all fog water samples

(CHO, CHNO, CHOS, CHNOS; Fig. 7), with the objectives

of showing groupings of like species within the fog samples,

and comparing the fog composition to previously analyzed

atmospheric samples.

Molecules differing by specific, oxygen-containing el-

emental combinations can be identified in van Krevelen

space by slope: i.e., addition of carbonyl (−2H, +1O;

slope=−2); carboxylic acid (−2H, +2O; slope = −1); al-

cohol (or oxidation of an aldehyde to a carboxylic acid

group; slope = 0); or water (slope =+2). In BYI fog sam-

ples, families of species differing by methylene (CH2) are

visible: (1) saturated diacids (C5–C7; slope =−0.5), (2)

hydroxy diacids (C5–C7; slope=−0.7), (3) hydroxy mo-

nounsaturated diacids (C7–C9; slope =−0.8), (4) monoun-

saturated diacids (C4–C9; slope =−1), (5) nitrophenols

(dimethyl nitrophenol, methyl nitrophenol, and nitrophenol;

slope =−2.3), and (6) organosulfates (C9H16O7S through

C6H10O7S; slope =−0.3). The slopes between points in

these families vary because the O content remains con-

stant while the C and H contents differ. A family of phtha-

late derivatives (7) with differing oxygen contents (C8H6O3

through C8H6O5; slope = 0) is also visible. Several CHO

species were additionally identified as both biogenic and

anthropogenic secondary organic species; for example, 3-

methyl-1,2,3-butanetricarboxylic acid (MBTCA) was tenta-

tively identified (m/z− 203.058 and formula C8H12O6), as

was diaterpenylic acid (m/z− 189.078; C8H14O5), which are

gas-phase oxidation products of α-pinene (Szmigielski et al.,

2007; Yasmeen et al., 2010). Based on a qualitative analysis

of mass spectral peak areas, westerly air masses brought the

greatest quantities of anthropogenic species to BYI fog wa-

ter, while the greatest biogenic species quantities were con-

tributed by air masses from the west and east (depending on

the constituent; note that only one sample with an easterly

back trajectory was available; see Fig. SI-5). Mean O / C and

H / C of ambient aerosol samples (mass-normalized, from

aerosol mass spectrometry; Heald et al., 2010; Ng et al.,

2011; Chen et al., 2015) typically fall on a line within van

Krevelen space at a slope of −1 and y intercept of 2 for

samples with fresh emissions and a slope of −0.5 for ru-

ral/remote samples. Within the molecular level analysis em-

ployed here, the slopes between −1 and −0.5 appear to

correspond to families of organic acids differing by a CH2

group, with differing levels of unsaturation and/or number

of hydroxyl groups. The space within the van Krevelen di-

agram occupied by these identified families indicates they

are chemically similar to aged aerosol from previous studies

(Chen et al., 2015) and may be analogous to ring-opened and

oxygenated species present within the fragmentation scheme

of the atmospheric aging process (Kroll et al., 2009).

3.7 Nitrophenols

Four identified nitrophenols were quantified via HPLC-

(-)-ESI-HR-ToF-MS (Table SI-4 in the Supplement):

4-nitrophenol (20.9±1.8 nM; max 1440 nM), 2-methyl-4-

nitrophenol (3.6±0.5 nM; max 40 nM), 2,4-dinitrophenol

(20.2±0.1 nM; max 70 nM). Concentrations detected in

most previous fog and cloud water field studies were
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Table 2. Chemical formulae and possible structures of organic components identified via HPLC-(-)-ESI-HR-ToF-MS within BYI fog water

samples. Formulae with multiple isomers (different retention times) are marked with an asterisk (∗). Multiple plausible formulae were

identified for species prefixed with “e.g.”. Only species with mass spectral abundances ≥500 abundance units were included.

