Articles | Volume 15, issue 13
https://doi.org/10.5194/acp-15-7667-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-15-7667-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Aircraft measurements of gravity waves in the upper troposphere and lower stratosphere during the START08 field experiment
Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania, USA
Junhong Wei
Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania, USA
Meng Zhang
Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania, USA
K. P. Bowman
Department of Atmospheric Sciences, Texas A&M University, College Station, Texas, USA
L. L. Pan
National Center for Atmospheric Research, Boulder, Colorado, USA
Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA
S. C. Wofsy
Division of Engineering and Applied Science/Department of Earth and Planetary Science, Harvard University, Cambridge, Massachusetts, USA
Related authors
Xingchao Chen, Olivier M. Pauluis, and Fuqing Zhang
Atmos. Chem. Phys., 18, 1003–1022, https://doi.org/10.5194/acp-18-1003-2018, https://doi.org/10.5194/acp-18-1003-2018, 2018
Short summary
Short summary
Simulations of the Indian summer monsoon by the cloud-permitting WRF model at gray-zone resolution (9 km) are described in this study, with a particular emphasis on the model ability to capture the monsoon intraseasonal oscillations (MISOs). When compared to simulations with coarser grid spacing (27 km) and using a cumulus scheme, the 9 km simulations reduce the biases in mean precipitation and produce more realistic low-frequency variability associated with MISOs.
Lei Zhu, Zhiyong Meng, Fuqing Zhang, and Paul M. Markowski
Atmos. Chem. Phys., 17, 13213–13232, https://doi.org/10.5194/acp-17-13213-2017, https://doi.org/10.5194/acp-17-13213-2017, 2017
Short summary
Short summary
This work shows a strong diurnal rainfall cycle over Hainan island due to land–sea breeze circulations. Years of gauge and CMORPH rainfall datasets were examined. More than 60 % of the total annual precipitation is attributable to the diurnal cycle. The multistage dynamics of the diurnal rainfall cycle and the related land–sea breeze circulations were analyzed based on WRF simulations. The rather high island orography is not a dominant factor in the diurnal variation of rainfall over the island.
Yuanchun Zhang, Fuqing Zhang, and Jianhua Sun
Atmos. Chem. Phys., 14, 10741–10759, https://doi.org/10.5194/acp-14-10741-2014, https://doi.org/10.5194/acp-14-10741-2014, 2014
Shoujuan Shu, Fuqing Zhang, Jie Ming, and Yuan Wang
Atmos. Chem. Phys., 14, 6329–6342, https://doi.org/10.5194/acp-14-6329-2014, https://doi.org/10.5194/acp-14-6329-2014, 2014
Andrea E. Gordon, Cameron R. Homeyer, Jessica B. Smith, Rei Ueyama, Jonathan M. Dean-Day, Elliot L. Atlas, Kate Smith, Jasna V. Pittman, David S. Sayres, David M. Wilmouth, Apoorva Pandey, Jason M. St. Clair, Thomas F. Hanisco, Jennifer Hare, Reem A. Hannun, Steven Wofsy, Bruce C. Daube, and Stephen Donnelly
Atmos. Chem. Phys., 24, 7591–7608, https://doi.org/10.5194/acp-24-7591-2024, https://doi.org/10.5194/acp-24-7591-2024, 2024
Short summary
Short summary
In situ airborne observations of ongoing tropopause-overshooting convection and an above-anvil cirrus plume from the 31 May 2022 flight of the Dynamics and Chemistry of the Summer Stratosphere (DCOTSS) field campaign are examined. Upper troposphere and lower stratosphere composition changes are evaluated along with possible contributing dynamical and physical processes. Measurements reveal multiple changes in air mass composition and stratospheric hydration throughout the flight.
Ryan Hossaini, David Sherry, Zihao Wang, Martyn Chipperfield, Wuhu Feng, David Oram, Karina Adcock, Stephen Montzka, Isobel Simpson, Andrea Mazzeo, Amber Leeson, Elliot Atlas, and Charles C.-K. Chou
EGUsphere, https://doi.org/10.5194/egusphere-2024-560, https://doi.org/10.5194/egusphere-2024-560, 2024
Short summary
Short summary
Ethylene dichloride (EDC) is an industrial chemical used to produce polyvinyl chloride (PVC). We analysed EDC production data to estimate global EDC emissions (2002 to 2020). The emissions were included in an atmospheric model and evaluated by comparing simulated EDC to EDC measurements in the troposphere. We show EDC contributes ozone-depleting chlorine to the stratosphere and this has increased with increasing EDC emissions. EDC’s impact on stratospheric ozone is currently small, but non-zero.
Matthias Nützel, Sabine Brinkop, Martin Dameris, Hella Garny, Patrick Jöckel, Laura L. Pan, and Mijeong Park
Atmos. Chem. Phys., 22, 15659–15683, https://doi.org/10.5194/acp-22-15659-2022, https://doi.org/10.5194/acp-22-15659-2022, 2022
Short summary
Short summary
During the Asian summer monsoon season, a large high-pressure system is present at levels close to the tropopause above Asia. We analyse how air masses are transported from surface levels to this high-pressure system, which shows distinct features from the surrounding air masses. To this end, we employ multiannual data from two complementary models that allow us to analyse the climatology as well as the interannual and intraseasonal variability of these transport pathways.
Markus Jesswein, Rafael P. Fernandez, Lucas Berná, Alfonso Saiz-Lopez, Jens-Uwe Grooß, Ryan Hossaini, Eric C. Apel, Rebecca S. Hornbrook, Elliot L. Atlas, Donald R. Blake, Stephen Montzka, Timo Keber, Tanja Schuck, Thomas Wagenhäuser, and Andreas Engel
Atmos. Chem. Phys., 22, 15049–15070, https://doi.org/10.5194/acp-22-15049-2022, https://doi.org/10.5194/acp-22-15049-2022, 2022
Short summary
Short summary
This study presents the global and seasonal distribution of the two major brominated short-lived substances CH2Br2 and CHBr3 in the upper troposphere and lower stratosphere based on observations from several aircraft campaigns. They show similar seasonality for both hemispheres, except in the respective hemispheric autumn lower stratosphere. A comparison with the TOMCAT and CAM-Chem models shows good agreement in the annual mean but larger differences in the seasonal consideration.
Eric A. Ray, Elliot L. Atlas, Sue Schauffler, Sofia Chelpon, Laura Pan, Harald Bönisch, and Karen H. Rosenlof
Atmos. Chem. Phys., 22, 6539–6558, https://doi.org/10.5194/acp-22-6539-2022, https://doi.org/10.5194/acp-22-6539-2022, 2022
Short summary
Short summary
The movement of air masses and the trace gases they contain from the Earth’s surface into the upper troposphere and lower stratosphere (UTLS) can have important implications for the radiative and chemical balance of the atmosphere. In this study we build on recent techniques and use new ones to estimate a range of transport diagnostics based on simultaneously measured trace gases in the UTLS during the monsoon season in North America.
Yanan Zhao, Dennis Booge, Christa A. Marandino, Cathleen Schlundt, Astrid Bracher, Elliot L. Atlas, Jonathan Williams, and Hermann W. Bange
Biogeosciences, 19, 701–714, https://doi.org/10.5194/bg-19-701-2022, https://doi.org/10.5194/bg-19-701-2022, 2022
Short summary
Short summary
We present here, for the first time, simultaneously measured dimethylsulfide (DMS) seawater concentrations and DMS atmospheric mole fractions from the Peruvian upwelling region during two cruises in December 2012 and October 2015. Our results indicate low oceanic DMS concentrations and atmospheric DMS molar fractions in surface waters and the atmosphere, respectively. In addition, the Peruvian upwelling region was identified as an insignificant source of DMS emissions during both periods.
Paul D. Hamer, Virginie Marécal, Ryan Hossaini, Michel Pirre, Gisèle Krysztofiak, Franziska Ziska, Andreas Engel, Stephan Sala, Timo Keber, Harald Bönisch, Elliot Atlas, Kirstin Krüger, Martyn Chipperfield, Valery Catoire, Azizan A. Samah, Marcel Dorf, Phang Siew Moi, Hans Schlager, and Klaus Pfeilsticker
Atmos. Chem. Phys., 21, 16955–16984, https://doi.org/10.5194/acp-21-16955-2021, https://doi.org/10.5194/acp-21-16955-2021, 2021
Short summary
Short summary
Bromoform is a stratospheric ozone-depleting gas released by seaweed and plankton transported to the stratosphere via convection in the tropics. We study the chemical interactions of bromoform and its derivatives within convective clouds using a cloud-scale model and observations. Our findings are that soluble bromine gases are efficiently washed out and removed within the convective clouds and that most bromine is transported vertically to the upper troposphere in the form of bromoform.
Jin Ma, Linda M. J. Kooijmans, Ara Cho, Stephen A. Montzka, Norbert Glatthor, John R. Worden, Le Kuai, Elliot L. Atlas, and Maarten C. Krol
Atmos. Chem. Phys., 21, 3507–3529, https://doi.org/10.5194/acp-21-3507-2021, https://doi.org/10.5194/acp-21-3507-2021, 2021
Short summary
Short summary
Carbonyl sulfide is an important trace gas in the atmosphere and useful to estimating gross primary productivity in ecosystems, but its sources and sinks remain highly uncertain. Therefore, we applied inverse model system TM5-4DVAR to better constrain the global budget. Our finding is in line with earlier studies, pointing to missing sources in the tropics and more uptake in high latitudes. We also stress the necessity of more ground-based observations and satellite data assimilation in future.
Masatomo Fujiwara, Tetsu Sakai, Tomohiro Nagai, Koichi Shiraishi, Yoichi Inai, Sergey Khaykin, Haosen Xi, Takashi Shibata, Masato Shiotani, and Laura L. Pan
Atmos. Chem. Phys., 21, 3073–3090, https://doi.org/10.5194/acp-21-3073-2021, https://doi.org/10.5194/acp-21-3073-2021, 2021
Short summary
Short summary
Lidar aerosol particle measurements in Japan during the summer of 2018 were found to detect the eastward extension of the Asian tropopause aerosol layer from the Asian summer monsoon anticyclone in the lower stratosphere. Analysis of various other data indicates that the observed enhanced particle levels are due to eastward-shedding vortices from the anticyclone, originating from pollutants emitted in Asian countries and transported vertically by convection in the Asian summer monsoon region.
