Articles | Volume 15, issue 20
https://doi.org/10.5194/acp-15-11683-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-15-11683-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Wet deposition of atmospheric inorganic nitrogen at five remote sites in the Tibetan Plateau
Y. W. Liu
Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Xu-Ri
Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
Y. S. Wang
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
Y. P. Pan
State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
S. L. Piao
Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China
Sino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
Related authors
Donghai Wu, Philippe Ciais, Nicolas Viovy, Alan K. Knapp, Kevin Wilcox, Michael Bahn, Melinda D. Smith, Sara Vicca, Simone Fatichi, Jakob Zscheischler, Yue He, Xiangyi Li, Akihiko Ito, Almut Arneth, Anna Harper, Anna Ukkola, Athanasios Paschalis, Benjamin Poulter, Changhui Peng, Daniel Ricciuto, David Reinthaler, Guangsheng Chen, Hanqin Tian, Hélène Genet, Jiafu Mao, Johannes Ingrisch, Julia E. S. M. Nabel, Julia Pongratz, Lena R. Boysen, Markus Kautz, Michael Schmitt, Patrick Meir, Qiuan Zhu, Roland Hasibeder, Sebastian Sippel, Shree R. S. Dangal, Stephen Sitch, Xiaoying Shi, Yingping Wang, Yiqi Luo, Yongwen Liu, and Shilong Piao
Biogeosciences, 15, 3421–3437, https://doi.org/10.5194/bg-15-3421-2018, https://doi.org/10.5194/bg-15-3421-2018, 2018
Short summary
Short summary
Our results indicate that most ecosystem models do not capture the observed asymmetric responses under normal precipitation conditions, suggesting an overestimate of the drought effects and/or underestimate of the watering impacts on primary productivity, which may be the result of inadequate representation of key eco-hydrological processes. Collaboration between modelers and site investigators needs to be strengthened to improve the specific processes in ecosystem models in following studies.
Jianyong Ma, Almut Arneth, Benjamin Smith, Peter Anthoni, Xu-Ri, Peter Eliasson, David Wårlind, Martin Wittenbrink, and Stefan Olin
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-223, https://doi.org/10.5194/gmd-2024-223, 2024
Preprint under review for GMD
Short summary
Short summary
Nitrous oxide (N2O) is a powerful greenhouse gas mainly released from natural and agricultural soils. This study examines how global soil N2O emissions have changed from 1961 to 2020 and identifies key factors driving these changes using an ecological model. The findings highlight croplands as the largest source, with factors like fertilizer use and climate change enhancing emissions. Rising CO2 levels, however, can partially mitigate N2O emissions through increased plant nitrogen uptake.
Zhe Jin, Xiangjun Tian, Yilong Wang, Hongqin Zhang, Min Zhao, Tao Wang, Jinzhi Ding, and Shilong Piao
Earth Syst. Sci. Data, 16, 2857–2876, https://doi.org/10.5194/essd-16-2857-2024, https://doi.org/10.5194/essd-16-2857-2024, 2024
Short summary
Short summary
An accurate estimate of spatial distribution and temporal evolution of CO2 fluxes is a critical foundation for providing information regarding global carbon cycle and climate mitigation. Here, we present a global carbon flux dataset for 2015–2022, derived by assimilating satellite CO2 observations into the GONGGA inversion system. This dataset will help improve the broader understanding of global carbon cycle dynamics and their response to climate change.
Sen Cao, Muyi Li, Zaichun Zhu, Zhe Wang, Junjun Zha, Weiqing Zhao, Zeyu Duanmu, Jiana Chen, Yaoyao Zheng, Yue Chen, Ranga B. Myneni, and Shilong Piao
Earth Syst. Sci. Data, 15, 4877–4899, https://doi.org/10.5194/essd-15-4877-2023, https://doi.org/10.5194/essd-15-4877-2023, 2023
Short summary
Short summary
The long-term global leaf area index (LAI) products are critical for characterizing vegetation dynamics under environmental changes. This study presents an updated GIMMS LAI product (GIMMS LAI4g; 1982−2020) based on PKU GIMMS NDVI and massive Landsat LAI samples. With higher accuracy than other LAI products, GIMMS LAI4g removes the effects of orbital drift and sensor degradation in AVHRR data. It has better temporal consistency before and after 2000 and a more reasonable global vegetation trend.