tR Possible identification

m/z− Molecular formula (min) O/C H/C and references

85.0311 C4H6O2 3.182 0.5 0.67 Methacrylic acid

105.034 9.32

113.027 C5H6O3 3.67 0.6 1.2 Oxopentenoic acid

117.057 C5H10O3 4.54 0.6 2 Hydroxypentanoic acid∗

117.057 C5H10O3 3.43 0.6 2 Hydroxypentanoic acid∗

121.031 C7H6O2 9.82 0.29 0.86 Hydroxybenzaldehyde

127.042 C6H8O3 5.79 0.5 1.3 Oxohexenoic acid

129.022 C5H6O4 3.67 0.8 1.2 Pentenedioic acid∗

129.021 C5H6O4 3.18 0.8 1.2 Pentenedioic acid∗

129.057 C6H10O3 5.96 0.5 1.7 Methyloxopentanoic acid∗

129.057 C6H10O3 7.00 0.5 1.7 Methyloxopentanoic acid∗

131.036 C5H8O4 3.18 0.8 1.6 Methylsuccinic acid

131.036 C5H8O4 4.34 0.8 1.6 Glutaric acid

131.073 C6H12O3 9.82 0.5 2 Hydroxyhexanoic acid∗

131.073 C6H12O3 7.95 0.5 2 Hydroxyhexanoic acid∗

137.026 C7H6O3 16.17 0.43 0.86 Salicylic acid

138.021 C6H5NO3 13.18 0.5 0.83 4-Nitrophenol

143.036 C6H8O4 3.18 0.67 1.7 Hexenedioic acid∗

143.037 C6H8O4 6.86 0.67 1.7 Hexenedioic acid∗

143.073 C7H12O3 11.43 0.43 1.7 Methylpentenedioic acid

145.051 C6H10O4 8.93 0.67 1.7 Methylglutaric acid∗

145.052 C6H10O4 7.10 0.67 1.7 Adipic acid

145.052 C6H10O4 9.52 0.67 1.7 Methylglutaric acid∗

149.026 C8H6O3 9.32 0.38 0.75 Formylbenzoic acid

152.036 C7H7NO3 17.85 0.43 1 Methylnitrophenol

152.037 C7H7NO3 19.33 0.43 1 2-Methyl-4-nitrophenol

154.016 C6H5NO4 10.46 0.67 0.83 Nitroguaiacol

157.052 C7H10O4 6.32 0.57 1.4 Heptenedioic acid∗

157.053 C7H10O4 5.22 0.57 1.4 Heptenedioic acid∗

159.068 C7H12O4 10.79 0.57 1.7 Pimelic acid

163.042 C9H8O3 12.63 0.33 0.89 Previously identified (Desyaterik et al., 2013)

165.021 C8H6O4 10.13 0.5 0.75 Phthalic acid

165.021 C8H6O4 12.06 0.5 0.75 Benzenedicarboxylic acid

166.053 C8H9NO3 23.61 0.38 1.1 Dimethylnitrophenol

171.067 C8H12O4 8.33 0.5 1.5 Octenedioic acid∗

171.068 C8H12O4 6.95 0.5 1.5 Octenedioic acid∗

171.983 19.712

173.047 C7H10O5 4.22 0.71 1.4 Isoprene photooxidation product (Nguyen et al., 2011)

179.037 C9H8O4 15.23 0.44 0.89 Phthalic acid, methyl ester

181.016 C8H6O5 5.65 0.63 0.75 Hydroxybenzenedicarboxylic acid∗

181.016 C8H6O5 8.81 0.63 0.75 Hydroxybenzenedicarboxylic acid∗

181.019 C5H10O5S 2.82 1 2 Previously identified (Nguyen et al., 2014a)

1–300 nM (Harrison et al., 2005), in the same range as

identified in this study. However, the concentrations of

4-nitrophenol measured within cloud water from Mount

Tai were as high as 15 µM (Desyaterik et al., 2013). The

lower concentrations measured at BYI versus at Mount

Tai likely reflect the strong influence of aged biomass

burning emissions in the Mount Tai region, and may also

be a result of aqueous aging in the samples collected at

BYI, since species such as 4-nitrophenol are oxidized by
•OH in the aqueous phase (Zhang et al., 2003). Other

nitrate-containing species (tentatively identified; Table 2)

included a second methyl nitrophenol isomer (m/z− 152.04,

C7H7NO3), a hydroxy nitrophenol (also called a nitrocat-

echol; m/z− 154.02, C6H5NO4), a dimethyl nitrophenol

(m/z− 166.05, C8H9NO3), and three other oxygenated

nitrophenols (m/z− 228.02, C8H7NO7; m/z− 284.05,
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Table 2. Continued.

