Articles | Volume 16, issue 21
https://doi.org/10.5194/acp-16-13399-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-16-13399-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Overview of mercury dry deposition, litterfall, and throughfall studies
L. Paige Wright
Independent Researcher, Stratford, Prince Edward Island, Canada
Air Quality Research Division, Science and Technology Branch,
Environment and Climate Change Canada, Toronto, Ontario,
Canada
Frank J. Marsik
Department of Climate and Space Sciences and Engineering, University
of Michigan, Ann Arbor, MI, USA
Related authors
No articles found.
Zihan Song, Leiming Zhang, Chongguo Tian, Qiang Fu, Zhenxing Shen, Renjian Zhang, Dong Liu, and Song Cui
Atmos. Chem. Phys., 24, 13101–13113, https://doi.org/10.5194/acp-24-13101-2024, https://doi.org/10.5194/acp-24-13101-2024, 2024
Short summary
Short summary
A novel concept integrating crop cycle information into fire spot extraction was proposed. Spatiotemporal variations of open straw burning in Northeast China are revealed. Open straw burning in Northeast China emitted a total of 218 Tg of CO2-eq during 2001–2020. The policy of banning straw burning effectively reduced greenhouse gas emissions.
Anam M. Khan, Olivia E. Clifton, Jesse O. Bash, Sam Bland, Nathan Booth, Philip Cheung, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christian Hogrefe, Christopher D. Holmes, Laszlo Horvath, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Perez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Donna Schwede, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamas Weidinger, Zhiyong Wu, Leiming Zhang, and Paul C. Stoy
EGUsphere, https://doi.org/10.5194/egusphere-2024-3038, https://doi.org/10.5194/egusphere-2024-3038, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Vegetation removes tropospheric ozone through stomatal uptake, and accurately modeling the stomatal uptake of ozone is important for modeling dry deposition and air quality. We evaluated the stomatal component of ozone dry deposition modeled by atmospheric chemistry models at six sites. We find that models and observation-based estimates agree at times during the growing season at all sites, but some models overestimated the stomatal component during the dry summers at a seasonally dry site.
Irene Cheng, Amanda Cole, Leiming Zhang, and Alexandra Steffen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2895, https://doi.org/10.5194/egusphere-2024-2895, 2024
Short summary
Short summary
Using the Positive Matrix Factorization (PMF) model and observations, we showed natural surface emission (wildfires and re-emitted Hg) dominated anthropogenic contributions to total gaseous mercury (TGM). Decreasing TGM was due to reduced shipping and regional emissions. This has led to increasing relative contributions from natural surface emissions of 1.0–1.6 % yr-1. Results showed Hg control measures have been effective, but greater attention is needed on monitoring surface re-emissions.
Pierluigi Renan Guaita, Riccardo Marzuoli, Leiming Zhang, Steven Turnock, Gerbrand Koren, Oliver Wild, Paola Crippa, and Giacomo Alessandro Gerosa
EGUsphere, https://doi.org/10.5194/egusphere-2024-2573, https://doi.org/10.5194/egusphere-2024-2573, 2024
Short summary
Short summary
This study assesses the global impact of tropospheric ozone on wheat crops in the 21st century under various climate scenarios. The research highlights that ozone damage to wheat varies by region and depends on both ozone levels and climate. Vulnerable regions include East Asia, Northern Europe, and the Southern and Eastern edges of the Tibetan Plateau. Our results emphasize the need of policies to reduce ozone levels and mitigate climate change to protect global food security.
Xiaohong Yao and Leiming Zhang
Atmos. Chem. Phys., 24, 7773–7791, https://doi.org/10.5194/acp-24-7773-2024, https://doi.org/10.5194/acp-24-7773-2024, 2024
Short summary
Short summary
This study investigates long-term trends of criteria air pollutants, including NO2, CO, SO2, O3 and PM2.5, and NO2+O3 measured in 10 Canadian cities during the last 2 to 3 decades. We also investigate associated driving forces in terms of emission reductions, perturbations from varying weather conditions and large-scale wildfires, as well as changes in O3 sources and sinks.
Juanjuan Qin, Leiming Zhang, Yuanyuan Qin, Shaoxuan Shi, Jingnan Li, Zhao Shu, Yuwei Gao, Ting Qi, Jihua Tan, and Xinming Wang
Atmos. Chem. Phys., 24, 7575–7589, https://doi.org/10.5194/acp-24-7575-2024, https://doi.org/10.5194/acp-24-7575-2024, 2024
Short summary
Short summary
The present research unveiled that acidity dominates while transition metal ions harmonize with the light absorption properties of humic-like substances (HULIS). Cu2+ has quenching effects on HULIS by complexation, hydrogen substitution, or electrostatic adsorption, with aromatic structures of HULIS. Such effects are less pronounced if from Mn2+, Ni2+, Zn2+, and Cu2+. Oxidized HULIS might contain electron-donating groups, whereas N-containing compounds might contain electron-withdrawing groups.
Olivia E. Clifton, Donna Schwede, Christian Hogrefe, Jesse O. Bash, Sam Bland, Philip Cheung, Mhairi Coyle, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, and Leiming Zhang
Atmos. Chem. Phys., 23, 9911–9961, https://doi.org/10.5194/acp-23-9911-2023, https://doi.org/10.5194/acp-23-9911-2023, 2023
Short summary
Short summary
A primary sink of air pollutants is dry deposition. Dry deposition estimates differ across the models used to simulate atmospheric chemistry. Here, we introduce an effort to examine dry deposition schemes from atmospheric chemistry models. We provide our approach’s rationale, document the schemes, and describe datasets used to drive and evaluate the schemes. We also launch the analysis of results by evaluating against observations and identifying the processes leading to model–model differences.
Yu Lin, Leiming Zhang, Qinchu Fan, He Meng, Yang Gao, Huiwang Gao, and Xiaohong Yao
Atmos. Chem. Phys., 22, 16073–16090, https://doi.org/10.5194/acp-22-16073-2022, https://doi.org/10.5194/acp-22-16073-2022, 2022
Short summary
Short summary
In this study, we analyzed 7-year (from May 2014 to April 2021) concentration data of six criteria air pollutants (PM2.5, PM10, O3, NO2, CO and SO2) as well as the sum of NO2 and O3 in six cities in South China. Three different analysis methods were used to identify emission-driven interannual variations and perturbations from varying weather conditions. In addition, a self-developed method was further introduced to constrain analysis uncertainties.
Irene Cheng, Leiming Zhang, Zhuanshi He, Hazel Cathcart, Daniel Houle, Amanda Cole, Jian Feng, Jason O'Brien, Anne Marie Macdonald, Julian Aherne, and Jeffrey Brook
Atmos. Chem. Phys., 22, 14631–14656, https://doi.org/10.5194/acp-22-14631-2022, https://doi.org/10.5194/acp-22-14631-2022, 2022
Short summary
Short summary
Nitrogen (N) and sulfur (S) deposition decreased significantly at 14 Canadian sites during 2000–2018. The greatest decline was observed in southeastern Canada owing to regional SO2 and NOx reductions. Wet deposition was more important than dry deposition, comprising 71–95 % of total N and 45–89 % of total S deposition. While critical loads (CLs) were exceeded at a few sites in the early 2000s, acidic deposition declined below CLs after 2012, which signifies recovery from legacy acidification.
Hui Zhang, Xuewu Fu, Ben Yu, Baoxin Li, Peng Liu, Guoqing Zhang, Leiming Zhang, and Xinbin Feng
Atmos. Chem. Phys., 21, 15847–15859, https://doi.org/10.5194/acp-21-15847-2021, https://doi.org/10.5194/acp-21-15847-2021, 2021
Short summary
Short summary
Our observations of speciated atmospheric mercury at the Waliguan GAW Baseline Observatory show that concentrations of gaseous elemental mercury (GEM) and particulate bound mercury (PBM) were elevated compared to the Northern Hemisphere background. We propose that the major sources of GEM and PBM were mainly related to anthropogenic emissions and desert dust sources. This study highlights that dust-related sources played an important role in the variations of PBM in the Tibetan Plateau.
Zhiyong Wu, Leiming Zhang, John T. Walker, Paul A. Makar, Judith A. Perlinger, and Xuemei Wang
Geosci. Model Dev., 14, 5093–5105, https://doi.org/10.5194/gmd-14-5093-2021, https://doi.org/10.5194/gmd-14-5093-2021, 2021
Short summary
Short summary
A community dry deposition algorithm for modeling the gaseous dry deposition process in chemistry transport models was extended to include an additional 12 oxidized volatile organic compounds and hydrogen cyanide based on their physicochemical properties and was then evaluated using field flux measurements over a mixed forest. This study provides a useful tool that is needed in chemistry transport models with increasing complexity for simulating an important atmospheric process.
Katherine Hayden, Shao-Meng Li, Paul Makar, John Liggio, Samar G. Moussa, Ayodeji Akingunola, Robert McLaren, Ralf M. Staebler, Andrea Darlington, Jason O'Brien, Junhua Zhang, Mengistu Wolde, and Leiming Zhang
Atmos. Chem. Phys., 21, 8377–8392, https://doi.org/10.5194/acp-21-8377-2021, https://doi.org/10.5194/acp-21-8377-2021, 2021
Short summary
Short summary
We developed a method using aircraft measurements to determine lifetimes with respect to dry deposition for oxidized sulfur and nitrogen compounds over the boreal forest in Alberta, Canada. Atmospheric lifetimes were significantly shorter than derived from chemical transport models with differences related to modelled dry deposition velocities. The shorter lifetimes suggest models need to reassess dry deposition treatment and predictions of sulfur and nitrogen in the atmosphere and ecosystems.
Xuewu Fu, Chen Liu, Hui Zhang, Yue Xu, Hui Zhang, Jun Li, Xiaopu Lyu, Gan Zhang, Hai Guo, Xun Wang, Leiming Zhang, and Xinbin Feng
Atmos. Chem. Phys., 21, 6721–6734, https://doi.org/10.5194/acp-21-6721-2021, https://doi.org/10.5194/acp-21-6721-2021, 2021
Short summary
Short summary
TGM concentrations and isotopic compositions in 10 Chinese cities showed strong seasonality with higher TGM concentrations and Δ199Hg and lower δ202Hg in summer. We found the seasonal variations in TGM concentrations and isotopic compositions were highly related to regional surface Hg(0) emissions, suggesting land surface Hg(0) emissions are an important source of atmospheric TGM that contribute dominantly to the seasonal variations in TGM concentrations and isotopic compositions.
Xiaofei Qin, Leiming Zhang, Guochen Wang, Xiaohao Wang, Qingyan Fu, Jian Xu, Hao Li, Jia Chen, Qianbiao Zhao, Yanfen Lin, Juntao Huo, Fengwen Wang, Kan Huang, and Congrui Deng
Atmos. Chem. Phys., 20, 10985–10996, https://doi.org/10.5194/acp-20-10985-2020, https://doi.org/10.5194/acp-20-10985-2020, 2020
Short summary
Short summary
The uncertainties in mercury emissions are much larger from natural sources than anthropogenic sources. A method was developed to quantify the contributions of natural surface emissions to ambient GEM based on PMF modeling. The annual GEM concentration in eastern China showed a decreasing trend from 2015 to 2018, while the relative contribution of natural surface emissions increased significantly from 41 % in 2015 to 57 % in 2018, gradually surpassing those from anthropogenic sources.
Xiaohong Yao and Leiming Zhang
Atmos. Chem. Phys., 20, 721–733, https://doi.org/10.5194/acp-20-721-2020, https://doi.org/10.5194/acp-20-721-2020, 2020
Short summary
Short summary
An innovative approach is developed to preprocess monitored wet deposition data of inorganic ions for generating their decadal trends. Differing from traditional approaches which directly apply annual or seasonal average data to trend analysis tools, the proposed new approach makes use of slopes of regression equations between a series of study years and a climatology (base) year in terms of monthly averaged data. The new approach yields more robust results than the traditional tools.
Jun Tao, Zhisheng Zhang, Yunfei Wu, Leiming Zhang, Zhijun Wu, Peng Cheng, Mei Li, Laiguo Chen, Renjian Zhang, and Junji Cao
Atmos. Chem. Phys., 19, 8471–8490, https://doi.org/10.5194/acp-19-8471-2019, https://doi.org/10.5194/acp-19-8471-2019, 2019
Short summary
Short summary
Mass-scattering efficiencies (MSE) of dominant chemical species in atmospheric aerosols are important parameters for building the relationships between chemical species and the particle-scattering coefficient. Particle MSE mainly depends on the mass fractions of (NH4)2SO4, NH4NO3, and organic matter and their MSEs in the droplet mode. MSEs of (NH4)2SO4, NH4NO3 and organic matter were determined by their size distributions in the droplet mode.
Yang Chen, Mi Tian, Ru-Jin Huang, Guangming Shi, Huanbo Wang, Chao Peng, Junji Cao, Qiyuan Wang, Shumin Zhang, Dongmei Guo, Leiming Zhang, and Fumo Yang
Atmos. Chem. Phys., 19, 3245–3255, https://doi.org/10.5194/acp-19-3245-2019, https://doi.org/10.5194/acp-19-3245-2019, 2019
Short summary
Short summary
Amine-containing particles were characterized in an urban area of Chongqing during both summer and winter using a single-particle aerosol mass spectrometer (SPAMS). Amines were observed to internally mix with elemental carbon (EC), organic carbon (OC), sulfate, and nitrate. Diethylamine (DEA) was the most abundant in both number and peak area among amine-containing particles. Vegetation and traffic were the primary sources of particulate amines.