Muyi Li, Sen Cao, Zaichun Zhu, Zhe Wang, Ranga B. Myneni, and Shilong Piao
Earth Syst. Sci. Data, 15, 4181–4203, https://doi.org/10.5194/essd-15-4181-2023, https://doi.org/10.5194/essd-15-4181-2023, 2023
Short summary
Short summary
Long-term global Normalized Difference Vegetation Index (NDVI) products support the understanding of changes in vegetation under environmental changes. This study generates a consistent global NDVI product (PKU GIMMS NDVI) from 1982–2022 that eliminates the issue of orbital drift and sensor degradation in Advanced Very High Resolution Radiometer (AVHRR) data. More accurate than its predecessor (GIMMS NDVI3g), it shows high temporal consistency with MODIS NDVI in describing vegetation trends.
Chenhong Zhou, Fan Wang, Yike Guo, Cheng Liu, Dongsheng Ji, Yuesi Wang, Xiaobin Xu, Xiao Lu, Yan Wang, Gregory Carmichael, and Meng Gao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-187, https://doi.org/10.5194/essd-2022-187, 2022
Manuscript not accepted for further review
Short summary
Short summary
We develop an eXtreme Gradient Boosting (XGBoost) model integrating high-resolution meteorological data, satellite retrievals of trace gases, etc. to provide reconstructed daily ground-level O3 over 2005–2021 in China. It can facilitate climatological, ecological, and health research. The dataset is freely available at Zenodo (https://zenodo.org/record/6507706#.Yo8hKujP13g; Zhou, 2022).
Philippe Ciais, Ana Bastos, Frédéric Chevallier, Ronny Lauerwald, Ben Poulter, Josep G. Canadell, Gustaf Hugelius, Robert B. Jackson, Atul Jain, Matthew Jones, Masayuki Kondo, Ingrid T. Luijkx, Prabir K. Patra, Wouter Peters, Julia Pongratz, Ana Maria Roxana Petrescu, Shilong Piao, Chunjing Qiu, Celso Von Randow, Pierre Regnier, Marielle Saunois, Robert Scholes, Anatoly Shvidenko, Hanqin Tian, Hui Yang, Xuhui Wang, and Bo Zheng
Geosci. Model Dev., 15, 1289–1316, https://doi.org/10.5194/gmd-15-1289-2022, https://doi.org/10.5194/gmd-15-1289-2022, 2022
Short summary
Short summary
The second phase of the Regional Carbon Cycle Assessment and Processes (RECCAP) will provide updated quantification and process understanding of CO2, CH4, and N2O emissions and sinks for ten regions of the globe. In this paper, we give definitions, review different methods, and make recommendations for estimating different components of the total land–atmosphere carbon exchange for each region in a consistent and complete approach.
Yuanyuan Huang, Phillipe Ciais, Maurizio Santoro, David Makowski, Jerome Chave, Dmitry Schepaschenko, Rose Z. Abramoff, Daniel S. Goll, Hui Yang, Ye Chen, Wei Wei, and Shilong Piao
Earth Syst. Sci. Data, 13, 4263–4274, https://doi.org/10.5194/essd-13-4263-2021, https://doi.org/10.5194/essd-13-4263-2021, 2021
Short summary
Short summary
Roots play a key role in our Earth system. Here we combine 10 307 field measurements of forest root biomass worldwide with global observations of forest structure, climatic conditions, topography, land management and soil characteristics to derive a spatially explicit global high-resolution (~ 1 km) root biomass dataset. In total, 142 ± 25 (95 % CI) Pg of live dry-matter biomass is stored belowground, representing a global average root : shoot biomass ratio of 0.25 ± 0.10.