Marc von Hobe, Felix Ploeger, Paul Konopka, Corinna Kloss, Alexey Ulanowski, Vladimir Yushkov, Fabrizio Ravegnani, C. Michael Volk, Laura L. Pan, Shawn B. Honomichl, Simone Tilmes, Douglas E. Kinnison, Rolando R. Garcia, and Jonathon S. Wright
Atmos. Chem. Phys., 21, 1267–1285, https://doi.org/10.5194/acp-21-1267-2021, https://doi.org/10.5194/acp-21-1267-2021, 2021
Short summary
Short summary
The Asian summer monsoon (ASM) is known to foster transport of polluted tropospheric air into the stratosphere. To test and amend our picture of ASM vertical transport, we analyse distributions of airborne trace gas observations up to 20 km altitude near the main ASM vertical conduit south of the Himalayas. We also show that a new high-resolution version of the global chemistry climate model WACCM is able to reproduce the observations well.
Martina Krämer, Christian Rolf, Nicole Spelten, Armin Afchine, David Fahey, Eric Jensen, Sergey Khaykin, Thomas Kuhn, Paul Lawson, Alexey Lykov, Laura L. Pan, Martin Riese, Andrew Rollins, Fred Stroh, Troy Thornberry, Veronika Wolf, Sarah Woods, Peter Spichtinger, Johannes Quaas, and Odran Sourdeval
Atmos. Chem. Phys., 20, 12569–12608, https://doi.org/10.5194/acp-20-12569-2020, https://doi.org/10.5194/acp-20-12569-2020, 2020
Short summary
Short summary
To improve the representations of cirrus clouds in climate predictions, extended knowledge of their properties and geographical distribution is required. This study presents extensive airborne in situ and satellite remote sensing climatologies of cirrus and humidity, which serve as a guide to cirrus clouds. Further, exemplary radiative characteristics of cirrus types and also in situ observations of tropical tropopause layer cirrus and humidity in the Asian monsoon anticyclone are shown.
Susann Tegtmeier, Elliot Atlas, Birgit Quack, Franziska Ziska, and Kirstin Krüger
Atmos. Chem. Phys., 20, 7103–7123, https://doi.org/10.5194/acp-20-7103-2020, https://doi.org/10.5194/acp-20-7103-2020, 2020
Short summary
Short summary
We investigate emissions of brominated gases from the ocean and their contribution to stratospheric ozone depletion. Once in the atmosphere, these gases usually break down in less than 6 months. Their impact on the ozone layer depends on the prevailing atmospheric circulation, since transport to the stratosphere requires uplift. We combine aircraft and ship observations with atmospheric modelling to analyse how, where, and when these gases are transported from the ocean into the stratosphere.
Jeffery Langille, Adam Bourassa, Laura L. Pan, Daniel Letros, Brian Solheim, Daniel Zawada, and Doug Degenstein
Atmos. Chem. Phys., 20, 5477–5486, https://doi.org/10.5194/acp-20-5477-2020, https://doi.org/10.5194/acp-20-5477-2020, 2020
Short summary
Short summary
Water vapour (WV) is a highly variable and extremely important trace gas in Earth’s atmosphere. Due to its radiative and chemical properties, it is coupled to the climate in an extremely complex manner. This is especially true in the lowermost stratosphere (LMS). Despite its importance, the physical processes that control mixing and the distribution of WV in the LMS are poorly understood. This study provides observational evidence of moistening the LMS via mixing across the subtropical jet.
Sinikka T. Lennartz, Christa A. Marandino, Marc von Hobe, Meinrat O. Andreae, Kazushi Aranami, Elliot Atlas, Max Berkelhammer, Heinz Bingemer, Dennis Booge, Gregory Cutter, Pau Cortes, Stefanie Kremser, Cliff S. Law, Andrew Marriner, Rafel Simó, Birgit Quack, Günther Uher, Huixiang Xie, and Xiaobin Xu
Earth Syst. Sci. Data, 12, 591–609, https://doi.org/10.5194/essd-12-591-2020, https://doi.org/10.5194/essd-12-591-2020, 2020
Short summary
Short summary
Sulfur-containing trace gases in the atmosphere influence atmospheric chemistry and the energy budget of the Earth by forming aerosols. The ocean is an important source of the most abundant sulfur gas in the atmosphere, carbonyl sulfide (OCS) and its most important precursor carbon disulfide (CS2). In order to assess global variability of the sea surface concentrations of both gases to calculate their oceanic emissions, we have compiled a database of existing shipborne measurements.
Elizabeth Asher, Rebecca S. Hornbrook, Britton B. Stephens, Doug Kinnison, Eric J. Morgan, Ralph F. Keeling, Elliot L. Atlas, Sue M. Schauffler, Simone Tilmes, Eric A. Kort, Martin S. Hoecker-Martínez, Matt C. Long, Jean-François Lamarque, Alfonso Saiz-Lopez, Kathryn McKain, Colm Sweeney, Alan J. Hills, and Eric C. Apel
Atmos. Chem. Phys., 19, 14071–14090, https://doi.org/10.5194/acp-19-14071-2019, https://doi.org/10.5194/acp-19-14071-2019, 2019
Short summary
Short summary
Halogenated organic trace gases, which are a source of reactive halogens to the atmosphere, exert a disproportionately large influence on atmospheric chemistry and climate. This paper reports novel aircraft observations of halogenated compounds over the Southern Ocean in summer and evaluates hypothesized regional sources and emissions of these trace gases through their relationships to additional aircraft observations.
Yue Jia, Susann Tegtmeier, Elliot Atlas, and Birgit Quack
Atmos. Chem. Phys., 19, 11089–11103, https://doi.org/10.5194/acp-19-11089-2019, https://doi.org/10.5194/acp-19-11089-2019, 2019
Xin Chen, Dylan B. Millet, Hanwant B. Singh, Armin Wisthaler, Eric C. Apel, Elliot L. Atlas, Donald R. Blake, Ilann Bourgeois, Steven S. Brown, John D. Crounse, Joost A. de Gouw, Frank M. Flocke, Alan Fried, Brian G. Heikes, Rebecca S. Hornbrook, Tomas Mikoviny, Kyung-Eun Min, Markus Müller, J. Andrew Neuman, Daniel W. O'Sullivan, Jeff Peischl, Gabriele G. Pfister, Dirk Richter, James M. Roberts, Thomas B. Ryerson, Stephen R. Shertz, Chelsea R. Thompson, Victoria Treadaway, Patrick R. Veres, James Walega, Carsten Warneke, Rebecca A. Washenfelder, Petter Weibring, and Bin Yuan
Atmos. Chem. Phys., 19, 9097–9123, https://doi.org/10.5194/acp-19-9097-2019, https://doi.org/10.5194/acp-19-9097-2019, 2019
Short summary
Short summary
Volatile organic compounds (VOCs) affect air quality and modify the lifetimes of other pollutants. We combine a high-resolution 3-D atmospheric model with an ensemble of aircraft observations to perform an integrated analysis of the VOC budget over North America. We find that biogenic emissions provide the main source of VOC reactivity even in most major cities. Our findings point to key gaps in current models related to oxygenated VOCs and to the distribution of VOCs in the free troposphere.
Liang Feng, Paul I. Palmer, Robyn Butler, Stephen J. Andrews, Elliot L. Atlas, Lucy J. Carpenter, Valeria Donets, Neil R. P. Harris, Ross J. Salawitch, Laura L. Pan, and Sue M. Schauffler
Atmos. Chem. Phys., 18, 14787–14798, https://doi.org/10.5194/acp-18-14787-2018, https://doi.org/10.5194/acp-18-14787-2018, 2018
Short summary
Short summary
We infer surface fluxes of bromoform (CHBr3) and dibromoform (CH2Br2) from CAST and CONTRAST aircraft observations over the western Pacific, using a tagged version of the GEOS-Chem global 3-D atmospheric chemistry model and a Maximum A Posteriori inverse model. Using the aircraft data, we estimate the regional fluxes about 20–40 % smaller than the prior inventories by Ordóñez et al. (2012). We find no evidence to support a robust linear relationship between CHBr3 and CH2Br2 oceanic emissions.
Robyn Butler, Paul I. Palmer, Liang Feng, Stephen J. Andrews, Elliot L. Atlas, Lucy J. Carpenter, Valeria Donets, Neil R. P. Harris, Stephen A. Montzka, Laura L. Pan, Ross J. Salawitch, and Sue M. Schauffler
Atmos. Chem. Phys., 18, 13135–13153, https://doi.org/10.5194/acp-18-13135-2018, https://doi.org/10.5194/acp-18-13135-2018, 2018
Short summary
Short summary
Natural sources of short-lived bromoform and dibromomethane are important for determining the inorganic bromine budget in the stratosphere that drives ozone loss. Two new modelling techniques describe how different geographical source regions influence their atmospheric variability over the western Pacific. We find that it is driven primarily by open ocean sources, and we use atmospheric observations to help estimate their contributions to the upper tropospheric inorganic bromine budget.
Jiali Luo, Laura L. Pan, Shawn B. Honomichl, John W. Bergman, William J. Randel, Gene Francis, Cathy Clerbaux, Maya George, Xiong Liu, and Wenshou Tian
Atmos. Chem. Phys., 18, 12511–12530, https://doi.org/10.5194/acp-18-12511-2018, https://doi.org/10.5194/acp-18-12511-2018, 2018
Short summary
Short summary
We analyze upper tropospheric CO and O3 using satellite data from limb-viewing (MLS) and nadir-viewing (IASI and OMI) sensors, together with dynamical variables, to examine how the two types of data complement each other in representing the chemical variability associated with the day-to-day dynamical variability in the Asian summer monsoon anticyclone. The results provide new observational evidence of eddy shedding in upper tropospheric CO distribution.
Richard Newton, Geraint Vaughan, Eric Hintsa, Michal T. Filus, Laura L. Pan, Shawn Honomichl, Elliot Atlas, Stephen J. Andrews, and Lucy J. Carpenter
Atmos. Chem. Phys., 18, 5157–5171, https://doi.org/10.5194/acp-18-5157-2018, https://doi.org/10.5194/acp-18-5157-2018, 2018
Short summary
Short summary
We consider the ozone measurements from aircraft during the CAST/CONTRAST/ATTREX campaigns of 2014. Low concentrations of ozone were found in the layer of 10–15 km altitude, which is indicative of uplift of ozone-poor air from near the sea surface to 10–15 km altitude. Chemicals that have origins in the sea were found in greater abundance when ozone concentrations were low compared to when ozone concentrations were high. The lowest ozone concentrations were found in the Southern Hemisphere.