Xin Qiu, Irene Cheng, Fuquan Yang, Erin Horb, Leiming Zhang, and Tom Harner
Atmos. Chem. Phys., 18, 3457–3467, https://doi.org/10.5194/acp-18-3457-2018, https://doi.org/10.5194/acp-18-3457-2018, 2018
Short summary
Short summary
We developed emissions databases for polycyclic aromatic compounds (PACs) in the Athabasca oil sands region and evaluated the emissions databases by comparing CALPUFF-modelled concentrations with monitored data. Model–measurement agreement improved near oil sands mines due to updated PAC emissions from tailings ponds. Modelled concentrations were underestimated at remote sites and for alkylated PACs suggesting that the emissions of PACs particularly alkylated compounds are underestimated.
Cynthia H. Whaley, Paul A. Makar, Mark W. Shephard, Leiming Zhang, Junhua Zhang, Qiong Zheng, Ayodeji Akingunola, Gregory R. Wentworth, Jennifer G. Murphy, Shailesh K. Kharol, and Karen E. Cady-Pereira
Atmos. Chem. Phys., 18, 2011–2034, https://doi.org/10.5194/acp-18-2011-2018, https://doi.org/10.5194/acp-18-2011-2018, 2018
Short summary
Short summary
Using a modified air quality forecasting model, we have found that a significant fraction (> 50 %) of ambient ammonia comes from re-emission from plants and soils in the broader Athabasca Oil Sands region and much of Alberta and Saskatchewan. We also found that about 20 % of ambient ammonia in Alberta and Saskatchewan came from forest fires in the summer of 2013. The addition of these two processes improved modelled ammonia, which was a motivating factor in undertaking this research.
Huanbo Wang, Mi Tian, Yang Chen, Guangming Shi, Yuan Liu, Fumo Yang, Leiming Zhang, Liqun Deng, Jiayan Yu, Chao Peng, and Xuyao Cao
Atmos. Chem. Phys., 18, 865–881, https://doi.org/10.5194/acp-18-865-2018, https://doi.org/10.5194/acp-18-865-2018, 2018
Huiting Mao, Dolly Hall, Zhuyun Ye, Ying Zhou, Dirk Felton, and Leiming Zhang
Atmos. Chem. Phys., 17, 11655–11671, https://doi.org/10.5194/acp-17-11655-2017, https://doi.org/10.5194/acp-17-11655-2017, 2017
Short summary
Short summary
Mercury (Hg) is a global pollutant hazardous to human and ecosystem health, and its emission control is imperative. Anthropogenic mercury emissions have been reduced by 78 % in the United States from 1990 to 2014. However, no clearly defined trend was observed in Hg concentrations at urban locations such as the one in this study. This indicates that other factors may have dominated over anthropogenic emission control. The implications of this study could hence be highly policy relevant.
Jun Tao, Leiming Zhang, Junji Cao, and Renjian Zhang
Atmos. Chem. Phys., 17, 9485–9518, https://doi.org/10.5194/acp-17-9485-2017, https://doi.org/10.5194/acp-17-9485-2017, 2017
Short summary
Short summary
In this study, studies on PM2.5 chemical composition, source apportionment and its impact on aerosol optical properties across China are thoroughly reviewed, and historical emission control policies in China and their effectiveness in reducing PM2.5 are discussed.
Leiming Zhang, Seth Lyman, Huiting Mao, Che-Jen Lin, David A. Gay, Shuxiao Wang, Mae Sexauer Gustin, Xinbin Feng, and Frank Wania
Atmos. Chem. Phys., 17, 9133–9144, https://doi.org/10.5194/acp-17-9133-2017, https://doi.org/10.5194/acp-17-9133-2017, 2017
Short summary
Short summary
Future research needs are proposed for improving the understanding of atmospheric mercury cycling. These include refinement of mercury emission estimations, quantification of dry deposition and air–surface exchange, improvement of the treatment of chemical mechanisms in chemical transport models, increase in the accuracy of oxidized mercury measurements, better interpretation of atmospheric mercury chemistry data, and harmonization of network operation.
Yunfei Wu, Xiaojia Wang, Jun Tao, Rujin Huang, Ping Tian, Junji Cao, Leiming Zhang, Kin-Fai Ho, Zhiwei Han, and Renjian Zhang
Atmos. Chem. Phys., 17, 7965–7975, https://doi.org/10.5194/acp-17-7965-2017, https://doi.org/10.5194/acp-17-7965-2017, 2017
Short summary
Short summary
As black carbon (BC) aerosols play an important role in the climate and environment, the size distribution of refractory BC (rBC) was investigated. On this basis, the source of rBC was further analyzed. The local traffic exhausts contributed greatly to the rBC in urban areas. However, its contribution decreased significantly in the polluted period compared to the clean period, implying the increasing contribution of other sources, e.g., coal combustion or biomass burning, in the polluted period.
Irene Cheng and Leiming Zhang
Atmos. Chem. Phys., 17, 4711–4730, https://doi.org/10.5194/acp-17-4711-2017, https://doi.org/10.5194/acp-17-4711-2017, 2017
Short summary
Short summary
Geographical and long-term (1983–2011) trends in air concentrations and wet deposition of inorganic ions and aerosol and precipitation acidity were analyzed at 31 sites in Canada. Declines in atmospheric ammonium, nitrate, and sulfate were consistent with decreasing emissions of NH3, NOx, and SO2. A decline in nitrate and sulfate wet deposition was also observed. Wet scavenging was further studied by estimating scavenging ratios and relative contributions of gases and aerosols to wet deposition.
Xiaohong Xu, Yanyin Liao, Irene Cheng, and Leiming Zhang
Atmos. Chem. Phys., 17, 1381–1400, https://doi.org/10.5194/acp-17-1381-2017, https://doi.org/10.5194/acp-17-1381-2017, 2017
Short summary
Short summary
This study addresses two issues related to source–receptor analysis of speciated atmospheric mercury: (1) comparing PMF and PCA and (2) testing different approaches in data selection for PMF modeling.
Huiting Mao, Irene Cheng, and Leiming Zhang
Atmos. Chem. Phys., 16, 12897–12924, https://doi.org/10.5194/acp-16-12897-2016, https://doi.org/10.5194/acp-16-12897-2016, 2016
Short summary
Short summary
Understanding of spatial and temporal variations of atmospheric speciated mercury can advance our knowledge of mercury cycling in various environments. This review summarized spatiotemporal variations of TGM/GEM, GOM, and PBM in environments including oceans, continents, high elevation, the free troposphere, and low to high latitudes. Remaining questions/issues and recommendations were provided for future research.
Xiaohong Yao and Leiming Zhang
Atmos. Chem. Phys., 16, 11465–11475, https://doi.org/10.5194/acp-16-11465-2016, https://doi.org/10.5194/acp-16-11465-2016, 2016
Short summary
Short summary
Atmospheric NH3 plays an important role in forming secondary aerosols and has a direct impact on sensitive ecosystems. This study aims to study its long-term variation and find that the long-term trend can be affected by climate change as well as other anthropogenic factors, depending on sites. A large percentage increase of atmospheric NH3 at remote American sites is surprising and may cause a potential threat to sensitive ecosystems in the future.
Xiaodong Zhang, Tao Huang, Leiming Zhang, Yanjie Shen, Yuan Zhao, Hong Gao, Xiaoxuan Mao, Chenhui Jia, and Jianmin Ma
Atmos. Chem. Phys., 16, 6949–6960, https://doi.org/10.5194/acp-16-6949-2016, https://doi.org/10.5194/acp-16-6949-2016, 2016
Short summary
Short summary
This paper assesses long-term trend of biogenic isoprene emissions in the Three-North Shelter Forest Program, also known as "the Green Great Wall", the largest artificial afforestation in the human history. Results show that the TNRSF has altered the long-term emission trend in north China from a decreasing to an increasing trend from 1982 to 2010. Isoprene emission fluxes have increased in many places of the TNRSF over the last 3 decades due to the growing trees and vegetation coverage.
Lei Zhang, Shuxiao Wang, Qingru Wu, Fengyang Wang, Che-Jen Lin, Leiming Zhang, Mulin Hui, Mei Yang, Haitao Su, and Jiming Hao
Atmos. Chem. Phys., 16, 2417–2433, https://doi.org/10.5194/acp-16-2417-2016, https://doi.org/10.5194/acp-16-2417-2016, 2016
C. G. Nolte, K. W. Appel, J. T. Kelly, P. V. Bhave, K. M. Fahey, J. L. Collett Jr., L. Zhang, and J. O. Young
Geosci. Model Dev., 8, 2877–2892, https://doi.org/10.5194/gmd-8-2877-2015, https://doi.org/10.5194/gmd-8-2877-2015, 2015
Short summary
Short summary
This study is the most comprehensive evaluation of CMAQ inorganic
aerosol size-composition distributions conducted to date. We compare two
methods of inferring PM2.5 concentrations from the model: (1) based on
the sum of the masses in the fine aerosol modes, as is most commonly
done in CMAQ model evaluation; and (2) computed using the simulated size
distributions. Differences are generally less than 1 microgram/m3, and
are largest over the eastern USA during the summer.
I. Cheng, X. Xu, and L. Zhang
Atmos. Chem. Phys., 15, 7877–7895, https://doi.org/10.5194/acp-15-7877-2015, https://doi.org/10.5194/acp-15-7877-2015, 2015
Short summary
Short summary
Current knowledge of receptor-based studies using speciated atmospheric mercury is reviewed and recommendations for future research needs are provided.
Z. Y. Wu, L. Zhang, X. M. Wang, and J. W. Munger
Atmos. Chem. Phys., 15, 7487–7496, https://doi.org/10.5194/acp-15-7487-2015, https://doi.org/10.5194/acp-15-7487-2015, 2015
Short summary
Short summary
In this study, we have developed a modified micrometeorological gradient method (MGM), although based on existing micrometeorological theory, to estimate O3 dry deposition fluxes over a forest canopy using concentration gradients between a level above and a level below the canopy top. The new method provides an alternative approach in monitoring/estimating long-term deposition fluxes of similar pollutants over tall canopies and is expected to be useful for the scientific community.
L. Zhang, I. Cheng, D. Muir, and J.-P. Charland
Atmos. Chem. Phys., 15, 1421–1434, https://doi.org/10.5194/acp-15-1421-2015, https://doi.org/10.5194/acp-15-1421-2015, 2015
Short summary
Short summary
This study analyzed air and precipitation concentrations of 43 polycyclic aromatic compounds (PACs) collected in the Athabasca oil sands region. A database has been built for the parameter scavenging ratio, which is defined as the ratio of the concentration of PACs in precipitation to that in air. A better understanding of the potential differences between gas and particulate scavenging and between snow and rain scavenging has been achieved.