Meng Gao, Yang Yang, Hong Liao, Bin Zhu, Yuxuan Zhang, Zirui Liu, Xiao Lu, Chen Wang, Qiming Zhou, Yuesi Wang, Qiang Zhang, Gregory R. Carmichael, and Jianlin Hu
Atmos. Chem. Phys., 21, 11405–11421, https://doi.org/10.5194/acp-21-11405-2021, https://doi.org/10.5194/acp-21-11405-2021, 2021
Short summary
Short summary
Light absorption and radiative forcing of black carbon (BC) is influenced by both BC itself and its interactions with other aerosol chemical compositions. In this study, we used the online coupled WRF-Chem model to examine how emission control measures during the Asian-Pacific Economic Cooperation (APEC) conference affect the mixing state and light absorption of BC and the associated implications for BC-PBL interactions.
Yuting Yang, Tim R. McVicar, Dawen Yang, Yongqiang Zhang, Shilong Piao, Shushi Peng, and Hylke E. Beck
Hydrol. Earth Syst. Sci., 25, 3411–3427, https://doi.org/10.5194/hess-25-3411-2021, https://doi.org/10.5194/hess-25-3411-2021, 2021
Short summary
Short summary
This study developed an analytical ecohydrological model that considers three aspects of vegetation response to eCO2 (i.e., stomatal response, LAI response, and rooting depth response) to detect the impact of eCO2 on continental runoff over the past 3 decades globally. Our findings suggest a minor role of eCO2 on the global runoff changes, yet highlight the negative runoff–eCO2 response in semiarid and arid regions which may further threaten the limited water resource there.
Zun Yin, Catherine Ottlé, Philippe Ciais, Feng Zhou, Xuhui Wang, Polcher Jan, Patrice Dumas, Shushi Peng, Laurent Li, Xudong Zhou, Yan Bo, Yi Xi, and Shilong Piao
Hydrol. Earth Syst. Sci., 25, 1133–1150, https://doi.org/10.5194/hess-25-1133-2021, https://doi.org/10.5194/hess-25-1133-2021, 2021
Short summary
Short summary
We improved the irrigation module in a land surface model ORCHIDEE and developed a dam operation model with the aim to investigate how irrigation and dams affect the streamflow fluctuations of the Yellow River. Results show that irrigation mainly reduces the annual river flow. The dam operation, however, mainly affects streamflow variation. By considering two generic operation rules, flood control and base flow guarantee, our dam model can sustainably improve the simulation accuracy.
Lei Zhang, Sunling Gong, Tianliang Zhao, Chunhong Zhou, Yuesi Wang, Jiawei Li, Dongsheng Ji, Jianjun He, Hongli Liu, Ke Gui, Xiaomei Guo, Jinhui Gao, Yunpeng Shan, Hong Wang, Yaqiang Wang, Huizheng Che, and Xiaoye Zhang
Geosci. Model Dev., 14, 703–718, https://doi.org/10.5194/gmd-14-703-2021, https://doi.org/10.5194/gmd-14-703-2021, 2021
Short summary
Short summary
Development of chemical transport models with advanced physics and chemical schemes is important for improving air-quality forecasts. This study develops the chemical module CUACE by updating with a new particle dry deposition scheme and adding heterogenous chemical reactions and couples it with the WRF model. The coupled model (WRF/CUACE) was able to capture well the variations of PM2.5, O3, NO2, and secondary inorganic aerosols in eastern China.
Qingqing Yu, Xiang Ding, Quanfu He, Weiqiang Yang, Ming Zhu, Sheng Li, Runqi Zhang, Ruqin Shen, Yanli Zhang, Xinhui Bi, Yuesi Wang, Ping'an Peng, and Xinming Wang
Atmos. Chem. Phys., 20, 14581–14595, https://doi.org/10.5194/acp-20-14581-2020, https://doi.org/10.5194/acp-20-14581-2020, 2020
Short summary
Short summary
We carried out a 1-year PM concurrent observation at 12 sites across six regions of China, and size-segregated PAHs were measured. We found both PAHs and BaPeq were concentrated in PM1.1, and northern China had higher PAHs' pollution and inhalation cancer risk than southern China. Nationwide increases in both PAH levels and inhalation cancer risk occurred in winter. We suggest reducing coal and biofuel consumption in the residential sector is an important option to mitigate PAHs' health risks.