Xingchao Chen, Olivier M. Pauluis, and Fuqing Zhang
Atmos. Chem. Phys., 18, 1003–1022, https://doi.org/10.5194/acp-18-1003-2018, https://doi.org/10.5194/acp-18-1003-2018, 2018
Short summary
Short summary
Simulations of the Indian summer monsoon by the cloud-permitting WRF model at gray-zone resolution (9 km) are described in this study, with a particular emphasis on the model ability to capture the monsoon intraseasonal oscillations (MISOs). When compared to simulations with coarser grid spacing (27 km) and using a cumulus scheme, the 9 km simulations reduce the biases in mean precipitation and produce more realistic low-frequency variability associated with MISOs.
Theodore K. Koenig, Rainer Volkamer, Sunil Baidar, Barbara Dix, Siyuan Wang, Daniel C. Anderson, Ross J. Salawitch, Pamela A. Wales, Carlos A. Cuevas, Rafael P. Fernandez, Alfonso Saiz-Lopez, Mathew J. Evans, Tomás Sherwen, Daniel J. Jacob, Johan Schmidt, Douglas Kinnison, Jean-François Lamarque, Eric C. Apel, James C. Bresch, Teresa Campos, Frank M. Flocke, Samuel R. Hall, Shawn B. Honomichl, Rebecca Hornbrook, Jørgen B. Jensen, Richard Lueb, Denise D. Montzka, Laura L. Pan, J. Michael Reeves, Sue M. Schauffler, Kirk Ullmann, Andrew J. Weinheimer, Elliot L. Atlas, Valeria Donets, Maria A. Navarro, Daniel Riemer, Nicola J. Blake, Dexian Chen, L. Gregory Huey, David J. Tanner, Thomas F. Hanisco, and Glenn M. Wolfe
Atmos. Chem. Phys., 17, 15245–15270, https://doi.org/10.5194/acp-17-15245-2017, https://doi.org/10.5194/acp-17-15245-2017, 2017
Short summary
Short summary
Tropospheric inorganic bromine (BrO and Bry) shows a C-shaped profile over the tropical western Pacific Ocean, and supports previous speculation that marine convection is a source for inorganic bromine from sea salt to the upper troposphere. The Bry profile in the tropical tropopause layer (TTL) is complex, suggesting that the total Bry budget in the TTL is not closed without considering aerosol bromide. The implications for atmospheric composition and bromine sources are discussed.
Lei Zhu, Zhiyong Meng, Fuqing Zhang, and Paul M. Markowski
Atmos. Chem. Phys., 17, 13213–13232, https://doi.org/10.5194/acp-17-13213-2017, https://doi.org/10.5194/acp-17-13213-2017, 2017
Short summary
Short summary
This work shows a strong diurnal rainfall cycle over Hainan island due to land–sea breeze circulations. Years of gauge and CMORPH rainfall datasets were examined. More than 60 % of the total annual precipitation is attributable to the diurnal cycle. The multistage dynamics of the diurnal rainfall cycle and the related land–sea breeze circulations were analyzed based on WRF simulations. The rather high island orography is not a dominant factor in the diurnal variation of rainfall over the island.
Maria A. Navarro, Alfonso Saiz-Lopez, Carlos A. Cuevas, Rafael P. Fernandez, Elliot Atlas, Xavier Rodriguez-Lloveras, Douglas Kinnison, Jean-Francois Lamarque, Simone Tilmes, Troy Thornberry, Andrew Rollins, James W. Elkins, Eric J. Hintsa, and Fred L. Moore
Atmos. Chem. Phys., 17, 9917–9930, https://doi.org/10.5194/acp-17-9917-2017, https://doi.org/10.5194/acp-17-9917-2017, 2017
Short summary
Short summary
Inorganic bromine (Bry) plays an important role in ozone layer depletion. Based on aircraft observations of organic bromine species and chemistry simulations, we model the Bry abundances over the Pacific tropical tropopause. Our results show BrO and Br as the dominant species during daytime hours, and BrCl and BrONO2 as the nighttime dominant species over the western and eastern Pacific, respectively. The difference in the partitioning is due to changes in the abundance of O3, NO2, and Cly.
Alina Fiehn, Birgit Quack, Helmke Hepach, Steffen Fuhlbrügge, Susann Tegtmeier, Matthew Toohey, Elliot Atlas, and Kirstin Krüger
Atmos. Chem. Phys., 17, 6723–6741, https://doi.org/10.5194/acp-17-6723-2017, https://doi.org/10.5194/acp-17-6723-2017, 2017
Short summary
Short summary
Halogenated very short-lived substances (VSLSs) are naturally produced in the ocean and emitted to the atmosphere. In the stratosphere, these compounds can have a significant influence on the ozone layer and climate. During a research cruise in the west Indian Ocean, we found an important source region of halogenated VSLSs during the Asian summer monsoon. Modeling the transport from the ocean to the stratosphere we found two main pathways, one over the Indian Ocean and one over northern India.
Dan Li, Bärbel Vogel, Jianchun Bian, Rolf Müller, Laura L. Pan, Gebhard Günther, Zhixuan Bai, Qian Li, Jinqiang Zhang, Qiujun Fan, and Holger Vömel
Atmos. Chem. Phys., 17, 4657–4672, https://doi.org/10.5194/acp-17-4657-2017, https://doi.org/10.5194/acp-17-4657-2017, 2017
Short summary
Short summary
High-resolution ozone and water vapour profiles over Lhasa, China, were measured in August 2013. The correlations between ozone and water vapour profiles show a strong variability in the upper troposphere. These relationships were investigated using CLaMS trajectory calculations. The model results demonstrate that three tropical cyclones (Jebi, Utor, and Trami), occurring over the western Pacific, had a strong impact on the vertical structure of ozone and water vapour profiles.
Nga Lee Ng, Steven S. Brown, Alexander T. Archibald, Elliot Atlas, Ronald C. Cohen, John N. Crowley, Douglas A. Day, Neil M. Donahue, Juliane L. Fry, Hendrik Fuchs, Robert J. Griffin, Marcelo I. Guzman, Hartmut Herrmann, Alma Hodzic, Yoshiteru Iinuma, José L. Jimenez, Astrid Kiendler-Scharr, Ben H. Lee, Deborah J. Luecken, Jingqiu Mao, Robert McLaren, Anke Mutzel, Hans D. Osthoff, Bin Ouyang, Benedicte Picquet-Varrault, Ulrich Platt, Havala O. T. Pye, Yinon Rudich, Rebecca H. Schwantes, Manabu Shiraiwa, Jochen Stutz, Joel A. Thornton, Andreas Tilgner, Brent J. Williams, and Rahul A. Zaveri
Atmos. Chem. Phys., 17, 2103–2162, https://doi.org/10.5194/acp-17-2103-2017, https://doi.org/10.5194/acp-17-2103-2017, 2017
Short summary
Short summary
Oxidation of biogenic volatile organic compounds by NO3 is an important interaction between anthropogenic
and natural emissions. This review results from a June 2015 workshop and includes the recent literature
on kinetics, mechanisms, organic aerosol yields, and heterogeneous chemistry; advances in analytical
instrumentation; the current state NO3-BVOC chemistry in atmospheric models; and critical needs for
future research in modeling, field observations, and laboratory studies.
Brian M. Lerner, Jessica B. Gilman, Kenneth C. Aikin, Elliot L. Atlas, Paul D. Goldan, Martin Graus, Roger Hendershot, Gabriel A. Isaacman-VanWertz, Abigail Koss, William C. Kuster, Richard A. Lueb, Richard J. McLaughlin, Jeff Peischl, Donna Sueper, Thomas B. Ryerson, Travis W. Tokarek, Carsten Warneke, Bin Yuan, and Joost A. de Gouw
Atmos. Meas. Tech., 10, 291–313, https://doi.org/10.5194/amt-10-291-2017, https://doi.org/10.5194/amt-10-291-2017, 2017
Short summary
Short summary
Whole air sampling followed by analysis by gas chromatography is a common technique for characterization of trace volatile organic compounds in the atmosphere. We describe a new automated gas chromatograph–mass spectrograph which uses a Stirling cooler for sample preconcentration at −165 °C without the need for a cryogen such as liquid nitrogen. We also discuss potential sources of artifacts from our electropolished stainless steel sampling system and present results from two field campaigns.
Bodo Werner, Jochen Stutz, Max Spolaor, Lisa Scalone, Rasmus Raecke, James Festa, Santo Fedele Colosimo, Ross Cheung, Catalina Tsai, Ryan Hossaini, Martyn P. Chipperfield, Giorgio S. Taverna, Wuhu Feng, James W. Elkins, David W. Fahey, Ru-Shan Gao, Erik J. Hintsa, Troy D. Thornberry, Free Lee Moore, Maria A. Navarro, Elliot Atlas, Bruce C. Daube, Jasna Pittman, Steve Wofsy, and Klaus Pfeilsticker
Atmos. Chem. Phys., 17, 1161–1186, https://doi.org/10.5194/acp-17-1161-2017, https://doi.org/10.5194/acp-17-1161-2017, 2017
Short summary
Short summary
The paper reports on inorganic and organic bromine measured in the tropical tropopause layer (TTL) over the eastern Pacific in early 2013. Bryinorg is found to increase from a mean of 2.63 ± 1.04 ppt for θ in the range of 350–360 K to 5.11 ± 1.57 ppt for θ=390 ± 400 K, whereas in the subtropical lower stratosphere, it reaches 7.66 ± 2.95 ppt for θ in the range of 390–400 K. Within the TTL, total bromine is found to range from 20.3 ppt to 22.3 ppt.
Sinikka T. Lennartz, Christa A. Marandino, Marc von Hobe, Pau Cortes, Birgit Quack, Rafel Simo, Dennis Booge, Andrea Pozzer, Tobias Steinhoff, Damian L. Arevalo-Martinez, Corinna Kloss, Astrid Bracher, Rüdiger Röttgers, Elliot Atlas, and Kirstin Krüger
Atmos. Chem. Phys., 17, 385–402, https://doi.org/10.5194/acp-17-385-2017, https://doi.org/10.5194/acp-17-385-2017, 2017
Short summary
Short summary
We present new sea surface and marine boundary layer measurements of carbonyl sulfide, the most abundant sulfur gas in the atmosphere, and calculate an oceanic emission estimate. Our results imply that oceanic emissions are very unlikely to account for the missing source in the atmospheric budget that is currently discussed for OCS.