J. Tao, J. Gao, L. Zhang, R. Zhang, H. Che, Z. Zhang, Z. Lin, J. Jing, J. Cao, and S.-C. Hsu
Atmos. Chem. Phys., 14, 8679–8699, https://doi.org/10.5194/acp-14-8679-2014, https://doi.org/10.5194/acp-14-8679-2014, 2014
Z. J. Lin, Z. S. Zhang, L. Zhang, J. Tao, R. J. Zhang, J. J. Cao, S. J. Fan, and Y. H. Zhang
Atmos. Chem. Phys., 14, 7631–7644, https://doi.org/10.5194/acp-14-7631-2014, https://doi.org/10.5194/acp-14-7631-2014, 2014
D. Wen, L. Zhang, J. C. Lin, R. Vet, and M. D. Moran
Geosci. Model Dev., 7, 1037–1050, https://doi.org/10.5194/gmd-7-1037-2014, https://doi.org/10.5194/gmd-7-1037-2014, 2014
X. Wang, L. Zhang, and M. D. Moran
Geosci. Model Dev., 7, 799–819, https://doi.org/10.5194/gmd-7-799-2014, https://doi.org/10.5194/gmd-7-799-2014, 2014
L. Zhang and Z. He
Atmos. Chem. Phys., 14, 3729–3737, https://doi.org/10.5194/acp-14-3729-2014, https://doi.org/10.5194/acp-14-3729-2014, 2014
X. H. Yao and L. Zhang
Biogeosciences, 10, 7913–7925, https://doi.org/10.5194/bg-10-7913-2013, https://doi.org/10.5194/bg-10-7913-2013, 2013
S. Chen, X. Qiu, L. Zhang, F. Yang, and P. Blanchard
Atmos. Chem. Phys., 13, 11287–11293, https://doi.org/10.5194/acp-13-11287-2013, https://doi.org/10.5194/acp-13-11287-2013, 2013
L. Zhang, X. Wang, M. D. Moran, and J. Feng
Atmos. Chem. Phys., 13, 10005–10025, https://doi.org/10.5194/acp-13-10005-2013, https://doi.org/10.5194/acp-13-10005-2013, 2013
I. Cheng, L. Zhang, P. Blanchard, J. Dalziel, and R. Tordon
Atmos. Chem. Phys., 13, 6031–6048, https://doi.org/10.5194/acp-13-6031-2013, https://doi.org/10.5194/acp-13-6031-2013, 2013
G. Kos, A. Ryzhkov, A. Dastoor, J. Narayan, A. Steffen, P. A. Ariya, and L. Zhang
Atmos. Chem. Phys., 13, 4839–4863, https://doi.org/10.5194/acp-13-4839-2013, https://doi.org/10.5194/acp-13-4839-2013, 2013
D. Wen, J. C. Lin, L. Zhang, R. Vet, and M. D. Moran
Geosci. Model Dev., 6, 327–344, https://doi.org/10.5194/gmd-6-327-2013, https://doi.org/10.5194/gmd-6-327-2013, 2013
Related subject area
Subject: Biosphere Interactions | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Dynamics of aerosol, humidity, and clouds in air masses travelling over Fennoscandian boreal forests
Residence times of air in a mature forest: observational evidence from a free-air CO2 enrichment experiment
Energy and mass exchange at an urban site in mountainous terrain – the Alpine city of Innsbruck
Observations of aerosol–vapor pressure deficit–evaporative fraction coupling over India
Biogeochemical and biophysical responses to episodes of wildfire smoke from natural ecosystems in southwestern British Columbia, Canada
Traces of urban forest in temperature and CO2 signals in monsoon East Asia
Technical note: Uncertainties in eddy covariance CO2 fluxes in a semiarid sagebrush ecosystem caused by gap-filling approaches
Simulating the spatiotemporal variations in aboveground biomass in Inner Mongolian grasslands under environmental changes
Concentrations and biosphere–atmosphere fluxes of inorganic trace gases and associated ionic aerosol counterparts over the Amazon rainforest
Characterization of the radiative impact of aerosols on CO2 and energy fluxes in the Amazon deforestation arch using artificial neural networks
New particle formation events observed at the King Sejong Station, Antarctic Peninsula – Part 2: Link with the oceanic biological activities
Vertical observations of the atmospheric boundary layer structure over Beijing urban area during air pollution episodes
Characterisation of short-term extreme methane fluxes related to non-turbulent mixing above an Arctic permafrost ecosystem
Characterization of ozone deposition to a mixed oak–hornbeam forest – flux measurements at five levels above and inside the canopy and their interactions with nitric oxide
Direct effect of aerosols on solar radiation and gross primary production in boreal and hemiboreal forests
The monsoon effect on energy and carbon exchange processes over a highland lake in the southwest of China
Turbulent transport of energy across a forest and a semiarid shrubland
Study of the daily and seasonal atmospheric CH4 mixing ratio variability in a rural Spanish region using 222Rn tracer
Nighttime wind and scalar variability within and above an Amazonian canopy
Estimating regional-scale methane flux and budgets using CARVE aircraft measurements over Alaska
Canopy uptake dominates nighttime carbonyl sulfide fluxes in a boreal forest
Net ecosystem exchange and energy fluxes measured with the eddy covariance technique in a western Siberian bog
Biophysical effects on the interannual variation in carbon dioxide exchange of an alpine meadow on the Tibetan Plateau
Quantifying the contribution of land use change to surface temperature in the lower reaches of the Yangtze River
Scalar turbulent behavior in the roughness sublayer of an Amazonian forest
Surface–atmosphere exchange of ammonia over peatland using QCL-based eddy-covariance measurements and inferential modeling
Characterization of total ecosystem-scale biogenic VOC exchange at a Mediterranean oak–hornbeam forest
Are BVOC exchanges in agricultural ecosystems overestimated? Insights from fluxes measured in a maize field over a whole growing season
Step changes in persistent organic pollutants over the Arctic and their implications
Estimating surface fluxes using eddy covariance and numerical ogive optimization
Nitrous oxide emissions from a commercial cornfield (Zea mays) measured using the eddy covariance technique
Observations of the scale-dependent turbulence and evaluation of the flux–gradient relationship for sensible heat for a closed Douglas-fir canopy in very weak wind conditions
The effect of atmospheric aerosol particles and clouds on net ecosystem exchange in the Amazon
Acetaldehyde exchange above a managed temperate mountain grassland
Surface response to rain events throughout the West African monsoon
The role of vegetation in the CO2 flux from a tropical urban neighbourhood
Air-surface exchange measurements of gaseous elemental mercury over naturally enriched and background terrestrial landscapes in Australia
Four-year (2006–2009) eddy covariance measurements of CO2 flux over an urban area in Beijing
Momentum and scalar transport within a vegetation canopy following atmospheric stability and seasonal canopy changes: the CHATS experiment
Coupling processes and exchange of energy and reactive and non-reactive trace gases at a forest site – results of the EGER experiment
Abiotic and biotic control of methanol exchanges in a temperate mixed forest
Analysis of coherent structures and atmosphere-canopy coupling strength during the CABINEX field campaign
Methane flux, vertical gradient and mixing ratio measurements in a tropical forest
The effects of clouds and aerosols on net ecosystem CO2 exchange over semi-arid Loess Plateau of Northwest China
Size-dependent aerosol deposition velocities during BEARPEX'07
Day-time concentrations of biogenic volatile organic compounds in a boreal forest canopy and their relation to environmental and biological factors
Meri Räty, Larisa Sogacheva, Helmi-Marja Keskinen, Veli-Matti Kerminen, Tuomo Nieminen, Tuukka Petäjä, Ekaterina Ezhova, and Markku Kulmala
Atmos. Chem. Phys., 23, 3779–3798, https://doi.org/10.5194/acp-23-3779-2023, https://doi.org/10.5194/acp-23-3779-2023, 2023
Short summary
Short summary
We utilised back trajectories to identify the source region of air masses arriving in Hyytiälä, Finland, and their travel time over forests. Combined with atmospheric observations, they revealed how air mass transport over the Fennoscandian boreal forest during the growing season produced an accumulation of cloud condensation nuclei and humidity, promoting cloudiness and precipitation. By 55 h of transport, air masses appeared to reach a balanced state with the forest environment.
Edward J. Bannister, Mike Jesson, Nicholas J. Harper, Kris M. Hart, Giulio Curioni, Xiaoming Cai, and A. Rob MacKenzie
Atmos. Chem. Phys., 23, 2145–2165, https://doi.org/10.5194/acp-23-2145-2023, https://doi.org/10.5194/acp-23-2145-2023, 2023
Short summary
Short summary
In forests, the residence time of air influences canopy chemistry and atmospheric exchange. However, there have been few field observations. We use long-term open-air CO2 enrichment measurements to show median daytime residence times are twice as long when the trees are in leaf versus when they are not. Residence times increase with increasing atmospheric stability and scale inversely with turbulence. Robust parametrisations for large-scale models are available using common distributions.
Helen Claire Ward, Mathias Walter Rotach, Alexander Gohm, Martin Graus, Thomas Karl, Maren Haid, Lukas Umek, and Thomas Muschinski
Atmos. Chem. Phys., 22, 6559–6593, https://doi.org/10.5194/acp-22-6559-2022, https://doi.org/10.5194/acp-22-6559-2022, 2022
Short summary
Short summary
This study examines how cities and their surroundings influence turbulent exchange processes responsible for weather and climate. Analysis of a 4-year observational dataset for the Alpine city of Innsbruck reveals several similarities with other (flat) city centre sites. However, the mountain setting leads to characteristic daily and seasonal flow patterns (valley winds) and downslope windstorms that have a marked effect on temperature, wind speed, turbulence and pollutant concentration.
Chandan Sarangi, TC Chakraborty, Sachchidanand Tripathi, Mithun Krishnan, Ross Morrison, Jonathan Evans, and Lina M. Mercado
Atmos. Chem. Phys., 22, 3615–3629, https://doi.org/10.5194/acp-22-3615-2022, https://doi.org/10.5194/acp-22-3615-2022, 2022
Short summary
Short summary
Transpiration fluxes by vegetation are reduced under heat stress to conserve water. However, in situ observations over northern India show that the strength of the inverse association between transpiration and atmospheric vapor pressure deficit is weakening in the presence of heavy aerosol loading. This finding not only implicates the significant role of aerosols in modifying the evaporative fraction (EF) but also warrants an in-depth analysis of the aerosol–plant–temperature–EF continuum.
Sung-Ching Lee, Sara H. Knox, Ian McKendry, and T. Andrew Black
Atmos. Chem. Phys., 22, 2333–2349, https://doi.org/10.5194/acp-22-2333-2022, https://doi.org/10.5194/acp-22-2333-2022, 2022
Short summary
Short summary
Wildfire smoke alters land–atmosphere exchange. Here, measurements in a forest and a wetland during four smoke episodes over four summers showed that impacts on radiation and heat budget were the greatest when smoke arrived in late summer. Both sites sequestered more CO2 under smoky days, partly due to diffuse light, but emitted CO2 when smoke was dense. This kind of field study is important for validating predictions of smoke–productivity feedbacks and has climate change implications.
Keunmin Lee, Je-Woo Hong, Jeongwon Kim, Sungsoo Jo, and Jinkyu Hong
Atmos. Chem. Phys., 21, 17833–17853, https://doi.org/10.5194/acp-21-17833-2021, https://doi.org/10.5194/acp-21-17833-2021, 2021
Short summary
Short summary
This study examine two benefits of urban forest, thermal mitigation and carbon uptake. Our analysis indicates that the urban forest reduces both the warming trend and urban heat island intensity. Urban forest is a net CO2 source despite larger photosynthetic carbon uptake because of strong contribution of ecosystem respiration, which can be attributed to the substantial amount of soil organic carbon by intensive historical soil use and warm temperature in a city.
Jingyu Yao, Zhongming Gao, Jianping Huang, Heping Liu, and Guoyin Wang
Atmos. Chem. Phys., 21, 15589–15603, https://doi.org/10.5194/acp-21-15589-2021, https://doi.org/10.5194/acp-21-15589-2021, 2021
Short summary
Short summary
Gap-filling usually accounts for a large source of uncertainties in the annual CO2 fluxes, though gap-filling CO2 fluxes is challenging at dryland sites due to small fluxes. Using data collected from a semiarid site, four machine learning methods are evaluated with different lengths of artificial gaps. The artificial neural network and random forest methods outperform the other methods. With these methods, uncertainties in the annual CO2 flux at this site are estimated to be within 16 g C m−2.
Guocheng Wang, Zhongkui Luo, Yao Huang, Wenjuan Sun, Yurong Wei, Liujun Xiao, Xi Deng, Jinhuan Zhu, Tingting Li, and Wen Zhang
Atmos. Chem. Phys., 21, 3059–3071, https://doi.org/10.5194/acp-21-3059-2021, https://doi.org/10.5194/acp-21-3059-2021, 2021
Short summary
Short summary
We simulate the spatiotemporal dynamics of aboveground biomass (AGB) in Inner Mongolian grasslands using a machine-learning-based approach. Under climate change, on average, compared with the historical AGB (average of 1981–2019), the AGB at the end of this century (average of 2080–2100) would decrease by 14 % under RCP4.5 and 28 % under RCP8.5. The decrease in AGB might be mitigated or even reversed by positive carbon dioxide enrichment effects on plant growth.
Robbie Ramsay, Chiara F. Di Marco, Matthias Sörgel, Mathew R. Heal, Samara Carbone, Paulo Artaxo, Alessandro C. de Araùjo, Marta Sá, Christopher Pöhlker, Jost Lavric, Meinrat O. Andreae, and Eiko Nemitz
Atmos. Chem. Phys., 20, 15551–15584, https://doi.org/10.5194/acp-20-15551-2020, https://doi.org/10.5194/acp-20-15551-2020, 2020
Short summary
Short summary
The Amazon rainforest is a unique
laboratoryto study the processes which govern the exchange of gases and aerosols to and from the atmosphere. This study investigated these processes by measuring the atmospheric concentrations of trace gases and particles at the Amazon Tall Tower Observatory. We found that the long-range transport of pollutants can affect the atmospheric composition above the Amazon rainforest and that the gases ammonia and nitrous acid can be emitted from the rainforest.
Renato Kerches Braghiere, Marcia Akemi Yamasoe, Nilton Manuel Évora do Rosário, Humberto Ribeiro da Rocha, José de Souza Nogueira, and Alessandro Carioca de Araújo
Atmos. Chem. Phys., 20, 3439–3458, https://doi.org/10.5194/acp-20-3439-2020, https://doi.org/10.5194/acp-20-3439-2020, 2020
Short summary
Short summary
We evaluate how the interaction of smoke with sun light impacts the exchange of energy and mass between vegetation and the atmosphere using a machine learning technique. We found an effect of the smoke on CO2, energy, and water fluxes, linking the effects of smoke with temperature, humidity, and winds. CO2 exchange increased by up to 55 % in the presence of smoke. A decrease of 12 % was observed for a site with simpler vegetation. Energy fluxes were negatively impacted for all study sites.
Eunho Jang, Ki-Tae Park, Young Jun Yoon, Tae-Wook Kim, Sang-Bum Hong, Silvia Becagli, Rita Traversi, Jaeseok Kim, and Yeontae Gim
Atmos. Chem. Phys., 19, 7595–7608, https://doi.org/10.5194/acp-19-7595-2019, https://doi.org/10.5194/acp-19-7595-2019, 2019
Short summary
Short summary
We reported long-term observations (from 2009 to 2016) of the nanoparticles measured at the Antarctic Peninsula (62.2° S, 58.8° W), and satellite-derived estimates of the biological characteristics were analyzed to identify the link between new particle formation and marine biota. The key finding from this research is that the formation of nanoparticles was strongly associated not only with the biomass of phytoplankton but, more importantly, also its taxonomic composition in the Antarctic Ocean.
Linlin Wang, Junkai Liu, Zhiqiu Gao, Yubin Li, Meng Huang, Sihui Fan, Xiaoye Zhang, Yuanjian Yang, Shiguang Miao, Han Zou, Yele Sun, Yong Chen, and Ting Yang
Atmos. Chem. Phys., 19, 6949–6967, https://doi.org/10.5194/acp-19-6949-2019, https://doi.org/10.5194/acp-19-6949-2019, 2019
Short summary
Short summary
Urban boundary layer (UBL) affects the physical and chemical processes of the pollutants, and UBL structure can also be altered by pollutants. This paper presents the interactions between air pollution and the UBL structure by using the field data mainly collected from a 325 m meteorology tower, as well as from a Doppler wind lidar, during a severe heavy pollution event that occurred during 1–4 December 2016 in Beijing.