tR Possible identification

m/z− Molecular formula (min) O/C H/C and references

182.012 C7H5NO5 18.75 0.71 1 Carboxynitrophenol

182.999 C4H8O6S 1.92 1.5 2

183.007 C6H4N2O5 15.08 0.83 0.67 2,4-Dinitrophenol

185.083 C9H14O4 13.54 0.44 1.6 Pinic acid∗

185.084 C9H14O4 9.70 0.44 1.6 Nonenedioic acid∗

187.063 C8H12O5 5.10 0.63 1.5 α-Pinene oxidation product (Claeys et al., 2009)∗

187.064 C8H12O5 7.76 0.63 1.5 α-Pinene oxidation product∗

189.078 C8H14O5 6.54 0.63 1.8 Diaterpenylic acid;

known oxidation product of α-pinene (Yasmeen et al., 2010)

195.034 C6H12O5S 6.17 0.83 2

195.035 C6H12O5S 6.0 0.83 2

197.022 C7H6N2O5 21.23 0.71 0.86 Methyl dinitrophenol

201.079 C9H14O5 10.74 0.56 1.6 α-Pinene oxidation product (Kahnt et al., 2013)

203.058 C8H12O6 8.75 0.75 1.5 Methylbutanetricarboxylic acid (MBTCA);

gas-phase pinonic acid oxidation product (Szmigielski et al., 2007)

211.031 C6H12O6S 7.40 1 2

211.031 C6H12O6S 6.86 1 2

211.031 C6H12O6S 9.40 1 2

225.009 C6H10O7S 2.50 1.2 1.2 Methylglyoxal oxidation product (Sareen et al., 2010)

228.021 C8H7NO7 12.97 0.88 0.88 Oxygenated nitrophenol

239.025 C7H12O7S 4.10 1 1.7 1,3,5-Trimethylbenzene oxidation product (Praplan et al., 2014)

239.048 21.56 0.5 2

241.005 C6H10O8S 2.18 1.5 1.7

253.042 C8H14O7S 7.59 0.88 1.8 Limonene oxidation product (Mazzoleni et al., 2010; Surratt et al., 2008)∗

267.057 C9H16O7S 10.55 0.78 1.8 Limonene oxidation product (Mazzoleni et al., 2010; Nguyen et al., 2014)∗

267.058 C9H16O7S 10.85 0.78 1.8 Limonene oxidation product(Mazzoleni et al., 2010; Nguyen et al., 2014)∗

267.058 C9H16O7S 9.92 0.78 1.8 Limonene oxidation product (Mazzoleni et al., 2010; Nguyen et al., 2014)∗

267.058 C9H16O7S 11.00 0.78 1.8 Limonene oxidation product (Mazzoleni et al., 2010; Nguyen et al., 2014)∗

269.036 C8H14O8S 7.44 1 1.8

284.047 C11H11NO8 14.96 0.72 1

294.068 C10H17NO7S 24.87 0.7 1.7 Monoterpene oxidation product (Surratt et al., 2008)∗

294.068 C10H17NO7S 26.71 0.7 1.7 Monoterpene oxidation product∗

297.060 e.g., C17H14O3S 8.87

310.063 C10H17NO8S 19.56 0.8 1.7 Monoterpene oxidation product (Mazzoleni et al., 2010; Surratt et al., 2008)∗

333.021 C14H10N2O6S 20.65 0.43 0.71

361.165 C15H26N2O8 12.32 0.53 1.7

497.333 C23H50N2O7S 16.74 0.3 2.2

514.322 C22H49N3O8S 16.74 0.36 2.2

635.351 e.g., C26H56N2O13S 18.46

C11H11NO8; and m/z− 361.16, C15H26N2O8). These

nitrogen-containing organic species may have originated

from biomass burning and/or wildfires in Southeast Asia

and eastern Russia during the fog study period. For the three

events with quantified fog nitrophenol concentrations above

detection limits, large-scale fires were detected in upwind

source regions (MODIS data). Levoglucosan (a biomass

burning marker) concentrations measured within fog sam-

ples from BYI were below background concentrations

measured in aerosol samples (Weber et al., 2007); however,

those concentrations measured within the fog from 2 July

were high relative to other fog samples (Fig. SI-7), and thus

may have been impacted by biomass burning emissions.