Martyn P. Chipperfield, Qing Liang, Matthew Rigby, Ryan Hossaini, Stephen A. Montzka, Sandip Dhomse, Wuhu Feng, Ronald G. Prinn, Ray F. Weiss, Christina M. Harth, Peter K. Salameh, Jens Mühle, Simon O'Doherty, Dickon Young, Peter G. Simmonds, Paul B. Krummel, Paul J. Fraser, L. Paul Steele, James D. Happell, Robert C. Rhew, James Butler, Shari A. Yvon-Lewis, Bradley Hall, David Nance, Fred Moore, Ben R. Miller, James W. Elkins, Jeremy J. Harrison, Chris D. Boone, Elliot L. Atlas, and Emmanuel Mahieu
Atmos. Chem. Phys., 16, 15741–15754, https://doi.org/10.5194/acp-16-15741-2016, https://doi.org/10.5194/acp-16-15741-2016, 2016
Short summary
Short summary
Carbon tetrachloride (CCl4) is a compound which, when released into the atmosphere, can cause depletion of the stratospheric ozone layer. Its emissions are controlled under the Montreal Protocol, and its atmospheric abundance is slowly decreasing. However, this decrease is not as fast as expected based on estimates of its emissions and its atmospheric lifetime. We have used an atmospheric model to look at the uncertainties in the CCl4 lifetime and to examine the impact on its atmospheric decay.
Stephen J. Andrews, Lucy J. Carpenter, Eric C. Apel, Elliot Atlas, Valeria Donets, James R. Hopkins, Rebecca S. Hornbrook, Alastair C. Lewis, Richard T. Lidster, Richard Lueb, Jamie Minaeian, Maria Navarro, Shalini Punjabi, Daniel Riemer, and Sue Schauffler
Atmos. Meas. Tech., 9, 5213–5225, https://doi.org/10.5194/amt-9-5213-2016, https://doi.org/10.5194/amt-9-5213-2016, 2016
Short summary
Short summary
We present a comparison of aircraft measurements of important trace gases from a co-ordinated campaign in Jan–Feb 2014 in the tropical west Pacific involving the NASA Global Hawk, NCAR GV and FAAM BAe-146 aircraft.
The paper studies the comparability of separate measurements across platforms and demonstrates that aircraft measurements are relevant for characterising the vertical uplift of important gases, such as those with ozone-depleting potential, to the upper troposphere–lower stratosphere.
Steffen Fuhlbrügge, Birgit Quack, Elliot Atlas, Alina Fiehn, Helmke Hepach, and Kirstin Krüger
Atmos. Chem. Phys., 16, 12205–12217, https://doi.org/10.5194/acp-16-12205-2016, https://doi.org/10.5194/acp-16-12205-2016, 2016
Short summary
Short summary
This study presents novel observations of the very short lived substances (VSLSs) bromoform, dibromomethane and methyl iodide with high-resolution meteorological measurements and Lagrangian transport in the Peruvian upwelling. With a simple source–loss estimate we identified VSLS abundances below the trade inversion to be significantly influenced by advection of regional sources, underscoring the importance of oceanic upwelling and trade winds on the atmospheric distribution of VSLS emission.
Helmke Hepach, Birgit Quack, Susann Tegtmeier, Anja Engel, Astrid Bracher, Steffen Fuhlbrügge, Luisa Galgani, Elliot L. Atlas, Johannes Lampel, Udo Frieß, and Kirstin Krüger
Atmos. Chem. Phys., 16, 12219–12237, https://doi.org/10.5194/acp-16-12219-2016, https://doi.org/10.5194/acp-16-12219-2016, 2016
Short summary
Short summary
We present surface seawater measurements of bromo- and iodocarbons, which are involved in numerous atmospheric processes such as tropospheric and stratospheric ozone chemistry, from the highly productive Peruvian upwelling. By combining trace gas measurements, characterization of organic matter and phytoplankton species, and tropospheric modelling, we show that large amounts of iodocarbons produced from the pool of organic matter may contribute strongly to local tropospheric iodine loading.
Dennis Booge, Christa A. Marandino, Cathleen Schlundt, Paul I. Palmer, Michael Schlundt, Elliot L. Atlas, Astrid Bracher, Eric S. Saltzman, and Douglas W. R. Wallace
Atmos. Chem. Phys., 16, 11807–11821, https://doi.org/10.5194/acp-16-11807-2016, https://doi.org/10.5194/acp-16-11807-2016, 2016
Short summary
Short summary
Isoprene, a biogenic trace gas, is an important precursor of secondary organic aerosol/cloud condensation nuclei. Here, we use isoprene and related field measurements from three different ocean data sets together with remotely sensed satellite data to model global marine isoprene emissions. Our findings suggest that there is at least one missing oceanic source of isoprene and possibly other unknown factors in the ocean or atmosphere influencing the atmospheric values.
R. Hossaini, P. K. Patra, A. A. Leeson, G. Krysztofiak, N. L. Abraham, S. J. Andrews, A. T. Archibald, J. Aschmann, E. L. Atlas, D. A. Belikov, H. Bönisch, L. J. Carpenter, S. Dhomse, M. Dorf, A. Engel, W. Feng, S. Fuhlbrügge, P. T. Griffiths, N. R. P. Harris, R. Hommel, T. Keber, K. Krüger, S. T. Lennartz, S. Maksyutov, H. Mantle, G. P. Mills, B. Miller, S. A. Montzka, F. Moore, M. A. Navarro, D. E. Oram, K. Pfeilsticker, J. A. Pyle, B. Quack, A. D. Robinson, E. Saikawa, A. Saiz-Lopez, S. Sala, B.-M. Sinnhuber, S. Taguchi, S. Tegtmeier, R. T. Lidster, C. Wilson, and F. Ziska
Atmos. Chem. Phys., 16, 9163–9187, https://doi.org/10.5194/acp-16-9163-2016, https://doi.org/10.5194/acp-16-9163-2016, 2016
Steffen Fuhlbrügge, Birgit Quack, Susann Tegtmeier, Elliot Atlas, Helmke Hepach, Qiang Shi, Stefan Raimund, and Kirstin Krüger
Atmos. Chem. Phys., 16, 7569–7585, https://doi.org/10.5194/acp-16-7569-2016, https://doi.org/10.5194/acp-16-7569-2016, 2016
Short summary
Short summary
This study presents a novel estimate for the contribution of oceanic VSLS emissions to the atmospheric boundary layer and free troposphere during the SHIVA-Sonne cruise in the South China and Sulu seas in 2011. While oceanic emissions of CHBr3 and CH3I showed a significant contribution to their atmospheric abundances, atmospheric CH2Br2 appeared to be largely advected. Convective activity in the region can furthermore lead to low VSLS boundary layer mixing ratios despite high oceanic emissions.
R. Newton, G. Vaughan, H. M. A. Ricketts, L. L. Pan, A. J. Weinheimer, and C. Chemel
Atmos. Chem. Phys., 16, 619–634, https://doi.org/10.5194/acp-16-619-2016, https://doi.org/10.5194/acp-16-619-2016, 2016
Short summary
Short summary
This paper reports the results of a field campaign with ozonesondes held in Manus Island, Papua New Guinea in February 2014. Particular attention is paid to the background current correction for the ozonesondes. We show that the ozonesonde profiles compare very well with near-coincident aircraft measurements, and show no sign of the extremely low ozone concentrations (< 5 ppbv) reported by previous papers. The minimum repeatable ozone concentration just below the tropopause was 12 ppbv.
H. Hepach, B. Quack, S. Raimund, T. Fischer, E. L. Atlas, and A. Bracher
Biogeosciences, 12, 6369–6387, https://doi.org/10.5194/bg-12-6369-2015, https://doi.org/10.5194/bg-12-6369-2015, 2015
Short summary
Short summary
This manuscript covers the first measurements of CHBr3, CH2Br2 and CH3I from the equatorial Atlantic during the Cold Tongue season, identifying this region and season as a source for these compounds. For the first time, we calculated diapycnal fluxes, and showed that the fluxes from below the mixed layer to the surface are not sufficient to balance the mixed layer budget. Hence, we conclude that mixed layer production has to take place despite a pronounced sub-mixed-layer-maximum.
S. T. Lennartz, G. Krysztofiak, C. A. Marandino, B.-M. Sinnhuber, S. Tegtmeier, F. Ziska, R. Hossaini, K. Krüger, S. A. Montzka, E. Atlas, D. E. Oram, T. Keber, H. Bönisch, and B. Quack
Atmos. Chem. Phys., 15, 11753–11772, https://doi.org/10.5194/acp-15-11753-2015, https://doi.org/10.5194/acp-15-11753-2015, 2015
Short summary
Short summary
Marine-produced short-lived trace gases such as halocarbons and DMS significantly impact atmospheric chemistry. To assess this impact on ozone depletion and the radiative budget, it is critical that their marine emissions in atmospheric chemistry models are quantified as accurately as possible. We show that calculating emissions online with an interactive atmosphere improves the agreement with current observations and should be employed regularly in models where marine sources are important.