Carsten Schaller, Fanny Kittler, Thomas Foken, and Mathias Göckede
Atmos. Chem. Phys., 19, 4041–4059, https://doi.org/10.5194/acp-19-4041-2019, https://doi.org/10.5194/acp-19-4041-2019, 2019
Short summary
Short summary
Methane emissions from biogenic sources, e.g. Arctic permafrost ecosystems, are associated with uncertainties due to the high variability of fluxes in both space and time. Besides the traditional eddy covariance method, we evaluated a method based on wavelet analysis, which does not require a stationary time series, to calculate fluxes. The occurrence of extreme methane flux events was strongly correlated with the soil temperature. They were triggered by atmospheric non-turbulent mixing.
Angelo Finco, Mhairi Coyle, Eiko Nemitz, Riccardo Marzuoli, Maria Chiesa, Benjamin Loubet, Silvano Fares, Eugenio Diaz-Pines, Rainer Gasche, and Giacomo Gerosa
Atmos. Chem. Phys., 18, 17945–17961, https://doi.org/10.5194/acp-18-17945-2018, https://doi.org/10.5194/acp-18-17945-2018, 2018
Short summary
Short summary
A 1-month field campaign of ozone (O3) flux measurements along a five-level vertical profile of a mature broadleaf forest highlighted that the biosphere–atmosphere exchange of this pollutant is modulated by complex diel dynamics occurring within and below the canopy. The canopy removed nearly 80 % of the O3 deposited to the forest; only a minor part was removed by the soil and the understorey (2 %), while the remaining 18.2 % was removed by chemical reactions with NO mostly emitted from soil.
Ekaterina Ezhova, Ilona Ylivinkka, Joel Kuusk, Kaupo Komsaare, Marko Vana, Alisa Krasnova, Steffen Noe, Mikhail Arshinov, Boris Belan, Sung-Bin Park, Jošt Valentin Lavrič, Martin Heimann, Tuukka Petäjä, Timo Vesala, Ivan Mammarella, Pasi Kolari, Jaana Bäck, Üllar Rannik, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 18, 17863–17881, https://doi.org/10.5194/acp-18-17863-2018, https://doi.org/10.5194/acp-18-17863-2018, 2018
Short summary
Short summary
Understanding the connections between aerosols, solar radiation and photosynthesis in terrestrial ecosystems is important for estimates of the CO2 balance in the atmosphere. Atmospheric aerosols and clouds influence solar radiation. In this study, we quantify the aerosol effect on solar radiation in boreal forests and study forest ecosystems response to this change in the radiation conditions. The analysis is based on atmospheric observations from several remote stations in Eurasian forests.
Qun Du, Huizhi Liu, Lujun Xu, Yang Liu, and Lei Wang
Atmos. Chem. Phys., 18, 15087–15104, https://doi.org/10.5194/acp-18-15087-2018, https://doi.org/10.5194/acp-18-15087-2018, 2018
Short summary
Short summary
Erhai Lake is a subtropical highland shallow lake on the southeast margin of the Tibetan Plateau, which is influenced by both South Asian and East Asian summer monsoons. The substantial difference in atmospheric properties during monsoon and non-monsoon periods has a large effect in regulating turbulent heat and carbon dioxide exchange processes over Erhai Lake. Large difference are found for the factors controlling sensible heat and carbon dioxide flux during monsoon and non-monsoon periods.
Tirtha Banerjee, Peter Brugger, Frederik De Roo, Konstantin Kröniger, Dan Yakir, Eyal Rotenberg, and Matthias Mauder
Atmos. Chem. Phys., 18, 10025–10038, https://doi.org/10.5194/acp-18-10025-2018, https://doi.org/10.5194/acp-18-10025-2018, 2018
Short summary
Short summary
We studied the nature of turbulent transport over a well-defined surface heterogeneity (approximate scale 7 km) comprising a shrubland and a forest in the Yatir semiarid area in Israel. Using eddy covariance and Doppler lidar measurements, we studied the variations in the turbulent kinetic energy budget and turbulent fluxes, focusing especially on transport terms. We also confirmed the role of large-scale secondary circulations that transport energy between the shrubland and the forest.
Claudia Grossi, Felix R. Vogel, Roger Curcoll, Alba Àgueda, Arturo Vargas, Xavier Rodó, and Josep-Anton Morguí
Atmos. Chem. Phys., 18, 5847–5860, https://doi.org/10.5194/acp-18-5847-2018, https://doi.org/10.5194/acp-18-5847-2018, 2018
Short summary
Short summary
To gain a full picture of the Spanish (and European) GHG balance, understanding of CH4 emissions in different regions is a critical challenge, as is the improvement of bottom-up inventories for all European regions. This study uses, among other elements, GHG, meteorological and 222Rn tracer data from a Spanish region to understand the main causes of temporal variability of GHG mixing ratios. The study can offer new insights into regional emissions by identifying the impacts of changing sources.
Pablo E. S. Oliveira, Otávio C. Acevedo, Matthias Sörgel, Anywhere Tsokankunku, Stefan Wolff, Alessandro C. Araújo, Rodrigo A. F. Souza, Marta O. Sá, Antônio O. Manzi, and Meinrat O. Andreae
Atmos. Chem. Phys., 18, 3083–3099, https://doi.org/10.5194/acp-18-3083-2018, https://doi.org/10.5194/acp-18-3083-2018, 2018
Short summary
Short summary
Carbon dioxide and latent heat fluxes within the canopy are dominated by low-frequency (nonturbulent) processes. There is a striking contrast between fully turbulent and intermittent nights, such that turbulent processes dominate the total nighttime exchange during the former, while nonturbulent processes are more relevant in the latter. In very stable nights, during which intermittent exchange prevails, the stable boundary layer may be shallower than the highest observational level at 80 m.
Sean Hartery, Róisín Commane, Jakob Lindaas, Colm Sweeney, John Henderson, Marikate Mountain, Nicholas Steiner, Kyle McDonald, Steven J. Dinardo, Charles E. Miller, Steven C. Wofsy, and Rachel Y.-W. Chang
Atmos. Chem. Phys., 18, 185–202, https://doi.org/10.5194/acp-18-185-2018, https://doi.org/10.5194/acp-18-185-2018, 2018
Short summary
Short summary
Methane is the second most important greenhouse gas but its emissions from northern regions are still poorly constrained. This study uses aircraft measurements of methane from Alaska to estimate surface emissions. We found that methane emission rates depend on the soil temperature at depths where its production was taking place, and that total emissions were similar between tundra and boreal regions. These results provide a simple way to predict methane emissions in this region.
Linda M. J. Kooijmans, Kadmiel Maseyk, Ulli Seibt, Wu Sun, Timo Vesala, Ivan Mammarella, Pasi Kolari, Juho Aalto, Alessandro Franchin, Roberta Vecchi, Gianluigi Valli, and Huilin Chen
Atmos. Chem. Phys., 17, 11453–11465, https://doi.org/10.5194/acp-17-11453-2017, https://doi.org/10.5194/acp-17-11453-2017, 2017
Short summary
Short summary
Carbon cycle studies rely on the accuracy of models to estimate the amount of CO2 being taken up by vegetation. The gas carbonyl sulfide (COS) can serve as a tool to estimate the vegetative CO2 uptake by scaling the ecosystem uptake of COS to that of CO2. Here we investigate the nighttime fluxes of COS. The relationships found in this study will aid in implementing nighttime COS uptake in models, which is key to obtain accurate estimates of vegetative CO2 uptake with the use of COS.
Pavel Alekseychik, Ivan Mammarella, Dmitry Karpov, Sigrid Dengel, Irina Terentieva, Alexander Sabrekov, Mikhail Glagolev, and Elena Lapshina
Atmos. Chem. Phys., 17, 9333–9345, https://doi.org/10.5194/acp-17-9333-2017, https://doi.org/10.5194/acp-17-9333-2017, 2017
Short summary
Short summary
West Siberian peatlands occupy a large fraction of land area in the region, and yet little is known about their interaction with the atmosphere. We took the first measurements of CO2 and energy surface balances over a typical bog of West Siberian middle taiga, in the vicinity of the Mukhrino field station (Khanty–Mansiysk). The May–August study in a wet year (2015) revealed a relatively large photosynthetic sink of CO2 that was close to the high end of estimates at bog sites elsewhere.
Lei Wang, Huizhi Liu, Jihua Sun, and Yaping Shao
Atmos. Chem. Phys., 17, 5119–5129, https://doi.org/10.5194/acp-17-5119-2017, https://doi.org/10.5194/acp-17-5119-2017, 2017
Short summary
Short summary
This study found that the seasonal variation in CO2 exchange over an alpine meadow on the Tibetan Plateau was primarily affected by the seasonal pattern of air temperature, especially in spring and autumn. The annual net ecosystem exchange decreased with mean annual temperature, and then increased when the gross primary production became saturated. This study contributes to the response of the alpine meadow ecosystem to global warming.
Xueqian Wang, Weidong Guo, Bo Qiu, Ye Liu, Jianning Sun, and Aijun Ding
Atmos. Chem. Phys., 17, 4989–4996, https://doi.org/10.5194/acp-17-4989-2017, https://doi.org/10.5194/acp-17-4989-2017, 2017
Short summary
Short summary
Land use or cover change is a fundamental anthropogenic forcing for climate change. Based on field observations, we quantified the contributions of different factors to surface temperature change and deepened the understanding of its mechanisms. We found evaporative cooling plays the most important role in the temperature change, while radiative forcing, which is traditionally emphasized, is not significant. This study provided firsthand evidence to verify the model results in IPCC AR5.
Einara Zahn, Nelson L. Dias, Alessandro Araújo, Leonardo D. A. Sá, Matthias Sörgel, Ivonne Trebs, Stefan Wolff, and Antônio Manzi
Atmos. Chem. Phys., 16, 11349–11366, https://doi.org/10.5194/acp-16-11349-2016, https://doi.org/10.5194/acp-16-11349-2016, 2016
Short summary
Short summary
Preliminary data from the ATTO project were analyzed to characterize the exchange of heat, water vapor, and CO2 between the Amazon forest and the atmosphere. The forest roughness makes estimation of their fluxes difficult, and even measurements at 42 m above the canopy show a lot of scatter. Still, measurements made around noon showed much better conformity with standard theories for the exchange of these quantities, opening the possibility of good flux estimates when the sun is high.
Undine Zöll, Christian Brümmer, Frederik Schrader, Christof Ammann, Andreas Ibrom, Christophe R. Flechard, David D. Nelson, Mark Zahniser, and Werner L. Kutsch
Atmos. Chem. Phys., 16, 11283–11299, https://doi.org/10.5194/acp-16-11283-2016, https://doi.org/10.5194/acp-16-11283-2016, 2016
Short summary
Short summary
Accurate quantification of atmospheric ammonia concentration and exchange fluxes with the land surface has been a major metrological challenge. We demonstrate the applicability of a novel laser device to identify concentration and flux patterns over a peatland ecosystem influenced by nearby agricultural practices. Results help to strengthen air quality monitoring networks, lead to better understanding of ecosystem functionality and improve parameterizations in air chemistry and transport models.
Simon Schallhart, Pekka Rantala, Eiko Nemitz, Ditte Taipale, Ralf Tillmann, Thomas F. Mentel, Benjamin Loubet, Giacomo Gerosa, Angelo Finco, Janne Rinne, and Taina M. Ruuskanen
Atmos. Chem. Phys., 16, 7171–7194, https://doi.org/10.5194/acp-16-7171-2016, https://doi.org/10.5194/acp-16-7171-2016, 2016
Short summary
Short summary
We present ecosystem exchange fluxes from a mixed oak–hornbeam forest in the Po Valley, Italy. Detectable fluxes were observed for 29 compounds, dominated by isoprene, which comprised over 60 % of the upward flux. Methanol seemed to be deposited to dew, as the deposition happened in the early morning. We estimated that up to 30 % of the upward flux of methyl vinyl ketone and methacrolein originated from atmospheric oxidation of isoprene.
Aurélie Bachy, Marc Aubinet, Niels Schoon, Crist Amelynck, Bernard Bodson, Christine Moureaux, and Bernard Heinesch
Atmos. Chem. Phys., 16, 5343–5356, https://doi.org/10.5194/acp-16-5343-2016, https://doi.org/10.5194/acp-16-5343-2016, 2016
Short summary
Short summary
This research focuses on Biogenic Volatile Organic Compounds (BVOC) exchanges between a maize field and the atmosphere. Indeed, few BVOC studies have already investigated agricultural ecosystems. We found that the maize field emitted mainly methanol, that both soil and plants contributed to the net exchange, that exchanges were lower than in other studies and than considered by models. Our work tends thus to lower the impact of maize on terrestrial BVOC exchanges.
Y. Zhao, T. Huang, L. Wang, H. Gao, and J. Ma
Atmos. Chem. Phys., 15, 3479–3495, https://doi.org/10.5194/acp-15-3479-2015, https://doi.org/10.5194/acp-15-3479-2015, 2015
Short summary
Short summary
After several decades of declining persistent organic pollutants in the arctic environment due to their global use restriction, some of these toxic chemicals increased in the mid-2000s and undertook statistically significant step changes which coincided with arctic sea ice melting. Results provide statistical evidence for the releasing of toxic chemicals from their reservoirs in the Arctic due to the rapid change in the arctic environment.