Aqueous solubility of levoglucosan as well as oxidation

processes may have affected the concentrations measured

in BYI fog samples. Concentrations of the biomass burning

marker K+ were additionally above the study mean on

dates when regional fires were detected (Fig. SI-6) and a

correlation of r2
= 0.93 (n= 11, p≤ 0.001) was observed

between nss-K+ and total quantified nitrophenols as air

equivalent concentrations (nmolm−3).

3.8 Organosulfates

Organic sulfur (CHOS) species were identified within BYI

fog samples (Table 2), some of which have also been found
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Figure 7. Polar organic compounds identified within fog samples

using HPLC-(-)-ESI-HR-ToF-MS detection illustrated via a van

Krevelen diagram. Colors of points distinguish compound elemen-

tal composition; solid lines show families differing by methylene

groups of diacids (blue, families 1–4), nitrophenols (green, fam-

ily 5), and organosulfates (black, family 6); aromatic oxygenated

species differing by an O atom are also shown (blue, family 7).

Dashed lines show slopes typical of samples in previous studies

(Chen et al., 2015) of −0.5 for remote/rural (top) and −1 for urban

(bottom); organic acid families fit within the space of these previ-

ously analyzed atmospheric samples.

within rainwater (samples collected in urban and rural New

Jersey; Altieri et al., 2009). Most organosulfates identified

were likely from oxidation and sulfonation of biogenic emis-

sions, including m/z− 225.01, 253.04, and 267.06 corre-

sponding to C6H10O7S, C8H14O7S, and C9H16O7S, respec-

tively; however, no isoprene-derived organosulfates were de-

tected in the BYI samples (Surratt et al., 2008). Nguyen et

al. (2014) observed a compound with the formula C8H14O7S

in aerosol samples, and Surratt et al. (2008) showed that

the source may have been esterification of a d-limonene

oxidation product with SO−2
4 . An observed compound at

m/z− 239.02 with a formula of C7H12O7S was previously

identified by Praplan et al. (2014) as an oxidation product

of the anthropogenic species 1,3,5-trimethylbenzene. Sev-

eral pairs of organosulfates appear to have originated from

loss of a hydroxyl group: for example, m/z− 195.03 and

211.03, corresponding to C6H12O5S and C6H12O6S; the

latter species was noted to possibly be formed from the

sulfonation of a fatty acid (Surratt et al., 2008). CHONS

species were also found in the fog samples from BYI, two of

which were identified previously as monoterpene oxidation

products (Surratt et al., 2008): m/z− 294.07 with formula

C10H17NO7S and m/z− 310.06 with formula C10H17NO8S.

A compound with the formula C10H17NO7S was also identi-

fied within Fresno fog samples (Mazzoleni et al., 2010).

3.9 Atmospheric aqueous organic processing

Many features of the fog water at BYI, including the organic

composition and the humid conditions encountered prior to

arrival at the collection site, suggest that components in the

fog were oxidized in the atmospheric aqueous phase. The ox-

idation may have occurred in the fogs themselves or during

upwind transport of wet aerosol later scavenged by the fog.

The RH upwind of fog-producing air masses as they traveled

to BYI was high, with only a few time periods at<50 %, and

mean 65–91 % (Fig. SI-7). Only the air mass intercepted dur-

ing the fog event on 30 June did not encounter RH > 80 %

within 72 h of fog formation at BYI. Mixtures of organic and

inorganic components can easily take up water (growth fac-

tors≤ 1.71 at 85 % RH for several organic acids, Wise et al.,

2003; and ≤ 1.16 at 85 % RH for chamber-generated sec-

ondary organic aerosol, Varutbangkul et al., 2006). It is there-

fore likely that the aerosol LWC was sufficient to allow rad-

ical or even non-radical aqueous reactions to occur upwind

of the BYI fog collection site (Lim et al., 2010, 2013). The

high abundance and large diversity of organic acids, oxidized

sulfur, lack of peroxides, and organosulfates identified within

fog samples also support the hypothesis that AAOP reactions

took place within wetted aerosol particles, in-cloud/fog dur-

ing transit of the intercepted air masses to BYI, or within the

fog at BYI (Lim et al., 2005; McNeill, 2015).