Yuanchun Zhang, Fuqing Zhang, and Jianhua Sun
Atmos. Chem. Phys., 14, 10741–10759, https://doi.org/10.5194/acp-14-10741-2014, https://doi.org/10.5194/acp-14-10741-2014, 2014
Shoujuan Shu, Fuqing Zhang, Jie Ming, and Yuan Wang
Atmos. Chem. Phys., 14, 6329–6342, https://doi.org/10.5194/acp-14-6329-2014, https://doi.org/10.5194/acp-14-6329-2014, 2014
Q. Liang, E. Atlas, D. Blake, M. Dorf, K. Pfeilsticker, and S. Schauffler
Atmos. Chem. Phys., 14, 5781–5792, https://doi.org/10.5194/acp-14-5781-2014, https://doi.org/10.5194/acp-14-5781-2014, 2014
D. R. Gentner, T. B. Ford, A. Guha, K. Boulanger, J. Brioude, W. M. Angevine, J. A. de Gouw, C. Warneke, J. B. Gilman, T. B. Ryerson, J. Peischl, S. Meinardi, D. R. Blake, E. Atlas, W. A. Lonneman, T. E. Kleindienst, M. R. Beaver, J. M. St. Clair, P. O. Wennberg, T. C. VandenBoer, M. Z. Markovic, J. G. Murphy, R. A. Harley, and A. H. Goldstein
Atmos. Chem. Phys., 14, 4955–4978, https://doi.org/10.5194/acp-14-4955-2014, https://doi.org/10.5194/acp-14-4955-2014, 2014
C. J. Young, R. A. Washenfelder, P. M. Edwards, D. D. Parrish, J. B. Gilman, W. C. Kuster, L. H. Mielke, H. D. Osthoff, C. Tsai, O. Pikelnaya, J. Stutz, P. R. Veres, J. M. Roberts, S. Griffith, S. Dusanter, P. S. Stevens, J. Flynn, N. Grossberg, B. Lefer, J. S. Holloway, J. Peischl, T. B. Ryerson, E. L. Atlas, D. R. Blake, and S. S. Brown
Atmos. Chem. Phys., 14, 3427–3440, https://doi.org/10.5194/acp-14-3427-2014, https://doi.org/10.5194/acp-14-3427-2014, 2014
B. D. Hall, A. Engel, J. Mühle, J. W. Elkins, F. Artuso, E. Atlas, M. Aydin, D. Blake, E.-G. Brunke, S. Chiavarini, P. J. Fraser, J. Happell, P. B. Krummel, I. Levin, M. Loewenstein, M. Maione, S. A. Montzka, S. O'Doherty, S. Reimann, G. Rhoderick, E. S. Saltzman, H. E. Scheel, L. P. Steele, M. K. Vollmer, R. F. Weiss, D. Worthy, and Y. Yokouchi
Atmos. Meas. Tech., 7, 469–490, https://doi.org/10.5194/amt-7-469-2014, https://doi.org/10.5194/amt-7-469-2014, 2014
H. Hepach, B. Quack, F. Ziska, S. Fuhlbrügge, E. L. Atlas, K. Krüger, I. Peeken, and D. W. R. Wallace
Atmos. Chem. Phys., 14, 1255–1275, https://doi.org/10.5194/acp-14-1255-2014, https://doi.org/10.5194/acp-14-1255-2014, 2014
S. Tegtmeier, K. Krüger, B. Quack, E. Atlas, D. R. Blake, H. Boenisch, A. Engel, H. Hepach, R. Hossaini, M. A. Navarro, S. Raimund, S. Sala, Q. Shi, and F. Ziska
Atmos. Chem. Phys., 13, 11869–11886, https://doi.org/10.5194/acp-13-11869-2013, https://doi.org/10.5194/acp-13-11869-2013, 2013
R. Hossaini, H. Mantle, M. P. Chipperfield, S. A. Montzka, P. Hamer, F. Ziska, B. Quack, K. Krüger, S. Tegtmeier, E. Atlas, S. Sala, A. Engel, H. Bönisch, T. Keber, D. Oram, G. Mills, C. Ordóñez, A. Saiz-Lopez, N. Warwick, Q. Liang, W. Feng, F. Moore, B. R. Miller, V. Marécal, N. A. D. Richards, M. Dorf, and K. Pfeilsticker
Atmos. Chem. Phys., 13, 11819–11838, https://doi.org/10.5194/acp-13-11819-2013, https://doi.org/10.5194/acp-13-11819-2013, 2013
S. S. Brown, W. P. Dubé, R. Bahreini, A. M. Middlebrook, C. A. Brock, C. Warneke, J. A. de Gouw, R. A. Washenfelder, E. Atlas, J. Peischl, T. B. Ryerson, J. S. Holloway, J. P. Schwarz, R. Spackman, M. Trainer, D. D. Parrish, F. C. Fehshenfeld, and A. R. Ravishankara
Atmos. Chem. Phys., 13, 11317–11337, https://doi.org/10.5194/acp-13-11317-2013, https://doi.org/10.5194/acp-13-11317-2013, 2013
J. Ungermann, L. L. Pan, C. Kalicinsky, F. Olschewski, P. Knieling, J. Blank, K. Weigel, T. Guggenmoser, F. Stroh, L. Hoffmann, and M. Riese
Atmos. Chem. Phys., 13, 10517–10534, https://doi.org/10.5194/acp-13-10517-2013, https://doi.org/10.5194/acp-13-10517-2013, 2013
F. Ziska, B. Quack, K. Abrahamsson, S. D. Archer, E. Atlas, T. Bell, J. H. Butler, L. J. Carpenter, C. E. Jones, N. R. P. Harris, H. Hepach, K. G. Heumann, C. Hughes, J. Kuss, K. Krüger, P. Liss, R. M. Moore, A. Orlikowska, S. Raimund, C. E. Reeves, W. Reifenhäuser, A. D. Robinson, C. Schall, T. Tanhua, S. Tegtmeier, S. Turner, L. Wang, D. Wallace, J. Williams, H. Yamamoto, S. Yvon-Lewis, and Y. Yokouchi
Atmos. Chem. Phys., 13, 8915–8934, https://doi.org/10.5194/acp-13-8915-2013, https://doi.org/10.5194/acp-13-8915-2013, 2013
J. Bak, X. Liu, J. C. Wei, L. L. Pan, K. Chance, and J. H. Kim
Atmos. Meas. Tech., 6, 2239–2254, https://doi.org/10.5194/amt-6-2239-2013, https://doi.org/10.5194/amt-6-2239-2013, 2013
C. A. Marandino, S. Tegtmeier, K. Krüger, C. Zindler, E. L. Atlas, F. Moore, and H. W. Bange
Atmos. Chem. Phys., 13, 8427–8437, https://doi.org/10.5194/acp-13-8427-2013, https://doi.org/10.5194/acp-13-8427-2013, 2013
P. D. Hamer, V. Marécal, R. Hossaini, M. Pirre, N. Warwick, M. Chipperfield, A. A. Samah, N. Harris, A. Robinson, B. Quack, A. Engel, K. Krüger, E. Atlas, K. Subramaniam, D. Oram, Emma C. Leedham Elvidge, G. Mills, K. Pfeilsticker, S. Sala, T. Keber, H. Bönisch, L. K. Peng, M. S. M. Nadzir, P. T. Lim, A. Mujahid, A. Anton, H. Schlager, V. Catoire, G. Krysztofiak, S. Fühlbrügge, M. Dorf, and W. T. Sturges
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-13-20611-2013, https://doi.org/10.5194/acpd-13-20611-2013, 2013
Revised manuscript not accepted
S. Fuhlbrügge, K. Krüger, B. Quack, E. Atlas, H. Hepach, and F. Ziska
Atmos. Chem. Phys., 13, 6345–6357, https://doi.org/10.5194/acp-13-6345-2013, https://doi.org/10.5194/acp-13-6345-2013, 2013
Related subject area
Subject: Dynamics | Research Activity: Field Measurements | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Identification of stratospheric disturbance information in China based on the round-trip intelligent sounding system
Mean age from observations in the lowermost stratosphere: an improved method and interhemispheric differences
Possible influence of sudden stratospheric warmings on the atmospheric environment in the Beijing–Tianjin–Hebei region
In situ observations of CH2Cl2 and CHCl3 show efficient transport pathways for very short-lived species into the lower stratosphere via the Asian and the North American summer monsoon
A case study on the impact of severe convective storms on the water vapor mixing ratio in the lower mid-latitude stratosphere observed in 2019 over Europe
Upward transport into and within the Asian monsoon anticyclone as inferred from StratoClim trace gas observations
Seasonal characteristics of trace gas transport into the extratropical upper troposphere and lower stratosphere
Gravity waves excited during a minor sudden stratospheric warming
Mixing and ageing in the polar lower stratosphere in winter 2015–2016
Age and gravitational separation of the stratospheric air over Indonesia
Intercomparison of meteorological analyses and trajectories in the Antarctic lower stratosphere with Concordiasi superpressure balloon observations
Case study of wave breaking with high-resolution turbulence measurements with LITOS and WRF simulations
A comparison of Loon balloon observations and stratospheric reanalysis products
Stratospheric tropical warming event and its impact on the polar and tropical troposphere
Gravity-wave effects on tracer gases and stratospheric aerosol concentrations during the 2013 ChArMEx campaign
Transport of Antarctic stratospheric strongly dehydrated air into the troposphere observed during the HALO-ESMVal campaign 2012
Comparing turbulent parameters obtained from LITOS and radiosonde measurements
Northern Hemisphere stratospheric winds in higher midlatitudes: longitudinal distribution and long-term trends
On the structural changes in the Brewer-Dobson circulation after 2000
Temperature variability and trends in the UT-LS over a subtropical site: Reunion (20.8° S, 55.5° E)
Diagnostics of the Tropical Tropopause Layer from in-situ observations and CCM data
Increase of upper troposphere/lower stratosphere wave baroclinicity during the second half of the 20th century
Yang He, Xiaoqian Zhu, Zheng Sheng, and Mingyuan He
Atmos. Chem. Phys., 24, 3839–3856, https://doi.org/10.5194/acp-24-3839-2024, https://doi.org/10.5194/acp-24-3839-2024, 2024
Short summary
Short summary
The round-trip intelligent sounding system (RTISS) is a new detection technology, developed in recent years, that can capture atmospheric fine-structure information via three-stage (rising, flat-floating, and falling) detection. Based on the RTISS, we developed a method to quantify stratospheric atmospheric disturbance information; this method shows sufficient potential in the analysis of stratospheric disturbances and their role in material transport and energy transfer.
Thomas Wagenhäuser, Markus Jesswein, Timo Keber, Tanja Schuck, and Andreas Engel
Atmos. Chem. Phys., 23, 3887–3903, https://doi.org/10.5194/acp-23-3887-2023, https://doi.org/10.5194/acp-23-3887-2023, 2023
Short summary
Short summary
A common assumption to derive mean age from trace gas observations is that all air enters the stratosphere through the tropical tropopause. Using SF6 as an age tracer, this leads to negative mean age values close to the Northern Hemispheric extra-tropical tropopause. Our improved method also considers extra-tropical input into the stratosphere. More realistic values are derived using this method. Interhemispheric differences in mean age are found when comparing data from two aircraft campaigns.
Qian Lu, Jian Rao, Chunhua Shi, Dong Guo, Guiqin Fu, Ji Wang, and Zhuoqi Liang
Atmos. Chem. Phys., 22, 13087–13102, https://doi.org/10.5194/acp-22-13087-2022, https://doi.org/10.5194/acp-22-13087-2022, 2022
Short summary
Short summary
Existing evidence mainly focuses on the possible impact of tropospheric climate anomalies on the regional air pollutions, but few studies pay attention to the impact of stratospheric changes on haze pollutions in the Beijing–Tianjin–Hebei (BTH) region. Our study reveals the linkage between the stratospheric variability and the regional atmospheric environment. The downward-propagating stratospheric signals might have a cleaning effect on the atmospheric environment in the BTH region.
Valentin Lauther, Bärbel Vogel, Johannes Wintel, Andrea Rau, Peter Hoor, Vera Bense, Rolf Müller, and C. Michael Volk
Atmos. Chem. Phys., 22, 2049–2077, https://doi.org/10.5194/acp-22-2049-2022, https://doi.org/10.5194/acp-22-2049-2022, 2022
Short summary
Short summary
We show airborne in situ measurements of the very short-lived ozone-depleting substances CH2Cl2 and CHCl3, revealing particularly high concentrations of both species in the lower stratosphere. Back-trajectory calculations and 3D model simulations show that the air masses with high concentrations originated in the Asian boundary layer and were transported via the Asian summer monsoon. We also identify a fast transport pathway into the stratosphere via the North American monsoon and by hurricanes.