J. Sievers, T. Papakyriakou, S. E. Larsen, M. M. Jammet, S. Rysgaard, M. K. Sejr, and L. L. Sørensen
Atmos. Chem. Phys., 15, 2081–2103, https://doi.org/10.5194/acp-15-2081-2015, https://doi.org/10.5194/acp-15-2081-2015, 2015
H. Huang, J. Wang, D. Hui, D. R. Miller, S. Bhattarai, S. Dennis, D. Smart, T. Sammis, and K. C. Reddy
Atmos. Chem. Phys., 14, 12839–12854, https://doi.org/10.5194/acp-14-12839-2014, https://doi.org/10.5194/acp-14-12839-2014, 2014
Short summary
Short summary
An EC system was assembled with a sonic anemometer and a new fast-response N2O analyzer and applied in a cornfield during a growing season. This N2O EC system provided reliable N2O flux measurements. The average flux was about 63% higher during the daytime than during the nighttime. Seasonal fluxes were highly dependent on soil moisture rather than soil temperature.
D. Vickers and C. K. Thomas
Atmos. Chem. Phys., 14, 9665–9676, https://doi.org/10.5194/acp-14-9665-2014, https://doi.org/10.5194/acp-14-9665-2014, 2014
G. G. Cirino, R. A. F. Souza, D. K. Adams, and P. Artaxo
Atmos. Chem. Phys., 14, 6523–6543, https://doi.org/10.5194/acp-14-6523-2014, https://doi.org/10.5194/acp-14-6523-2014, 2014
L. Hörtnagl, I. Bamberger, M. Graus, T. M. Ruuskanen, R. Schnitzhofer, M. Walser, A. Unterberger, A. Hansel, and G. Wohlfahrt
Atmos. Chem. Phys., 14, 5369–5391, https://doi.org/10.5194/acp-14-5369-2014, https://doi.org/10.5194/acp-14-5369-2014, 2014
F. Lohou, L. Kergoat, F. Guichard, A. Boone, B. Cappelaere, J.-M. Cohard, J. Demarty, S. Galle, M. Grippa, C. Peugeot, D. Ramier, C. M. Taylor, and F. Timouk
Atmos. Chem. Phys., 14, 3883–3898, https://doi.org/10.5194/acp-14-3883-2014, https://doi.org/10.5194/acp-14-3883-2014, 2014
E. Velasco, M. Roth, S. H. Tan, M. Quak, S. D. A. Nabarro, and L. Norford
Atmos. Chem. Phys., 13, 10185–10202, https://doi.org/10.5194/acp-13-10185-2013, https://doi.org/10.5194/acp-13-10185-2013, 2013
G. C. Edwards and D. A. Howard
Atmos. Chem. Phys., 13, 5325–5336, https://doi.org/10.5194/acp-13-5325-2013, https://doi.org/10.5194/acp-13-5325-2013, 2013
H. Z. Liu, J. W. Feng, L. Järvi, and T. Vesala
Atmos. Chem. Phys., 12, 7881–7892, https://doi.org/10.5194/acp-12-7881-2012, https://doi.org/10.5194/acp-12-7881-2012, 2012
S. Dupont and E. G. Patton
Atmos. Chem. Phys., 12, 5913–5935, https://doi.org/10.5194/acp-12-5913-2012, https://doi.org/10.5194/acp-12-5913-2012, 2012
T. Foken, F. X. Meixner, E. Falge, C. Zetzsch, A. Serafimovich, A. Bargsten, T. Behrendt, T. Biermann, C. Breuninger, S. Dix, T. Gerken, M. Hunner, L. Lehmann-Pape, K. Hens, G. Jocher, J. Kesselmeier, J. Lüers, J.-C. Mayer, A. Moravek, D. Plake, M. Riederer, F. Rütz, M. Scheibe, L. Siebicke, M. Sörgel, K. Staudt, I. Trebs, A. Tsokankunku, M. Welling, V. Wolff, and Z. Zhu
Atmos. Chem. Phys., 12, 1923–1950, https://doi.org/10.5194/acp-12-1923-2012, https://doi.org/10.5194/acp-12-1923-2012, 2012
Q. Laffineur, M. Aubinet, N. Schoon, C. Amelynck, J.-F. Müller, J. Dewulf, H. Van Langenhove, K. Steppe, and B. Heinesch
Atmos. Chem. Phys., 12, 577–590, https://doi.org/10.5194/acp-12-577-2012, https://doi.org/10.5194/acp-12-577-2012, 2012
A. L. Steiner, S. N. Pressley, A. Botros, E. Jones, S. H. Chung, and S. L. Edburg
Atmos. Chem. Phys., 11, 11921–11936, https://doi.org/10.5194/acp-11-11921-2011, https://doi.org/10.5194/acp-11-11921-2011, 2011
C. A. S. Querino, C. J. P. P. Smeets, I. Vigano, R. Holzinger, V. Moura, L. V. Gatti, A. Martinewski, A. O. Manzi, A. C. de Araújo, and T. Röckmann
Atmos. Chem. Phys., 11, 7943–7953, https://doi.org/10.5194/acp-11-7943-2011, https://doi.org/10.5194/acp-11-7943-2011, 2011
X. Jing, J. Huang, G. Wang, K. Higuchi, J. Bi, Y. Sun, H. Yu, and T. Wang
Atmos. Chem. Phys., 10, 8205–8218, https://doi.org/10.5194/acp-10-8205-2010, https://doi.org/10.5194/acp-10-8205-2010, 2010
R. J. Vong, I. J. Vong, D. Vickers, and D. S. Covert
Atmos. Chem. Phys., 10, 5749–5758, https://doi.org/10.5194/acp-10-5749-2010, https://doi.org/10.5194/acp-10-5749-2010, 2010
H. K. Lappalainen, S. Sevanto, J. Bäck, T. M. Ruuskanen, P. Kolari, R. Taipale, J. Rinne, M. Kulmala, and P. Hari
Atmos. Chem. Phys., 9, 5447–5459, https://doi.org/10.5194/acp-9-5447-2009, https://doi.org/10.5194/acp-9-5447-2009, 2009
Cited articles
Åkerblom, S., Meili, M., and Bishop, K.: Organic Matter in Rain: An Overlooked Influence on Mercury Deposition, Environ. Sci. Technol. Lett., 2, 128–132, 2015.
Ames, M., Gullug, G., and Olmez, I.: Atmospheric mercury in the vapor phase, and in fine and coarse particulate matter at Perch River, New York, Atmos. Environ., 32, 865–872, 1998.
Baker, K. R. and Bash, J. O.: Regional scale photochemical model evaluation of total mercury wet deposition and speciated ambient mercury, Atmos. Environ., 49, 151–162, 2012.
Barghigiani, C., Ristori, T., and Cortopassi, M.: Air mercury measurement and interference of atmospheric contaminants with gold traps, Environ. Technol., 12, 935–941, 1991.
Bash, J. O.: Description and initial simulation of a dynamic bidirectional air-surface exchange model for mercury in Community Multiscale Air Quality (CMAQ) model, J. Geophys. Res., 115, D06305, https://doi.org/10.1029/2009JD012834, 2010.
Bash, J. O., Carlton, A. G., Hutzell, W. T., and Bullock Jr., O. R.: Regional Air Quality Model Application of the Aqueous-Phase Photo Reduction of Atmospheric Oxidized Mercury by Dicarboxylic Acids, Atmosphere, 5, 1–15, https://doi.org/10.3390/atmos5010001, 2014.
Bieser, J., De Simone, F., Gencarelli, C., Geyer, B, Hedgecock, I., Matthias, V., Travnikov, O., and Weigelt, A.: A diagnostic evaluation of modeled mercury wet depositions in Europe using atmospheric speciated high-resolution observations, Environ. Sci. Pollut. R., 21, 9995–10012, 2014.
Blackwell, B. D. and Driscoll, C. T.: Using foliar and forest floor mercury concentrations to assess spatial patterns of mercury deposition, Environ. Pollut., 202, 126–134, 2015a.
Blackwell, B. D. and Driscoll, C. T.: Deposition of mercury in forests along a montane elevation gradient, Environ. Sci. Technol., 49, 5363–5370, 2015b.
Bullock Jr. and Brehme, K. A.: Atmospheric mercury simulation using the CMAQmodel: formulation description and analysis of wet deposition results, Atmos. Environ., 36, 2135–2146, 2002.
Bullock Jr., O. R., Atkinson, D., Braverman, T., Civerolo, K., Dastoor, A., Davignon, D., Ku, J.-Y., Lohman, K., Myers, T. C., Park, R. J., Seigneur, C., Selin, N. E., Sistla, G., and Vijayaraghavan, L.: The North American Mercury Model Intercomparison Study (NAMMIS): Study description and model-to-model comparisons, J. Geophys. Res., 113, D17310, https://doi.org/10.1029/2008JD009803, 2008.
Bullock Jr., O. R., Atkinson, D., Braverman, T., Civerolo, K., Dastoor, A., Davignon, D., Ku, J.-Y., Lohman, K., Myers, T. C., Park, R. J., Seigneur, C., Selin, N. E., Sistla, G., and Vijayaraghavan, L.: An analysis of simulated wet deposition of mercury from the North American Mercury Model Intercomparison Study, J. Geophys. Res., 114, D08301, https://doi.org/10.1029/2008JD011224, 2009.
Bushey, J. T., Nallana, A. G., Montesdeoca, M. R., and Driscoll, C. T.: Mercury dynamic of a northern hardwood canopy, Atmos. Environ., 42, 6905–6914, 2008.
Caldwell, C. A., Swartzendruber, P., and Prestbo, E.: Conecntration and dry deposition of mercury species in arid south central New Mexico (2001–2002), Environ. Sci. Technol., 40, 7535–7540, 2006.
Castro, M. S., Moore, C., Sherwell, J., and Brooks, S. B.: Dry deposition of gaseous oxidized mercury in Western Maryland, Sci. Total Environ., 417–418, 232–240, 2012.
Chen, H. S., Wang, Z. F., Li, J., Tang, X., Ge, B. Z., Wu, X. L., Wild, O., and Carmichael, G. R.: GNAQPMS-Hg v1.0, a global nested atmospheric mercury transport model: model description, evaluation and application to trans-boundary transport of Chinese anthropogenic emissions, Geosci. Model Dev., 8, 2857–2876, https://doi.org/10.5194/gmd-8-2857-2015, 2015.
Cheng, I., Zhang, L., Blanchard, P: Regression modeling of gas-particle partitioning of atmospheric oxidized mercury from temperature data, J. Geophys. Res.-Atmos., 119, 11864–11876, 2014.
Cheng, I., Zhang, L., and Mao, H.: Relative contributions of gaseous oxidized mercury and fine and coarse particle-bound mercury to mercury wet deposition at nine monitoring sites in North America, J. Geophys. Res.-Atmos., 120, 8549–8562, 2015.
Choi, H.-D., Sharac, T. J., and Holsen, T. M.: Mercury deposition in the Adirondacks: A comparison between precipitation and throughfall, Atmos. Environ., 42, 1818–1827, 2008.
Christensen, J. H., Brandt, J., Frohn, L. M., and Skov, H.: Modelling of Mercury in the Arctic with the Danish Eulerian Hemispheric Model, Atmos. Chem. Phys., 4, 2251–2257, https://doi.org/10.5194/acp-4-2251-2004, 2004.
Cobbett, F. D. and Van Heyst, B. J.: Measurements of GEM fluxes and atmospheric mercury concentrations (GEM, RGM and Hgp) from an agricultural field amended with biosolids in Southern Ont., Canada (October 2004–November 2004), Atmos. Environ., 41, 2270–2282, 2007.
da Silva, G. S., Bisinoti, M. C., Fadini, P. S., Magarelli, G., Jardim, W. F., and Fostier, A. H. : Major Aspects of the Mercury Cycle in the Negro River Basin, Amazon, J. Brazil. Chem. Soc., 20, 1127–1134, 2009.
Dastoor, A., Ryzhkov, A., Durnford, D., Lehnherr, I., Steffen, A., and Morrison, H.: Atmospheric mercury in the Canadian Arctic. Part II: Insight from modeling, Sci. Total Environ., 509–520, 16–27, 2015.
De Foy, B., Heo, J., and Schauer, J. J. : Estimation of direct emissions and atmospheric processing of reactive mercury using inverse modeling, Atmos. Environ., 85, 73–82, 2014.
Demers, J. D., Driscoll, C. T., Fahey, T. J., and Yavitt, J. B.: Mercury cycling in litter and soil in different forest types in the Adirondack Region, New York, USA, Ecol. Appl., 17, 1341–1351, 2007.
de Oliveira, R. R., da Silveira, C. L. P., Magalhães, A. C., and Firme, R. P.: Turnover of heavy metals in the litter of a urban forest at Rio de Janeiro, Floresta e Ambiente, 12, 50–56, 2005.
De Simone, F., Gencarelli, C. N., Hedgecock, I. M., and Pirrone, N. : Global atmospheric cycle of mercury: a model study on the impact of oxidation mechanisms, Environ. Sci. Pollut. R., 21, 4110–4123, 2014.
Ding, Z., Wu, H., Feng, X., Liu, J., Liu, Y., Yuan, Y., Zhang, L., Lin, G., and Jiayong, P.: Distribution of Hg in mangrove trees and its implication for Hg enrichment in the mangrove ecosystem, Appl. Geochem., 26, 205–212, 2011.
Eckley, C. S., Gustin, M., Marsik, F., and Miller, M. B.: Measurement of surface mercury fluxes at active industrial gold mines in Nevada (USA), Sci. Total Environ., 409, 514–522, 2011.