3.10 Size and microphysical considerations

Changes in LWC, species concentrations, and enrichments

of species within large or small droplets can be indicative

of many simultaneous microphysical processes: coalescence

or condensational growth, evaporation, deposition, and col-

lisions between droplets and interstitial particles (Degefie

et al., 2015; Fahey et al., 2005; Seinfeld and Pandis, 2006).

Figure 8 shows differences in large and small droplet con-

centrations of abundant chemical constituents in the BYI fog

samples collected on the two stages of the sf-CASCC. Much

higher volumes of liquid water were typically collected into

the large droplet fraction (> 16 µm) than the small droplet

fraction (4–16 µm) at BYI; on average, the small fraction

comprised only 10 % of the total liquid water volume, in-

dicating relatively large fog droplets made up most of the

LWC. All species shown are enriched in the small droplet (4–

16 µm) size fraction, with the exception of peroxides; similar

observations have previously been reported in many clouds

and fogs, especially for species typically associated with sub-

micron aerosol, including SO−2
4 , NO−3 , NH+4 , and TOC (Ba-

tor and Collett, 1997; Herckes et al., 2007; Munger et al.,

1989). As in most of these prior observations, the pH in

large BYI fog droplets was also typically higher than in small

droplets. Differences in pH among cloud drops can give rise
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Figure 8. Scatter plots showing size distribution of major species in BYI fog water samples. All species shown, with the exception of

peroxides, were enriched in small droplets.

to differences in the rates of pH-dependent chemical reaction

rates, including the aqueous oxidation of S(IV) to SO−2
4 by

ozone or by oxygen in the presence of trace metal catalysts

(Collett et al., 1994; Hegg and Larson, 1990; Rao and Col-

lett, 1998). Enrichment of solutes in large or small fog drops

can also affect rates of removal by fog drop deposition (e.g.,

Fahey et al., 2005; Herckes et al., 2007; Hoag et al., 1999).

4 Conclusions

The fogs at BYI were on average slightly acidic, and the

chemical composition was dominated by NH4NO3 from

long-range transport, with contributions from anthropogenic

nss-SO−2
4 , marine NaCl, and a variety of organic compounds.

Biomass burning activities throughout eastern Russia and

Southeast Asia appear to have contributed K+ and organic

species, including nitrophenols, in some periods. Organosul-

fate species deriving from oxidation products of monoter-

penes (e.g., Surratt et al., 2008; Nguyen et al., 2014) were

observed, several of which have been identified in aqueous

atmospheric samples in the past (Altieri et al., 2009; Maz-

zoleni et al., 2010). Low concentrations of S(IV), high con-

centrations of SO−2
4 , and generally low concentrations of

peroxides suggest that chemical components of the fog water

were highly oxidized during upwind transport and/or within

the local fog. Low-molecular-mass organic acids accounted

for 36–69 % of TOC, a higher fraction than observed in fogs

from other environments, with acetate, formate, succinate,

oxalate, and maleate each contributing > 5 % of TOC on av-

erage. Further analysis of the fog organic matter via HPLC-

(-)-ESI-HR-ToF-MS revealed homologous families of di-

carboxylic acids and nitrophenols. The position within van

Krevelen space occupied by identified organics matches well

with the fragmentation aging regime (at high oxidation state)

shown by Kroll et al. (2009).

Future studies of fog or cloud water composition in the re-

gion should include the characterization of carbonyl species

which have been cited as important AAOP reactants (Er-

vens, 2015) and are direct oxidation precursors of organic

acids. Additional studies to analyze the evolution of gaseous-

, particulate-, and aqueous-phase organics during fog events

as well as the advancement of laboratory-simulated reactions

will be essential in more fully characterizing AAOP reactions

and aqSOA formation.
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