Dina Khordakova, Christian Rolf, Jens-Uwe Grooß, Rolf Müller, Paul Konopka, Andreas Wieser, Martina Krämer, and Martin Riese
Atmos. Chem. Phys., 22, 1059–1079, https://doi.org/10.5194/acp-22-1059-2022, https://doi.org/10.5194/acp-22-1059-2022, 2022
Short summary
Short summary
Extreme storms transport humidity from the troposphere to the stratosphere. Here it has a strong impact on the climate. With ongoing global warming, we expect more storms and, hence, an enhancement of this effect. A case study was performed in order to measure the impact of the direct injection of water vapor into the lower stratosphere. The measurements displayed a significant transport of water vapor into the lower stratosphere, and this was supported by satellite and reanalysis data.
Marc von Hobe, Felix Ploeger, Paul Konopka, Corinna Kloss, Alexey Ulanowski, Vladimir Yushkov, Fabrizio Ravegnani, C. Michael Volk, Laura L. Pan, Shawn B. Honomichl, Simone Tilmes, Douglas E. Kinnison, Rolando R. Garcia, and Jonathon S. Wright
Atmos. Chem. Phys., 21, 1267–1285, https://doi.org/10.5194/acp-21-1267-2021, https://doi.org/10.5194/acp-21-1267-2021, 2021
Short summary
Short summary
The Asian summer monsoon (ASM) is known to foster transport of polluted tropospheric air into the stratosphere. To test and amend our picture of ASM vertical transport, we analyse distributions of airborne trace gas observations up to 20 km altitude near the main ASM vertical conduit south of the Himalayas. We also show that a new high-resolution version of the global chemistry climate model WACCM is able to reproduce the observations well.
Yoichi Inai, Ryo Fujita, Toshinobu Machida, Hidekazu Matsueda, Yousuke Sawa, Kazuhiro Tsuboi, Keiichi Katsumata, Shinji Morimoto, Shuji Aoki, and Takakiyo Nakazawa
Atmos. Chem. Phys., 19, 7073–7103, https://doi.org/10.5194/acp-19-7073-2019, https://doi.org/10.5194/acp-19-7073-2019, 2019
Andreas Dörnbrack, Sonja Gisinger, Natalie Kaifler, Tanja Christina Portele, Martina Bramberger, Markus Rapp, Michael Gerding, Jens Faber, Nedjeljka Žagar, and Damjan Jelić
Atmos. Chem. Phys., 18, 12915–12931, https://doi.org/10.5194/acp-18-12915-2018, https://doi.org/10.5194/acp-18-12915-2018, 2018
Short summary
Short summary
A deep upper-air sounding stimulated the current investigation of internal gravity waves excited during a minor sudden stratospheric warming (SSW) in the Arctic winter 2015/16. The analysis of the radiosonde profile revealed large kinetic and potential energies in the upper stratosphere without any simultaneous enhancement of upper tropospheric and lower stratospheric values. In combination with high-resolution meteorological analyses we identified an elevated source of gravity wave excitation.
Jens Krause, Peter Hoor, Andreas Engel, Felix Plöger, Jens-Uwe Grooß, Harald Bönisch, Timo Keber, Björn-Martin Sinnhuber, Wolfgang Woiwode, and Hermann Oelhaf
Atmos. Chem. Phys., 18, 6057–6073, https://doi.org/10.5194/acp-18-6057-2018, https://doi.org/10.5194/acp-18-6057-2018, 2018
Short summary
Short summary
We present tracer measurements of CO and N2O measured during the POLSTRACC aircraft campaign in winter 2015–2016. We found enhanced CO values relative to N2O in the polar lower stratosphere in addition to the ageing of this region during winter. By using model simulations it was possible to link this enhancement to an increased mixing of the tropical tropopause. We thus conclude that the polar lower stratosphere in late winter is strongly influenced by quasi-isentropic mixing from the tropics.
Satoshi Sugawara, Shigeyuki Ishidoya, Shuji Aoki, Shinji Morimoto, Takakiyo Nakazawa, Sakae Toyoda, Yoichi Inai, Fumio Hasebe, Chusaku Ikeda, Hideyuki Honda, Daisuke Goto, and Fanny A. Putri
Atmos. Chem. Phys., 18, 1819–1833, https://doi.org/10.5194/acp-18-1819-2018, https://doi.org/10.5194/acp-18-1819-2018, 2018
Short summary
Short summary
This is the first research that shows concrete evidence of gravitational separation in the tropical stratosphere. This implies that gravitational separation occurs within the entire stratosphere, which gives us new insight into atmospheric dynamics.
Lars Hoffmann, Albert Hertzog, Thomas Rößler, Olaf Stein, and Xue Wu
Atmos. Chem. Phys., 17, 8045–8061, https://doi.org/10.5194/acp-17-8045-2017, https://doi.org/10.5194/acp-17-8045-2017, 2017
Short summary
Short summary
We present an intercomparison of temperatures and horizontal winds of five meteorological data sets (ECMWF operational analysis, ERA-Interim, MERRA, MERRA-2, and NCEP/NCAR) in the Antarctic lower stratosphere. The assessment is based on 19 superpressure balloon flights during the Concordiasi field campaign in September 2010 to January 2011. The balloon data are used to successfully validate trajectory calculations with the new Lagrangian particle dispersion model MPTRAC.
Andreas Schneider, Johannes Wagner, Jens Faber, Michael Gerding, and Franz-Josef Lübken
Atmos. Chem. Phys., 17, 7941–7954, https://doi.org/10.5194/acp-17-7941-2017, https://doi.org/10.5194/acp-17-7941-2017, 2017
Short summary
Short summary
Wave breaking is studied with a combination of high-resolution turbulence observations with the balloon-borne instrument LITOS and mesoscale simulations with the WRF model. A relation between observed turbulent energy dissipation rates and the occurrence of wave patterns in modelled vertical winds is found, which is interpreted as the effect of wave saturation. The change of stability plays less of a role for mean dissipation for the flights examined.
Leon S. Friedrich, Adrian J. McDonald, Gregory E. Bodeker, Kathy E. Cooper, Jared Lewis, and Alexander J. Paterson
Atmos. Chem. Phys., 17, 855–866, https://doi.org/10.5194/acp-17-855-2017, https://doi.org/10.5194/acp-17-855-2017, 2017
Short summary
Short summary
Information from long-duration balloons flying in the Southern Hemisphere stratosphere during 2014 as part of X Project Loon are used to assess the quality of a number of different reanalyses. This work assesses the potential of the X Project Loon observations to validate outputs from the reanalysis models. In particular, we examined how the model winds compared with those derived from the balloon GPS information. We also examined simulated trajectories compared with the true trajectories.
Kunihiko Kodera, Nawo Eguchi, Hitoshi Mukougawa, Tomoe Nasuno, and Toshihiko Hirooka
Atmos. Chem. Phys., 17, 615–625, https://doi.org/10.5194/acp-17-615-2017, https://doi.org/10.5194/acp-17-615-2017, 2017
Short summary
Short summary
An exceptional strengthening of the middle atmospheric subtropical jet occurred without an apparent relationship with the tropospheric circulation. The analysis of this event demonstrated downward penetration of stratospheric influence to the troposphere: in the north polar region amplification of planetary wave occurred due to a deflection by the strong middle atmospheric subtropical jet, whereas in the tropics, increased tropopause temperature suppressed equatorial convective activity.
Fabrice Chane Ming, Damien Vignelles, Fabrice Jegou, Gwenael Berthet, Jean-Baptiste Renard, François Gheusi, and Yuriy Kuleshov
Atmos. Chem. Phys., 16, 8023–8042, https://doi.org/10.5194/acp-16-8023-2016, https://doi.org/10.5194/acp-16-8023-2016, 2016
Short summary
Short summary
Coupled balloon-borne observations of Light Optical Aerosol Counter (LOAC), M10 meteorological GPS sondes, ozonesondes, and GPS radio occultation data are examined to identify gravity-wave (GW)-induced fluctuations on tracer gases and on the vertical distribution of stratospheric aerosol concentrations during the 2013 ChArMEx campaign. Observed mesoscale GWs induce a strong modulation of the amplitude of tracer gases and the stratospheric aerosol background.
C. Rolf, A. Afchine, H. Bozem, B. Buchholz, V. Ebert, T. Guggenmoser, P. Hoor, P. Konopka, E. Kretschmer, S. Müller, H. Schlager, N. Spelten, O. Sumińska-Ebersoldt, J. Ungermann, A. Zahn, and M. Krämer
Atmos. Chem. Phys., 15, 9143–9158, https://doi.org/10.5194/acp-15-9143-2015, https://doi.org/10.5194/acp-15-9143-2015, 2015
A. Schneider, M. Gerding, and F.-J. Lübken
Atmos. Chem. Phys., 15, 2159–2166, https://doi.org/10.5194/acp-15-2159-2015, https://doi.org/10.5194/acp-15-2159-2015, 2015
Short summary
Short summary
Stratospheric turbulence is essential for the atmospheric energy budget. We compare in situ observations with our LITOS method based on spectral analysis of mm-scale wind fluctuations with the Thorpe method applied to standard radiosondes. Energy dissipations rates from both methods differ by up to 3 orders of magnitude. Nevertheless, mean values are in good agreement. We present case studies on both methods and examine the applicability of the Thorpe method for calculation of dissipation rates.
M. Kozubek, P. Krizan, and J. Lastovicka
Atmos. Chem. Phys., 15, 2203–2213, https://doi.org/10.5194/acp-15-2203-2015, https://doi.org/10.5194/acp-15-2203-2015, 2015
Short summary
Short summary
The main goal of this paper is to show the geographical distribution of meridional wind for several reanalyses and to analyse the wind trends in different areas. We show two areas (100°E-160°E and 140°W-80°W) where the meridional wind is as strong as zonal wind (which is normally dominant in the stratosphere). The trends of meridional wind are significant mostly at 99% level in these areas and insignificant outside. The problem with zonal averages could affect the results.