Edwards, G. C. and Howard, D. A.: Air-surface exchange measurements of gaseous elemental mercury over naturally enriched and background terrestrial landscapes in Australia, Atmos. Chem. Phys., 13, 5325–5336, https://doi.org/10.5194/acp-13-5325-2013, 2013.
Edwards, G. C., Rasmussen, P. E., Schroeder, W. H., Wallace, D. M., Halfpenny-Mitchell, L., Dias, G. M., Kemp, R. J., and Ausma, S.: Development and evaluation of a sampling system to determine gaseous Mercury fluxes using an aerodynamic micrometeorological gradient method, J. Geophys. Res., 110, D10306, https://doi.org/10.1029/2004JD005187, 2005.
Engle, M. A., Tate, M. T., Krabbenhoft, D. P., Schauer, J. J., Kolker, A., Shanley, J. B., and Bothner, M. H.: Comparison of atmospheric mercury speciation and deposition at nine sites across central and eastern North America, J. Geophys. Res., 115, D18306, https://doi.org/10.1029/2010JD014064, 2010.
Enrico, M., Le Roux, G., Marusczak, N., Heimbürger, L.-E., Claustres, A., Fu, X., Sun, R., and Sonke, J. E.: Atmospheric mercury transfer to peat bogs dominated by gaseous elemental mercury dry deposition, Environ. Sci. Technol., 50, 2405–2412, 2016.
Ericksen, J. A., Gustin, M. S., Schorran, D. E., Johnson, D. W., Lindberg, S. E., and Coleman, J. S.: Accumulation of atmospheric mercury in forest foliage, Atmos. Environ., 37, 1613–1622, 2003.
Fang, G. C., Tsai, J.-H., Lin, Y.-H., and Chang, C.-Y.: Dry deposition of atmospheric particle-bound mercury in the middle Taiwan, Aerosol Air Qual. Res., 12, 1298–1308, 2012a.
Fang, G. C., Zhang, L., and Huang, C. S.: Measurements of size-fractionated concentration and bulk dry deposition of atmospheric particle bound mercury, Atmos. Environ., 61, 371–377, 2012b.
Fang, G. C., Lin, Y.-H., and Chang, C.-Y.: Use of mercury dry deposition samplers to quantify dry deposition of particulate-bound mercury and reactive gaseous mercury at a traffic sampling site, Environ. Forensics, 14, 182–186, 2013.
Fang, G. C., Lin, Y.-H., Chang, C.-Y., and Zheng, Y.-C.: Concentrations of particulates in ambient air, gaseous elementary mercury (GEM), and particulate-bound mercury (Hg(p)) at a traffic sampling site: a study of dry deposition in daytime and nighttime, Environ. Geochem. Hlth, 36, 605–612, 2014.
Fang, G. C., Lin, Y.-H., and Zheng, Y.-C.: Ambient air particulates and particulate-bound mercury Hg(p) concentrations: dry deposition study over a Traffic,Airport, Park (T.A.P.) areas during years of 2011–2012, Environ. Geochem. Hlth, 38, 183–194, 2016.
Feddersen, D. M., Talbot, R., Mao, H., and Sive, B. C.: Size distribution of particulate mercury in marine and coastal atmospheres, Atmos. Chem. Phys., 12, 10899–10909, https://doi.org/10.5194/acp-12-10899-2012, 2012.
Fisher, L. S. and Wolfe, M. H.: Examination of mercury inputs by throughfall and litterfall in the Great Smoky Mountains National Park, Atmos. Environ., 47, 554–559, 2012.
Fostier, A.-H., Forti, M. C., Guimarães, J. R. D., Merlfi, A. J., Boulet, R., Espirito Santo, C. M., and Krug, F. J.: Mercury fluxes in a natural forested Amazonian catchment (Serra do Navio, Amapá State, Brazil), Sci. Total Environ., 260, 201–211, 2000.
Fostier, A. H., Cecon, K., and Forti, M. C.: Urban influence on litterfall trace metals fluxes in the Atlantic forest of São Paulo (Brazil), J. Physique IV France, 107, 491–494, 2003.
Fostier, A. H., Melendez-Perez, J. J., and Richter, L.: Litter mercury deposition in the Amazonian rainforest, Environ. Pollut., 206, 605–610, 2015.
Fritsche, J., Obrist, D., Zeeman, M. J., Conen, F., Eugster, W., and Alewell, C.: Elemental mercury fluxes over a sub-alpine grassland determined with two-micrometeorological methods, Atmos. Environ., 42, 2922–2933, 2008.
Fu, X., Marusczak, N., Heimbürger, L.-E., Sauvage, B., Gheusi, F., Prestbo, E. M., and Sonke, J. E.: Atmospheric mercury speciation dynamics at the high-altitude Pic du Midi Observatory, southern France, Atmos. Chem. Phys., 16, 5623–5639, https://doi.org/10.5194/acp-16-5623-2016, 2016.
Fu, X. W., Feng, X., Dong, Z. Q., Yin, R. S., Wang, J. X., Yang, Z. R., and Zhang, H.: Atmospheric gaseous elemental mercury (GEM) concentrations and mercury depositions at a high-altitude mountain peak in south China, Atmos. Chem. Phys., 10, 2425–2437, https://doi.org/10.5194/acp-10-2425-2010, 2010a.
Fu, X. W., Feng, X., Zhu, W., Rothenberg, S., Yao, H., and Zhang, H.: Elevated atmospheric deposition and dynamics of mercury in a remote upland forest of southwestern China, Environ. Pollut., 158, 2324–2333, 2010b.
Fu, X. W., Zhang, H., Yu, B., Wang, X., Lin, C.-J., and Feng, X. B.: Observations of atmospheric mercury in China: a critical review, Atmos. Chem. Phys., 15, 9455–9476, https://doi.org/10.5194/acp-15-9455-2015, 2015.
Fulkerson, M.: Atmospheric mercury deposition in an urban environment, PhD Thesis, University of Central Florida, Florida, USA, 96 pp., 2006.
Gay, D. A., Schmeltz, D., Prestbo, E., Olson, M., Sharac, T., and Tordon, R.: The Atmospheric Mercury Network: measurement and initial examination of an ongoing atmospheric mercury record across North America, Atmos. Chem. Phys., 13, 11339–11349, https://doi.org/10.5194/acp-13-11339-2013, 2013.
Gencarelli, C. N., De Simone, F., Hedgecock, I. M., Sprovieri, F., Yang, X., and Pirrone, N.: European and Mediterranean mercury modelling: Local and long-range contributions to the deposition flux, Atmos. Environ., 117, 162–168, 2015.
Gong, P., Wang, X.-P., Xue, Y.-G., Xu, B.-Q., and Yao, T.-D.: Mercury distribution in the foliage and soil profiles of the Tibetan forest: Processes and implications for regional cycling, Environ. Pollut., 188, 94–101, 2014.
Graydon, J. A., St. Louis, V. L., Hintelmann, H., Lindberg, S. E., Sandilands, K. A., Rudd, J. W. M., Kelly, C. A., Hall, B. D., and Mowat, L. D.: Long-Term Wet and Dry Deposition of Total and Methyl Mercury in the Remote Boreal Ecoregion of Canada, Environ. Sci. Technol., 42, 8345–8351, 2008.
Grigal, D. F., Kolk, R. K., Fleck, J. A., and Nater, E. A.: Mercury budget of an upland-peatland watershed, Biogeochemistry, 50, 95–109, 2000.
Gustin, M. S., Amos, H. M., Huang, J., Miller, M. B., and Heidecorn, K.: Measuring and modeling mercury in the atmosphere: a critical review, Atmos. Chem. Phys., 15, 5697–5713, https://doi.org/10.5194/acp-15-5697-2015, 2015.
Han, J.-S., Seo, Y.-S., Kim, M.-K., Holsen, T. M., and Yi, S.-M.: Total atmospheric mercury deposition in forested areas in South Korea, Atmos. Chem. Phys., 16, 7653–7662, https://doi.org/10.5194/acp-16-7653-2016, 2016.
Han, Y.-J., Holsen, T. M., Ever, D. C., and Driscoll, C. T.: Reduced mercury deposition in New Hampshire from 1996 to 2002 due to changes in local sources, Environ. Pollut., 156, 1348–1356, 2008.
Hall, B. D. and St. Louis, V. L.: Methylmercury and total mercury in plant litter decomposing in upland forests and flooded landscapes, Environ. Sci. Technol., 38, 5010–5021, 2004.
Holloway, T., Voigt, C., Morton, J., Spak, S. N., Rutter, A. P., and Schauer, J. J.: An assessment of atmospheric mercury in the Community Multiscale Air Quality (CMAQ) model at an urban site and a rural site in the Great Lakes Region of North America, Atmos. Chem. Phys., 12, 7117–7133, https://doi.org/10.5194/acp-12-7117-2012, 2012.
Holmes, H. A., Pardyjak, E. R., Perry, K. D., and Abbott, M. L.: Gaseous dry deposition of atmospheric mercury: A comparison of two surface resistance models for deposition to semiarid vegetation, J. Geophys. Res., 116, S14306, https://doi.org/10.1029/2010JD015182, 2011.
Huang, J. and Gustin, M. S.: Use of passive sampling methods and models to understand sources of mercury deposition to high elevation sites in the western United States, Environ. Sci. Technol., 49, 432–441, 2015.
Huang, J., Choi, H.-D., Landis, M. S., and Holsen, T. M.: An application of passive samplers to understand atmospheric mercury concentration and dry deposition spatial distributions, J. Environ. Monitor., 14, 2976–2982, https://doi.org/10.1039/c2em30514c, 2012.
Hultberg, H., Munthe, J., and Iverfeldt, Å.: Cycling of methylmercury and mercury – Responses in the forest roof catchment to three years of decreased atmospheric deposition, Water Air Soil Poll., 80, 415–424, 1995.
Hutnik, R. J., McClenahen, J. R., Long, R. P., and Davis, D. D.: Mercury Accumulation in Pinus nigra (Austrian Pine), Northeast. Nat., 21, 529–540, 2014.
Iverfeldt, Å.: Mercury in forest canopy throughfall water and its relation to atmospheric deposition, Water Air Soil Poll., 56, 553–564, 1991.
Jaffe, D. A., Lyman, S., Amos, H. M., Gustin, M. S., Huang, J., Selin, N. E., Leonard, L., Ter Schure, A., Mason, R. P., Talbot, R., Rutter, A., Finley, B., Jaeglé, L., Shah, V., McClure, C., Ambrose, J., Gratz, L., Lindberg, S., Weiss-Penzias, P., Sheu, G.-R., Feddersen, D., Horvat, M., Dastoor, A., Hynes, A. J., Mao, H., Sonke, J. E., Slemr, F., Fisher, J. A., Ebinghaus, R., Zhang, Y., and Edwards, G.: Progress on understanding atmospheric mercury hampered by uncertain measurements, Environ. Sci. Technol., 48, 7204–7206, 2014.
Jiskra, M., Wiederhold, J. G., Skyllberg U., Kronberg, R.-M., Hadjas, I., and Kretzschmar, R.: Mercury deposition and re-emission pathways in boreal forest soils investigated with Hg isotope signatures, Environ. Sci. Technol., 49, 7188–7196, 2015.
Johnson, K. B: Fire and its effects on mercury and methylmercury dynamics for two watersheds in Acadia National Park, Maine, MSc Thesis, the University of Maine, Maine, USA, 73 pp., 2002.
Juillerat, J. I., Ross, D. S., and Bank, M. S.: Mercury in litterfall and upper soil horizons in forested ecosystems in Vermont, USA, Environ. Toxicol. Chem., 31, 1720–1729, 2012.
Kalicin, M. H., Driscoll, C. T., Yavitt, J., Newton, R., and Munson, R.: The Dynamics of Mercury in Upland Forests of the Adirondack Region of New York, in: Mercury in Adirondack wetlands, lakes and terrestrial systems (MAWLTS), New York State Energy Research and Development Authority, New York, USA, 8-1–8-15, 2008.
Keeler, G., Glinsorn, G., and Pirrone, N.: Particulate mercury in the atmosphere: Its significance, transport, transformation and sources, Water Air Soil Pollut., 80, 159–168, 1995.
Kerkweg, A., Buchholz, J., Ganzeveld, L., Pozzer, A., Tost, H., and Jöckel, P.: Technical Note: An implementation of the dry removal processes DRY DEPosition and SEDImentation in the Modular Earth Submodel System (MESSy), Atmos. Chem. Phys., 6, 4617–4632, https://doi.org/10.5194/acp-6-4617-2006, 2006.
Kim, K. H., Lindberg, S. E., and Meyers, T. P.: Micrometeorological measurements of mercury vapor fluxes over background forest soils in Eastern Tennessee, Atmos. Environ., 29, 267–282, 1995.
Kim, P.-R., Han, Y.-J., Olsen, T. M., Yi, S.-M.: Atmospheric particulate mercury: Concentrations and size distributions, Atmos. Environ., 61, 94–102, 2012.
Kim, S.-H., Han, Y.-J., Holsen, T. M., and Yi, S.-M.: Characteristics of atmospheric speciated mercury concentrations (TGM, Hg(II) and Hg(p)) in Seoul, Korea, Atmos. Environ., 43, 3267–3274, 2009.
Kolka, R. K., Nater, E. A., Grigal, D. F., and Verry, E. S.: Atmospheric inputs of mercury and organic carbon into a forested upland/bogwatershed, Water Air Soil Poll., 113, 273–294, 1999.
Kos, G., Ryzhkov, A., Dastoor, A., Narayan, J., Steffen, A., Ariya, P. A., and Zhang, L.: Evaluation of discrepancy between measured and modelled oxidized mercury species, Atmos. Chem. Phys., 13, 4839–4863, https://doi.org/10.5194/acp-13-4839-2013, 2013.
Lai, S.-O., Huang, J., Hopke, P. K., and Holsen, T. M.: An evaluation of direct measurement techniques for mercury dry deposition, Sci. Total Environ., 409, 1320–1327, 2011.
Landis, M. S., Keeler, G. J., Al-Wali, K. I., and Stevens, R. K.: Divalent inorganic reactive gaseous mercury emissions from a mercury cell chlor-alkali plant and its impact on near-field atmospheric dry deposition, Atmos. Environ., 38, 613–622, 2004.
Lang, X.: Mercury in atmospheric precipitation and litterfall in Mt. Ailao and Mt. Damei, MSc Thesis, Guizhou University, Guiyang, China, 78 pp., 2014.
Larssen, T., de Wit, H. A., Wiker, M., Halse, K., Lei, H., Wuebbles, D. J., Liang, X.-Z., Tao, Z., Olsen, S., Artz, R., Ren, X., and Cohen, M.: Mercury budget of a small forested boreal catchment in southeast Norway, Sci. Total Environ., 404, 290-296, 2008.
Lee, G.-S., Kim, P.-R., Han, Y.-J., Holsen, T. M., Seo, Y.-S., and Yi, S.-M.: Atmospheric speciated mercury concentrations on an island between China and Korea: sources and transport pathways, Atmos. Chem. Phys., 16, 4119–4133, https://doi.org/10.5194/acp-16-4119-2016, 2016.
Lee, Y. H., Bishop, K. H., Munthe, J., Iverfeldt, Å., Verta, M., Parkman, H., and Hultberg, H.: An Examination of Current Hg Deposition and Export in Fenno-Scandian Catchments, Biogeochemistry, 40, 125–135, 1998.
Lee, Y. H., Bishop, K. H., and Munthe, J.: Do concepts about catchment cycling of methylmercury and mercury in boreal catchments stand the test of time? Six years of atmospheric inputs and runoff export at Svartberget, northern Sweden, Sci. Total Environ., 260, 11–20, 2000.
Lindberg, S. E. and Stratton, W. J.: Atmospheric mercury speciation: Concentrations and behaviour of reactive gaseous mercury in ambient air, Environ. Sci. Technol., 32, 49–57, 1998.
Lindberg, S. E., Owens, J. G., and Stratton, W. J.: Application of throughfall methods to estimate dry deposition of mercury, in: Mercury as a global pollutant, edited by: Huckabee, J. and Watras, C., Lewis Publications, 261–272, 1994.
Lindberg, S. E., Kim, K.-H., Meyers, T. P., and Owens, J. G.: A micrometeorological gradient approach for quantifying air/surface exchange of mercury vapor: Tests over contaminated soils, Environ. Sci. Technol., 29, 126–135, 1995.
Liu, B., Keeler, G. J., Dvonch, J. T., Barres, J. A., Lynam, M. M., Marsik, F. J., and Morgan, J. T.: Temporal variability of mercury speciation in urban air, Atmos. Environ., 41, 1911–1923, 2007.
Lombard, M. A. S., Bryce, J. G., Mao, H., and Talbot, R.: Mercury deposition in Southern New Hampshire, 2006–2009, Atmos. Chem. Phys., 11, 7657–7668, https://doi.org/10.5194/acp-11-7657-2011, 2011.
Luo, Y., Duan, L., Xu, G., and Hao, J.: Inhibition of mercury release from forest soil by high atmospheric deposition of Ca2+ and SO2−, Chemosphere, 134, 113–119, 2015.
Lyman, S. N., Gustin, M. S., Prestbo, E. M., and Marsik, F. J.: Estimation of dry deposition of atmospheric mercury in Nevada by direct and indirect methods, Environ. Sci. Technol., 41, 1970–1976, 2007.
Lyman, S. N., Gustin, M. S., Prestbo, E. M., Kilner, P. I., Edgerton, E., and Hartsell, B.: Testing and application of surrogate surfaces for understanding potential gaseous oxidized mercury dry deposition, Environ. Sci. Technol., 43, 6235–6241, 2009.
Lyman, S. N., Gustin, M. S., and Presto, E. M.: A passive sampler for ambient gaseous oxidized mercury concentrations, Atmos. Environ., 44, 246–252, 2010.
Lynam, M. M., Dvonch, J. T., Hall, N. L., Morishita, M., and Barres J. A.: Trace elements and major ions in atmospheric wet and dry deposition across central Illinois, USA, Air Qual. Atmos. Health, 8, 135–147, 2015.
Ma, M., Wang, D., Du, H., Sun, T., Zhao, Z., Wang, Y., and Wei, S.: Mercury dynamics and mass balance in a subtropical forest, southwestern China, Atmos. Chem. Phys., 16, 4529–4537, https://doi.org/10.5194/acp-16-4529-2016, 2016.
Maestas, M. M.: Characterization of speciated atmospheric mercury concentration measurements in northern Utah, MSc Thesis, The University of Utah, Utah, USA, 152 pp., 2011.
Marsik, F. J.: Mercury Dry Deposition Measurement Intercomparison and Workshop Final Report, available at: http://www.glc.org/glad/Projectdocs/Marsik/GLAD_Progress_Report_Oct2009_final.pdf (last access: 2 June 2016), 2009.
Marsik, F. J., Keeler, G. J., Lindberg, S. E., and Zhang, H.: The air-surface exchange of gaseous mercury over a mixed sawgrass-cattail stand within the Florida Everglades, Environ. Sci. Technol., 39, 4739–4746, 2005.
Marsik, F. J., Keeler, G. J., and Landis, M. S.: The dry-deposition of speciated mercury to the Florida Everglades: measurements and modeling, Atmos. Environ., 41, 136–149, 2007.
Martin, R. S., Witt, M. L. I., Sawyer, G. M., Thomas, H. E., Watt, S. F. L., Bagnato, E., Calabrese, S., Aiuppa, A., Delmelle, P., Pyle, D. M., and Mather, T. A.: Bioindication of volcanic mercury (Hg) deposition around Mt. Etna (Sicily), Chem. Geol., 310–311, 12–22, 2012.
McLaughlin, E., Driscoll, C., Yavitt, J., Newton, R., and Munson, R.: Mercury in upland and riparian wetland vegetation, in: Mercury in Adirondack wetlands, lakes and terrestrial systems (MAWLTS), New York State Energy Research and Development Authority, New York, USA, 9-1–9-6, 2008.
Melendez-Perez, J. J., Fostier, A. H., Carvalho Jr., J. A., Windmoller, C. C., Santos, J. C., Carpi, A.: Soil and biomass mercury emissions during a prescribed fire in the Amazonian rain forest, Atmos. Environ., 96, 415–422, 2014.
Mélières, M.-A., Pourchet, M., Charles-Dominique, P., and Gaucher, P. : mercury in canopy leaves of French Guiana in remote areas, Sci. Total Environ., 311, 261–267, 2003.
Meyers, T. P., Hall, M. E., Lindberg, S. E., and Kim, K.: Use of the modified Bowen-ratio technique to measure fluxes of trace gases, Atmos. Environ., 30, 3321–3329, 1996.
Michelazzo, P. A. M., Fostier A. H., Magarelli, G., Santos, J. C., and Andrade de Carvalho Jr., A. : Mercury emission from forest burning in soutern Amazon, J. Geophys. Res. Lett., 37, L09809, https://doi.org/10.1029/2009GL042220, 2010.
Miller, E. K, Vanarsdale, A., Keeler, G. J., Chalmers, A., Poissant, L., Kanman, N. C., and Brulotte, R.: Estimation and mapping of wet and dry mercury deposition across northeastern North America, Ecotoxicology, 14, 53–70, 2005.
Munthe, J. Hultberg, H., and Iverfeldt, A.: Mechanisms of deposition of methylmercury and mercury to coniferous forests, Water Air Soil Poll., 80, 363–371, 1995.
Niu, Z., Zhang, X., Wang, Z., Ci, Z.: Mercury in leaf litter in typical suburban and urban broadleaf forests in China, J. Environ. Sci., 23, 2042–2048, 2011.
Nóvoa-Muñoz, J. C., Pontevedra-Pombal, X., Martinez-Cortizas, E., and Garcia-Rodeja Gayoso, E.: Mercury accumulation in upland acid forest ecosystems nearby a coal-fired power-plant in Southwest Europe (Galicia, NW Spain), Sci. Total Environ., 394, 303–312, 2008.
Obrist, D.: Mercury distribution across 14 U.S. Forests. Part II: Patterns of methyl mercury concentrations and areal mass of total and methyl mercury, Environ. Sci. Technol., 46, 5921–5930, 2012.
Obrist, D., Johnson, D. W., Lindberg, S. E., Luo, Y., Hararuk, O., Bracho, R., Battles, J. J., Dail, D. B., Edmonds, R. L., Monson, R. K., Ollinger, S. V., Pallardy, S. G., Pregitzer, K. S., and Todd, D. E.: Mercury distribution across 14 US Forests. Part I: Spatial patterns of concentrations in biomass, litter, and soils, Environ. Sci. Technol., 45, 3974–3981, 2011.
Peterson, C. and Gustin, M. A.: Mercury in the air, water and biota at the Great Salt Lake (Utah, USA), Sci. Total Environ., 405, 255–268, 2008.
Peterson, C., Alishahi, M., and Gustin, M. A.: Testing the use of passive sampling systems for understanding air mercury concentrations and dry deposition across Florida, USA, Sci. Total Environ., 424, 297–307, 2012.
Poissant, L. and Casimir, A.: Water-air and soil-air exchange rate of total gaseous mercury measured at background sites, Atmos. Environ., 32, 883–893, 1998.
Poissant, L., Pilote, M., Xu, X., and Zhang, H.: Atmospheric mercury speciation and deposition in the Bay St. Francois wetlands, J. Geophys. Res., 109, D11301, https://doi.org/10.1029/2003JD004364, 2004.
Pokharel, A. K. and Obrist, D.: Fate of mercury in tree litter during decomposition, Biogeosciences, 8, 2507–2521, 2011.
Porvari, P. and Verta, M.: Total and methyl mercury concentrations and fluxes from small boreal forest catchments in Finland, Environ. Pollut., 123, 181–191, 2003.
Prestbo, E. M. and Gay, D. A.: Wet deposition of mercury in the U.S. and Canada, 1996–2005: Results and analysis of the NADP mercury deposition network (MDN), Atmos. Environ., 43, 4223–4233, 2009.
Rasmussen, P. E.: Temporal variation of mercury in vegetation, Water Air Soil Poll., 80, 1039–1042, 1995.
Rasmussen, P. E., Mierle, G., and Nriagu, J. O. : The analysis of vegetation for total mercury, Water Air Soil Poll., 56, 379–390, 1991.
Rea, A. W., Keeler, G. J., and Scherbatskoy, T.: The deposition of mercury in throughfall and literfall in the Lake Champlain watershed: a short-term study, Atmos. Environ., 30, 3257–3263, 1996.
Rea, A. W., Lindberg, S. E., and Keeler, G. J.: Assessment of dry deposition and foliar leaching of mercury and selected trace elements based on washed foliar and surrogate surfaces, Environ. Sci. Technol., 34, 2418–2425, 2000.
Rea, A. W., Lindberg, S. E., and Keeler, G. J.: Dry deposition and foliar leaching of mercury and selected trace elements in deciduous forest throughfall, Atmos. Environ., 35, 3453–3462, 2001.
Rea, A. W., Lindberg, S. E., Scherbatskoy, T., and Keeler, G. J.: Mercury accumulation in foliage over time in two northern mixed-hardwood forests, Water Air Soil Poll., 133, 49–67, 2002.
Richardson, J. B. and Friedland, A. J.: Mercury in coniferous and deciduous upland forests in northern New England, USA: implications of climate change, Biogeosciences, 12, 6737–6749, https://doi.org/10.5194/bg-12-6737-2015, 2015.
Risch, M. R., DeWild, J. F., Krabbenoft, D. P., Kolka, R. K., and Zhang, L.: Litterfall mercury dry deposition in the eastern USA, Environ. Pollut., 161, 284–290, 2012.
Roulet, M., Lucotte, M., Saint-Aubin, A., Tran, S., Rhéault, T. I., Farella, N., Da silva, E. D. J., Dezencourt, J., Sousa Passos, C.-J., Soares, G. S., Guimarães, J.-R., D., Mergler, D., and Amorim, M. : The geochemistry of mercury in central Amazonian soils developed on the Alter-do-Chão formation of the lower Tapajós River Valley, Pará state, Brazil, Sci. Total Environ., 223, 1–24, 1998.
Roulet, M., Lucotte, M., Farella, N., Serique, G., Coelho, H., Sousa Passos, C. J., de Jesus Dasilva, E., Scavone de Andrade, P., Mergler, D., Guimarãwa, J.-R., D., and Amorim, M. : Effects of recent human colonization on the presence of mercury in Amazonian ecosystems, Water Air Soil Poll., 112, 297–313, 1999.
Ryaboshapko, A., Bullock Jr., R., Ebinghaus, R., Ilyin, I., Lohman, K., Munthe, J., Petersen, G., Seigneur, C., and Wängberg, I.: Comparison of mercury chemistry models, Atmos. Environ., 36, 3881–3898, 2002.