H. Bönisch, A. Engel, Th. Birner, P. Hoor, D. W. Tarasick, and E. A. Ray
Atmos. Chem. Phys., 11, 3937–3948, https://doi.org/10.5194/acp-11-3937-2011, https://doi.org/10.5194/acp-11-3937-2011, 2011
N. Bègue, H. Bencherif, V. Sivakumar, G. Kirgis, N. Mze, and J. Leclair de Bellevue
Atmos. Chem. Phys., 10, 8563–8574, https://doi.org/10.5194/acp-10-8563-2010, https://doi.org/10.5194/acp-10-8563-2010, 2010
E. Palazzi, F. Fierli, F. Cairo, C. Cagnazzo, G. Di Donfrancesco, E. Manzini, F. Ravegnani, C. Schiller, F. D'Amato, and C. M. Volk
Atmos. Chem. Phys., 9, 9349–9367, https://doi.org/10.5194/acp-9-9349-2009, https://doi.org/10.5194/acp-9-9349-2009, 2009
J. M. Castanheira, J. A. Añel, C. A. F. Marques, J. C. Antuña, M. L. R. Liberato, L. de la Torre, and L. Gimeno
Atmos. Chem. Phys., 9, 9143–9153, https://doi.org/10.5194/acp-9-9143-2009, https://doi.org/10.5194/acp-9-9143-2009, 2009
Cited articles
Alexander, M. J. and Rosenlof, K. H.: Gravity-wave forcing in the stratosphere: Observational constraints from the Upper Atmosphere Research Satellite and implications for parameterization in global models, J. Geophys. Res.-Atmos., 108, 4597, https://doi.org/10.1029/2003JD003373, 2003.
Bacmeister, J. T., Eckermann, S. D., Newman, P. A., Lait, L., Chan, K. R., Loewenstein, M., Proffitt, M. H., and Gary, B. L.: Stratospheric horizontal wavenumber spectra of winds, potential temperature, and atmospheric tracers observed by high-altitude aircraft, J. Geophys. Res., 101, 9441–9470, 1996.
Bei, N. and Zhang, F.: Mesoscale Predictability of Moist Baroclinic Waves: Variable and Scale Dependent Error Growth, Adv. Atmos. Sci., 31, 995–1008, https://doi.org/10.1007/s00376-014-3191-7, 2014.
Bertin, F., Campistron, B., Caccia, J. L., and Wilson, R.: Mixing processes in a tropopause folding observed by a network of ST radar and lidar, Ann. Geophys., 19, 953–963, https://doi.org/10.5194/angeo-19-953-2001, 2001.
Bosart, L. F., Bracken, W. E., and Seimon, A.: A study of cyclone mesoscale structure with emphasis on a large-amplitude inertia-gravity waves, Mon. Weather Rev., 126, 1497–1527, 1998.
Brown, P. R. A.: Aircraft measurements of mountain waves and their associated momentum flux over the british isles, Q. J. Roy. Meteor. Soc., 109, 849–865, 1983.
Charney, J. G.: Geostrophic turbulence, J. Atmos. Sci., 28, 1087–1095, 1971.
Donoho, D. L. and Johnstone, I. M.: Ideal spatial adaptation by wavelet shrinkage, Biometrika, 81, 425–455, 1994.
Dornbrack, A., Birner, T., Fix, A., Flentje, H., Meister, A., Schmid, H., Browell, E. V., and Mahoney, M. J.: Evidence for inertia gravity waves forming polar stratospheric clouds overscandinavia, J. Geophys. Res., 107, 8287, https://doi.org/10.1029/2001JD000452, 2002.
Doyle, J., Volkert, H., Dornbrack, A., Hoinka, K., and Hogan, T.: Aircraft measurementsand numerical simulations of mountain waves over the central Alps: A pre-MAP test case, Q. J. Roy. Meteor. Soc., 128, 2175–2184, 2002.
Einaudi, F., Bedard, A. J., and Finnigan, J. J.: A climatology of gravity waves and other coherent disturbances at the Boulder Atmospheric Observatory during March–April 1984, J. Atmos. Sci., 46, 303–329, 1989.
Eliassen, A. and Palm, E.: On the transfer of energy in stationary mountain waves, Geofys. Publ., 22, 1–23, 1960.
Farge, M.: Wavelet transforms and their applications to turbulence, Annu. Rev. Fluid Mech., 24, 395–457, 1992.
Fritts, D. C. and Nastrom, G. D.: Sources of mesoscale variability of gravity waves. Part II: Frontal, convective, and jet stream excitation, J. Atmos. Sci., 49, 111–127, 1992.
Gong, J. and Geller, M. A.: Vertical fluctuation energy in United States high vertical resolution radiosonde data as an indicator of convective gravity wave sources, J. Geophys. Res. 115, D11110, https://doi.org/10.1029/2009JD012265, 2010.
Grivet-Talocia, S., Einaudi, F., Clark, W. L., Dennett, R. D., Nastrom, G. D., and VanZandt, T. E.: A 4-yr Climatology of Pressure Disturbances Using a Barometer Network in Central Illinois, Mon. Weather Rev., 127, 1613–1629, 1999.
Grubišić, V., Doyle, J. D., Kuettner, J., Mobbs, S., Smith, R. B., Whiteman, C. D., Dirks, R., Czyzyk, S., Cohn, S. A., Vosper, S., Weissmann, M., Haimov, S., De Wekker, S. F. J., Pan, L. L., and Chow, F. K.: The Terrain-Induced Rotor Experiment, B. Am. Meteorol. Soc., 89, 1513–1533, 2008.
Hertzog, A. and Vial, F.: A study of the dynamics of the equatorial lower stratosphere by use of ultra-long-duration balloons: 2. Gravity waves, J. Geophys. Res., 106, 22745–22761, 2001.
Jensen, E. J., Starr, D., and Toon, O. B.: Mission investigates tropical cirrus clouds, EOS, 85, 45–50, 2004.
Kaplan, M. L., Koch, S. E., Lin, Y.-L., Weglarz, R. P., and Rozumalski, R. A.: Numerical simulations of a gravity wave event over CCOPE. Part I: The role of geostrophic adjustment in mesoscale jetlet formation, Mon. Weather Rev., 125, 1185–1211, 1997.
Karacostas, T. S. and Marwitz, J. D.: Turbulent kinetic energy budgets over mountainousterrain, J. Appl. Meteor., 19, 163–174, 1980.
Koch, S. E., Zhang, F., Kaplan, M., Lin, Y.-L., Weglarz, R., and Trexler, M.: Numerical simulation of a gravity wave event observed during ccope. part 3: the role of a mountain-plains solenoid in the generation of the second wave episode, Mon. Weather Rev., 129, 909–932, 2001.
Koch, S. E., Jamison, B. D., Lu, C. G., Smith, T. L., Tollerud, E. I., Girz, C., Wang, N., Lane, T. P., Shapiro, M. A., Parrish, D. D., and Cooper, O. R.: Turbulence and gravity waves within an upper-level front, J. Atmos. Sci., 62, 3885–3908, 2005.
Kolmogorov, A. N.: The local structure of turbulence in incompressible viscous fluid for very large Reynolds number, Dokl. Akad. Nauk SSSR, 30, 301–305, 1941.
Koppel, L. L., Bosart, L. F., and Keyser, D.: A 25-yr climatology of large-amplitude hourly surface pressure changes over the conterminous United States, Mon. Weather Rev., 96, 51–68, 2000.
Kraichnan, R. H.: Inertial ranges in two-dimensional turbulence, Phys. Fluids, 10, 1417–1423, 1967.
Lane, T. P., Reeder, M. J., and Clark, T. L.: Numerical Modeling of Gravity Wave Generation by Deep Tropical Convection, J. Atmos. Sci., 58, 1249–1274, 2001.
Lane, T. P., Doyle, J. D., Plougonven, R., Shapiro, M. A., and Sharman, R. D.: Observations and numerical simulations of inertia-gravity waves and shearing instabilities in the vicinity of a jet stream, J. Atmos. Sci., 61, 2692–2706, 2004.
Laursen, K. K., Jorgensen, D. P., Brasseur, G. P., Ustin, S. L., and Huning, J. R.: HIAPER: The next generation NSF/NCAR research aircraft, B. Am. Meteorol. Soc., 87, 896–909, 2006.
Leutbecher, M. and Volkert, H.: The propagation of mountain waves into the stratosphere: Quantitative evaluation of three-dimensional simulations, J. Atmos. Sci., 57, 3090–3108, 2000.
Lilly, D. K. and Kennedy, P. J.: Observations of a stationary mountain wave and it sassociated momentum flux and energy dissipation, J. Atmos. Sci., 30, 1135–1152, 1973.
Lin, Y. and Zhang, F.: Tracking gravity waves in baroclinic jet-front systems, J. Atmos. Sci., 65, 2402–2415, 2008.
Lindborg, E.: Can the atmospheric kinetic energy spectrum be explained by two-dimensional turbulence?, J. Fluid Mech., 388, 259–288, 1999.
Lindzen, R. S.: Dynamics in Atmospheric Physics, Cambridge University Press, Cambridge, UK, 320 pp., 1990.
Meng, Z. and Zhang, F.: Test of an ensemble-Kalman filter for mesoscale and regional-scale data assimilation. Part III: Comparison with 3Dvar in a real-data case study, Mon. Weather Rev., 136, 522–540, 2008a.
Meng, Z. and Zhang, F.: Test of an ensemble-Kalman filter for mesoscale and regional-scale data assimilation. Part IV: Performance over a warm-season month of June 2003, Mon. Weather Rev., 136, 3671–3682, 2008b.
Mirzaei, M., Zülicke, C., Mohebalhojeh, A., Ahmadi-Givi, F., and Plougonven, R.: Structure, energy, and parameterization of inertia–gravity waves in dry and moist simulations of a baroclinic wave life cycle, J. Atmos. Sci., 71, 2390–2414, https://doi.org/10.1175/JAS-D-13-075.1, 2014.
Moustaoui, M., Teitelbaum, H., van Velthoven, P. F. J., and Kelder, H.: Analysis of gravity waves during the POLINAT experiment and some consequences for stratosphere-troposphere exchange, J. Atmos. Sci., 56, 1019–1030, 1999.
Nastrom, G. D. and Fritts, D. C.: Sources of mesoscale variability of gravity waves. Part I: Topographic excitation, J. Atmos. Sci., 49, 101–110, 1992.
Nastrom, G. D. and Gage, K. S.: A Climatology of Atmospheric Wavenumber Spectra of Wind and Temperature Observed by Commercial Aircraft, J. Atmos. Sci., 42, 950–960, 1985.
O'Sullivan, D. and Dunkerton, T. J.: Generation of inertia-gravity waves in a simulated life cycle of baroclinic instability, J. Atmos. Sci., 52, 3695–3716, 1995.
Pan, L. L., Bowman, K. P., Atlas, E. L., Wofsy, S. C., Zhang, F., Bresch, J. F., Ridley, B. A., Pittman, J. V., Homeyer, C. R., Romashkin, P., and Cooper, W. A.: The Stratosphere–Troposphere Analyses of Regional Transport 2008 Experiment, B. Am. Meteorol. Soc., 91, 327–342, 2010.
Pavelin, E., Whiteway, J. A., and Vaughan, G.: Observation of gravity wave generation and breaking in the lowermost stratosphere, J. Geophys. Res., 106, 5173–5179, 2001.
Plougonven, R. and Snyder, C.: Inertia-gravity waves spontaneously generated by jets and fronts. Part I: Different baroclinic life cycles, J. Atmos. Sci., 64, 2502–2520, 2007.
Plougonven, R. and Zhang, F.: Internal gravity waves from atmospheric jets and fronts, Rev. Geophys., 52, 33–76, https://doi.org/10.1002/2012RG000419, 2014.
Plougonven, R., Teitelbaum, H., and Zeitlin, V.: Inertia gravity wave generation by tropospheric midlatitude jet as given by the fronts and atlantic storm-track experiment radio soundings, J. Geophys. Res.-Atmos., 108, 888–889, 2003.
Pokrandt, P. J., Tripoli, G. J., and Houghton, D. D.: Processes leading to the formation of mesoscale waves in the midwest cyclone of 15 December 1987, Mon. Weather Rev., 124, 2726–2752, 1996.
Poulos, G. S., Blumen, W., Fritts, D. C., Lundquist, J. K., Sun, J., Burns, S. P., Nappo, C., Banta, R., Newsom, R., Cuxart, J., Terradellas, E., Balsley, B., and Jensen, M.: CASES-99: A Comprehensive Investigation of the Stable Nocturnal Boundary Layer, B. Am. Meteorol. Soc., 83, 555–581, 2002.
Powers, J. G. and Reed, R. J.: Numerical model simulation of the large-amplitude mesoscale gravity-wave event of 15 December 1987 in the central United States, Mon. Weather Rev., 121, 2285–2308, 1993.
Radok, U.: A procedure for studying mountain effects at low levels, B. Am. Meteorol. Soc., 35, 412–416, 1954.
Ramamurthy, M. K., Rauber, R. M., Collins, B., and Malhotra, N. K.: A comparative study of large-amplitude gravity-wave events, Mon. Weather Rev., 121, 2951–2974, 1993.
Rauber, R. M., Yang, M., Ramamurthy, M. K., and Jewett, B. F.: Origin, evolution, and fine-scale structure of the St. Valentine's Day mesoscale gravity wave observed during storm-fest. Part I: Origin and evolution, Mon. Weather Rev., 129, 198–217, 2001.
Reeder, M. J. and Griffiths, M.: Stratospheric inertia-gravity waves generated in a numerical model of frontogenesis. II: Wave sources, generation mechanisms and momentum fluxes, Q. J. Roy. Meteor. Soc., 122, 1175–1195, 1996.
Schneider, R. S.: Large-amplitude mesoscale wave disturbances within the intense midwest extratropical cyclone of 15 December 1987, Weather Forecast., 5, 533–558, 1990.
Shapiro, M. A. and Kennedy, P. J.: Aircraft Measurements of Wave Motions within Frontal Zone Systems, Mon. Weather Rev., 103, 1050–1054, https://doi.org/10.1175/1520-0493(1975)103<1050:AMOWMW>2.0.CO;2, 1975.
Skamarock, W. C.: Evaluating Mesoscale NWP Models Using Kinetic Energy Spectra, Mon. Weather Rev., 132, 3019–3032, 2004.
Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Wang, W., and Powers, J. G.: A description of the Advanced Research WRF Version 2. NCAR technical note 468+STR, National Center For Atmospheric Research (NCAR), Boulder, Colorado, USA, 88 pp., 2005.
Smith, R. B.: The generation of lee waves by the blue ridge, J. Atmos. Sci., 33, 507–519, 1976.
Smith, R. B.: Linear theory of stratified hydrostatic flow past an isolated mountain, Tellus, 32, 348–364, 1980.
Smith, R. B., Woods, B. K., Jensen, J., Cooper, W. A., Doyle, J. D., Jiang, Q., and Grubisic, V.: Mountain waves entering the stratosphere, J. Atmos. Sci., 65, 2543–2562, 2008.
Sun, Y. Q. and Zhang F.: Intrinsic vs. practical limits of atmospheric predictability and the significance of the butterfly effect, J. Atmos. Sci., in revision, 2015.
Tan, Z. M., Zhang, F., Rotunno, R., and Snyder, C.: Mesoscale predictability of moist baroclinic waves: Experiments with parameterized convection, J. Atmos. Sci., 61, 1794–1804, 2004.
Torrence, C. and Compo, G. P.: A practical guide to wavelet analysis, B. Am. Meteorol. Soc., 19, 61–78, 1998.
Uccellini, L. W. and Koch, S. E.: The synoptic setting and possible source mechanisms for mesoscale gravity wave events, Mon. Weather Rev., 115, 721–729, 1987.
Vaughan, G. and Worthington, R. M.: Break-up of a stratospheric streamer observed by MST radar, Q. J. Roy. Meteor. Soc., 126, 1751–1769, 2000.
Vaughan, G. and Worthington, R. M.: Inertia-gravity waves observed by the UK MST radar, Q. J. Roy. Meteor. Soc., 133, 179–188, 2007.
Vergeiner, I. and Lilly, D. K.: The dynamic structure of lee wave flow as obtained from balloon and airplane observations, Mon. Weather Rev., 98, 220–232, 1970.
Vincent, R. A. and Alexander, M. J.: Gravity waves in the tropical lower stratosphere: An observational study of seasonal and interannual variability, J. Geophys. Res., 105, 17971–17982, 2000.
Waite, M. L. and Snyder, C.: Mesoscale Energy Spectra of Moist Baroclinic Waves, J. Atmos. Sci., 70, 1242–1256, 2013.
Wang, L. and Geller, M. A.: Morphology of gravity-wave energy as observed from 4 years (1998–2001) of high vertical resolution U.S. radiosonde data, J. Geophys. Res., 108, 4489, https://doi.org/10.1029/2002JD002786, 2003.
Wang, L., Alexander, M. J., Bui, T. B., and Mahoney, M. J.: Small-scale gravity waves in ER-2 MMS/MTP wind and temperature measurements during CRYSTAL-FACE, Atmos. Chem. Phys., 6, 1091–1104, https://doi.org/10.5194/acp-6-1091-2006, 2006.
Wang, S. and Zhang, F.: Sensitivity of mesoscale gravity waves to the baroclinicity of jet-front systems, Mon. Weather Rev., 135, 670–688, 2007.
Wei, J. and Zhang, F.: Mesoscale gravity waves in moist baroclinic jet–front systems, J. Atmos. Sci., 71, 929–952, https://doi.org/10.1175/JAS-D-13-0171.1, 2014.
Wei, J. and Zhang, F.: Tracking gravity waves in moist baroclinic jet-front systems, Journal of Advanced Modeling in Earth Sciences (JAMES), 7, 67–91, https://doi.org/10.1002/2014MS000395, 2015.
Woods, B. K. and Smith, R. B.: Energy flux and wavelet diagnostics of secondary mountain waves, J. Atmos. Sci., 67, 3721–3738, 2010.
Woods, B. K. and Smith, R. B.: Short-Wave Signatures of Stratospheric Mountain Wave Breaking, J. Atmos. Sci., 68, 635–656, 2011.
Wu, D. L. and Zhang, F.: A study of mesoscale gravity waves over the North Atlantic with satellite observations and a mesoscale model, J. Geophys. Res.-Atmos., 109, D22104, https://doi.org/10.1029/2004JD005090, 2004.
Yamanaka, M. D., Ogino, S., Kondo, S., Shimomai, T., Fukao, S., Shibagaki, Y., Maekawa, Y., and Takayabu, I.: Inertio-gravity waves and subtropical multiple tropopauses: vertical wavenumber spectra of wind and temperature observed by the MU radar, radiosondes and operational rawinsonde network, J. Atmos. Terr. Phys., 58, 785–805, 1996.
Zhang, F.: Generation of mesoscale gravity waves in the upper-tropospheric jet-front systems, J. Atmos. Sci., 61, 440–457, 2004.
Zhang, F. and Koch, S. E.: Numerical simulation of a gravity wave event over CCOPE. Part II: Wave generated by an orographic density current, Mon. Weather Rev., 128, 2777–2796, 2000.
Zhang, F., Koch, S. E., Davis, C. A., and Kaplan, M. L.: Wavelet analysis and the governing dynamics of a large-amplitude gravity wave event along the east coast of the United States, Q. J. Roy. Meteor. Soc., 127, 2209–2245, 2001.
Zhang, F., Koch, S. E., and Kaplan, M. L.: Numerical simulations of a large-amplitude gravity wave event, Meteorol. Atmos. Phys., 84, 199–216, 2003.
Zhang, F., Wang, S., and Plougonven, R.: Uncertainties in using the hodograph method to retrieve gravity wave characteristics from individual soundings, Geophys. Res. Lett., 31, L11110, https://doi.org/10.1029/2004GL019841, 2004.
Zhang, F., Meng, Z., and Aksoy, A.: Tests of an ensemble Kalman filter for mesoscale and regional-scale data assimilation. Part I: Perfect model experiments, Mon. Weather Rev., 134, 722–736, 2006.
Zhang, F., Bei, N., Rotunno, R., Snyder, C., and Epifanio, C. C.: Mesoscale predictability of moist baroclinic waves: Convection-permitting experiments and multistage error growth dynamics, J. Atmos. Sci., 64, 3579–3594, 2007.
Zhang, F., Zhang, M., Wei, J., and Wang, S.: Month-Long Simulations of Gravity Waves over North America and North Atlantic in Comparison with Satellite Observations, Acta Meteorol. Sin., 27, 446–454, 2013.
Zhang, S. D. and Yi, F.: Latitudinal and seasonal variations of inertial gravity wave activity in the lower atmosphere over central China, J. Geophys. Res., 112, D05109, https://doi.org/10.1029/2006JD007487, 2007.
Short summary
Based on spectral and wavelet analyses, along with a diagnosis of the polarization relations, this study analyzes in situ airborne measurements from the 2008 Stratosphere-Troposphere Analyses of Regional Transport (START08) experiment to characterize gravity waves in the extratropical upper troposphere and lower stratosphere (ExUTLS) region. The focus is on the second research flight (RF02), which was dedicated to probing gravity waves associated with strong upper-tropospheric jet-front systems.
Based on spectral and wavelet analyses, along with a diagnosis of the polarization relations,...
Altmetrics
Final-revised paper
Preprint