Ryaboshapko, A., Bullock Jr., O. R., Christensen, J., Cohen, M., Dastoor, A., Ilyin, I., Petersen, G., Syrakov, D., Artz, R. S., Davignon, D., Draxler, R. R., and Munthe, J.: Intercomparison study of atmospheric mercury models: 1. Comparison of models with short-term measurements, Atmos. Environ., 376, 228–240, 2007a.
Ryaboshapko, A., Bullock Jr., O. R., Christensen, J., Cohen, M., Dastoor, A., Ilyin, I., Petersen, G., Syrakov, D., Travnikov, O., Artz R. S., Davignon, D., Draxler, R. R., Munthe, J., and Pacyna, J.: Intercomparison study of atmospheric mercury models: 2. Modelling results vs. long-term observations and comparison of country deposition budgets, Sci. Total Environ., 377, 319–333, 2007b.
Sakata, M. and Asakura, K.: Evaluating relative contribution of atmospheric mercury species to mercury dry deposition in Japan, Water Air Soil Poll., 193, 51–63, 2008.
Sakata, M. and Marumoto, K.: Dry Deposition Fluxes and Deposition Velocities of Trace Metals in the Tokyo Metropolitan Area Measured with a Water Surface Sampler, Environ. Sci. Technol., 38, 2190–2197, 2004.
Sakata, M. and Marumoto, K.: Wet and dry deposition fluxes of mercury in Japan, Atmos. Environ., 39, 3139–3146, 2005.
Sather, M. E., Murkerjee, S., Smith, L., Mathew, J., Jackson, C., Callison, R., Scrapper, L., Hathcoat, A., Adam, J., Keese, D., Ketcher, P., Brunette, R., Karlstrom J., and Van der Jagt, G.: Gaseous oxidized mercury dry deposition measurements in the Four Corners area and Eastern Oklahoma, USA, Atmos. Poll. Res., 4, 168–180, 2013.
Sather, M. E., Mukerjee, S., Allen, K. L., Smith, L., Mather, J., Jackson, C., Callison, R., Scrapper, L., Hathcoat, A., Adam, J, Keese, D., Ketcher, P., Brunette, R., Karlstrom, J., and Van der Jagt, G.: Gaseous Oxidized Mercury Dry Deposition Measurements in the Southwestern USA: A Comparison between Texas, Eastern Oklahoma, and the Four Corners Area, Sci. World J., 2014, 14 pp., 580723, https://doi.org/10.1155/2014/580723, 2014.
Schwesig, D. and Matzner, E.: Pools and fluxes of mercury and methylmercury in two forested catchments in Germany, Sci. Total Environ., 260, 213–223, 2000.
Schwesig, D. and Matzner, E.: Dynamics of mercury and methylmercury in forest floor and runoff of a forested watershed in Central Europe, Biogeochemistry, 53, 181–200, 2001.
Seigneur, C., Karamchandani, P., Lohman, K., Vijayaraghavan, K., and Shia, R.-L.: Multiscale modeling of the atmospheric fate and transport of mercury, J. Geophys. Res., 106, 27795–27809, 2001.
Seigneur, C., Vijayaraghavan, K., Lohman, K., Karamchandani, P., and Scott, C.: Global source attribution for mercury deposition in the United States, Environ. Sci. Technol., 38, 555–569, 2004.
Seigneur, C., Lohman, K., Vijayaraghavan, K., Jansen, J., and Levin, L.: Modeling Atmospheric Mercury Deposition in the Vicinity of Power Plants, JAPCA J. Air Waste Ma., 56, 743–751, 2006.
Selvendiran, P., Driscoll, C. T., Montesdeoca, M. R., and Bushey, J. T.: Inputs, storage, and transport of total and methyl mercury in two temperate forest wetlands, J. Geophys. Res., 113, G00C01, https://doi.org/10.1029/2008JG000739, 2008.
Sexauer Gustin, M., Weiss-Penzias, P. S., and Peterson, C.: Investigating sources of gaseous oxidized mercury in dry deposition at three sites across Florida, USA, Atmos. Chem. Phys., 12, 9201–9219, https://doi.org/10.5194/acp-12-9201-2012, 2012.
Sheehan, K. D., Fernandez, I. J., Kahl, J. S., and Amirbahman, A.: Litterfall mercury in two forested watersheds at Acadia National Park, Maine, USA, Water Air Soil Poll., 170, 249–265, 2006.
Silva-Filho, E. V., Machado, W., Oliveira, R. R., Sella, S. M., and Lacerda, L. D.: Mercury deposition through litterfall in an Atlantic Forest at Ilha Grande, Southeast Brazil, Chemosphere, 65, 2477–2484, 2006.
Slinn, S. A. and Slinn, W. G. N.: Predictions for particle deposition on natural waters, Atmos. Environ., 14, 1013–1016, 1980.
Song, S., Selin, N. E., Soerensen, A. L., Angot, H., Artz, R., Brooks, S., Brunke, E.-G., Conley, G., Dommergue, A., Ebinghaus, R., Holsen, T. M., Jaffe, D. A., Kang, S., Kelley, P., Luke, W. T., Magand, O., Marumoto, K., Pfaffhuber, K. A., Ren, X., Sheu, G.-R., Slemr, F., Warneke, T., Weigelt, A., Weiss-Penzias, P., Wip, D. C., and Zhang, Q.: Top-down constraints on atmospheric mercury emissions and implications for global biogeochemical cycling, Atmos. Chem. Phys., 15, 7103–7125, https://doi.org/10.5194/acp-15-7103-2015, 2015
Sprovieri, F., Pirrone, N., Ebinghaus, R., Kock, H., and Dommergue, A.: A review of worldwide atmospheric mercury measurements, Atmos. Chem. Phys., 10, 8245–8265, https://doi.org/10.5194/acp-10-8245-2010, 2010.
Sprovieri, F., Gratz, L. E., and Pirrone, N.: Development of a Ground-Based Atmospheric Monitoring Network for the Global Mercury Observation System (GMOS). In proceedings of the 16th International Conference on Heavy Metals in the Environment, Rome, Italy, 23-27 September 2012, E3S Web of Conferences, https://doi.org/10.1051/e3sconf/20130117007, 2013.
St. Louis, V. L., Rudd, J. W. M., Kelly, C. A., Hall, B. D., Rolfhus, K. R., Scott, K. J., Lindberg, S. E., and Dong, W.: Importance of the forest canopy to fluxes of methylmercury and total mercury to boreal ecosystems, Environ. Sci. Technol., 35, 3089–3098, 2001.
Szopka, K., Karczewska, A., and Kabała, C.: Mercury accumulation in the surface layers of mountain soils: A case study from the Karkonosze Mountains, Poland, Chemosphere, 83, 1507–1512, 2011.
Teixeira, D. C., Montezuma, R. C., Oliveira, R. R., and Silva-Filho, E. W.: Litterfall mercury deposition in Atlantic forest ecosystem from SE Brazil, Environ. Pollut. 164, 11–15, 2012.
Travnikov, O. and Ilyin, I.: The EMEP/MSC-E mercury modelling system, in: Mercury fate and transport in the global atmosphere: emissions, measurements and models, edited by: Pirrone, N. and Mason, R., Springer, New York, 571–587, 2009.
Travnikov, O., Lin, C.-J., Dastoor, A., Bullock, O. R., Hedgecock, I. M., Holmes, C., Ilyin, I., Jaegle, L., Jung, G. J., Pan, L., Pongprueksa, P., Ryzhkov, A., Seigneur, C., and Skov, H.: Global and regional modelling, in: Hemispheric Transport of Air Pollution 2010 Part B: Mercury Air Pollution Studies No. 18, edited by: Pirrone, N. and Keating, T., United Nations Publications, New York, USA, and Geneva, Switzerland, 101–148, 2010.
Travnikov, O., Dastoor, A., Friedman, C., Ryzhkov, A., Selin, N., and Song, S.: AMAP/UNEP, 2015. Global Mercury Modelling: Update of Modelling Results in the Global Mercury Assessment 2013. Arctic Monitoring and Assessment Programme, Oslo, Norway/UNEP Chemicals Branch, Geneva, Switzerland, 32 pp., 2015.
Wallschläger, D., Kock, H. H., Schroeder, W. H., Lindberg, S. E., Ebinghaus R., and Wilken, R.-D.: Estimating gaseous mercury emissions from contaminated floodplain soils to the atmosphere with simple field measurement techniques, Water Air Soil Poll., 135, 39–54, 2002.
Wang, X., Lin, C.-J., and Feng, X.: Sensitivity analysis of an updated bidirectional air-surface exchange model for elemental mercury vapor, Atmos. Chem. Phys., 14, 6273–6287, https://doi.org/10.5194/acp-14-6273-2014, 2014.
Wang, Z., Zhang, X., Xiao, J., Zhijia, C., and Yu, P.: Mercury fluxes and pools in three subtropical forested catchments, southwest China, Environ. Pollut., 157, 801–808, 2009.
Weiss-Penzias, P. S., Gustin, M. S., and Lyman, S. N.: Sources of gaseous oxidized mercury and mercury dry deposition at two southeastern U.S. sites, Atmos. Environ., 45, 4569–4579, 2011.
Weiss-Penzias, P. S., Ortiz Jr., C., Acosta, R. P., Heim, W., Ryan, J. P., Fernandez, D., Collett Jr., J. L., and Flegal, A. R.: Total and monomethyl mercury in fog water from the central California coast, Geophys. Res. Lett., 39, L03804, https://doi.org/10.1029/2011GL050324, 2012.
Wesely, M. L.: Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models, Atmos. Environ. 23, 1293–1304, 1989.
Witt, E. L., Kolka, R. K., Nater, E. A., and Wickman, T. R.: Influence of the Forest Canopy on Total and Methyl Mercury Deposition in the Boreal Forest, Water Air Soil Poll., 199, 3–11, 2009.
Wright, G., Gustin, M. S., Weiss-Penzias, P., and Miller, M. B.: Investigation of mercury deposition and potential sources at six sites from the Pacific Coast to the Great Basin, USA, Sci. Total Environ., 470–471, 1099–1113, 2014.
Wright, L. P. and Zhang, L.: An approach estimating bidirectional air-surface exchange for gaseous elemental mercury at AMNet sites, J. Adv. Model. Earth Syst., 7, 35–49, https://doi.org/10.1002/2014MS000367, 2015.
Xiao, Z., Sommar, J., Lindqvist, O., and Giouleka, E.: Atmospheric mercury deposition to grass in southern Sweden, Sci. Total Environ., 213, 85–94, 1998.
Xu, X., Yang, X., Miller, D. R., Helble, J. J., and Carley, R. J.: Formulation of bi-directional atmosphere-surface exchanges of elemental mercury, Atmos. Environ., 33, 4345–4355, 1999.
Zhang, H., Lindberg, S. E., Marsik, F. J., and Keeler, G. J.: Mercury air/surface exchange kinetics of background soils of the Tahquamenon River watershed in the Michigan Upper Peninsula, Water Air Soil Poll., 126, 151–169, 2001.
Zhang, L., Gong, S., Padro, J., and Barrie, L. A.: A size-segregated particle dry deposition scheme for an atmospheric aerosol module, Atmos. Environ., 35, 549–560, 2001.
Zhang, L., Brook, J. R., and Vet, R.: A revised parameterization for gaseous dry deposition in air-quality models, Atmos. Chem. Phys., 3, 2067–2082, https://doi.org/10.5194/acp-3-2067-2003, 2003.
Zhang, L., Wright, L., P., Blanchard, P.: A review of current knowledge concerning dry deposition of atmospheric mercury, Atmos. Environ., 43, 5853–5864, 2009.
Zhang, L., Blanchard, P., Johnson, D., Dastoor, A., Ryzhkov, A., Lin, C. J., Vijayaraghavan, K., Gay, D., Holsen, T. M., Huang, J., Graydon, J. A., St. Louis, V. L., Castro, M. S., Miller, E. K., Marsik, F., Luk, J., Poissant, L., Pilote, M., and Zang, K. M.: Assessment of modeled mercury dry deposition over the Great Lakes region, Environ. Pollut., 161, 272–283, 2012a.
Zhang, L., Blanchard, P., Gay, D. A., Prestbo, E. M., Risch, M. R., Johnson, D., Narayan, J., Zsolway, R., Holsen, T. M., Miller, E. K., Castro, M. S., Graydon, J. A., Louis, V. L. St., and Dalziel, J.: Estimation of speciated and total mercury dry deposition at monitoring locations in eastern and central North America, Atmos. Chem. Phys., 12, 4327–4340, https://doi.org/10.5194/acp-12-4327-2012, 2012b.
Zhou, J., Feng, X., Liu, H., Zhang, H., Fu, X., Bao, Z., Wang, X., Zhang, Y.: Examination of total mercury inputs by precipitation and litterfall in a remote upland forest of Southwestern China, Atmos. Environ., 81, 364-372, 2013.
Zhu, W., Lin, C.-J., Wang, X., Sommar, J., Fu, X., and Feng, X.: Global observations and modeling of atmosphere-surface exchange of elemental mercury: a critical review, Atmos. Chem. Phys., 16, 4451–4480, https://doi.org/10.5194/acp-16-4451-2016, 2016.
Short summary
The current knowledge concerning mercury dry deposition is reviewed, including dry deposition algorithms used in chemical transport models and at monitoring sites, measurement methods and studies for quantifying dry deposition of oxidized mercury, and measurement studies of litterfall and throughfall mercury. Over all the regions, dry deposition, estimated as the sum of litterfall and throughfall minus open-field wet deposition, is more dominant than wet deposition for Hg deposition.
The current knowledge concerning mercury dry deposition is reviewed, including dry deposition...
Altmetrics
Final-revised paper
Preprint