Yongchun Liu, Yusheng Zhang, Chaofan Lian, Chao Yan, Zeming Feng, Feixue Zheng, Xiaolong Fan, Yan Chen, Weigang Wang, Biwu Chu, Yonghong Wang, Jing Cai, Wei Du, Kaspar R. Daellenbach, Juha Kangasluoma, Federico Bianchi, Joni Kujansuu, Tuukka Petäjä, Xuefei Wang, Bo Hu, Yuesi Wang, Maofa Ge, Hong He, and Markku Kulmala
Atmos. Chem. Phys., 20, 13023–13040, https://doi.org/10.5194/acp-20-13023-2020, https://doi.org/10.5194/acp-20-13023-2020, 2020
Short summary
Short summary
Understanding of the chemical and physical processes leading to atmospheric aerosol particle formation is crucial to devising effective mitigation strategies to protect the public and reduce uncertainties in climate predictions. We found that the photolysis of nitrous acid could promote the formation of organic and nitrate aerosol and that traffic-related emission is a major contributor to ambient nitrous acid on haze days in wintertime in Beijing.
Miao Yu, Guiqian Tang, Yang Yang, Qingchun Li, Yonghong Wang, Shiguang Miao, Yizhou Zhang, and Yuesi Wang
Atmos. Chem. Phys., 20, 9855–9870, https://doi.org/10.5194/acp-20-9855-2020, https://doi.org/10.5194/acp-20-9855-2020, 2020
Yuan Yang, Yonghong Wang, Putian Zhou, Dan Yao, Dongsheng Ji, Jie Sun, Yinghong Wang, Shuman Zhao, Wei Huang, Shuanghong Yang, Dean Chen, Wenkang Gao, Zirui Liu, Bo Hu, Renjian Zhang, Limin Zeng, Maofa Ge, Tuukka Petäjä, Veli-Matti Kerminen, Markku Kulmala, and Yuesi Wang
Atmos. Chem. Phys., 20, 8181–8200, https://doi.org/10.5194/acp-20-8181-2020, https://doi.org/10.5194/acp-20-8181-2020, 2020
Khalid Mehmood, Yujie Wu, Liqiang Wang, Shaocai Yu, Pengfei Li, Xue Chen, Zhen Li, Yibo Zhang, Mengying Li, Weiping Liu, Yuesi Wang, Zirui Liu, Yannian Zhu, Daniel Rosenfeld, and John H. Seinfeld
Atmos. Chem. Phys., 20, 2419–2443, https://doi.org/10.5194/acp-20-2419-2020, https://doi.org/10.5194/acp-20-2419-2020, 2020
Short summary
Short summary
We selected June 2014 as our study period, which exhibited a complete evolution process of open biomass burning (OBB) dominated by open crop straw burning (OCSB) over central and eastern China (CEC). We established a constraining method that integrates ground-based PM2.5 measurements with the two-way coupled WRF-CMAQ model to derive optimal OBB emissions. It was found that these emissions could allow the model to reproduce meteorological and chemical fields over CEC during the study period.
Zhining Tao, Mian Chin, Meng Gao, Tom Kucsera, Dongchul Kim, Huisheng Bian, Jun-ichi Kurokawa, Yuesi Wang, Zirui Liu, Gregory R. Carmichael, Zifa Wang, and Hajime Akimoto
Atmos. Chem. Phys., 20, 2319–2339, https://doi.org/10.5194/acp-20-2319-2020, https://doi.org/10.5194/acp-20-2319-2020, 2020
Short summary
Short summary
One goal of the Model Inter-Comparison Study for Asia (MICS-Asia) Phase III is to identify strengths and weaknesses of current air quality models to provide insights into reducing uncertainties. This study identified that a 15 km grid would be the optimal horizontal resolution in terms of performance and resource usage to capture average and extreme air quality over East Asia and is thus suggested for use in future MICS-Asia modeling activities if the investigation domain remains the same.
Meng Gao, Zirui Liu, Bo Zheng, Dongsheng Ji, Peter Sherman, Shaojie Song, Jinyuan Xin, Cheng Liu, Yuesi Wang, Qiang Zhang, Jia Xing, Jingkun Jiang, Zifa Wang, Gregory R. Carmichael, and Michael B. McElroy
Atmos. Chem. Phys., 20, 1497–1505, https://doi.org/10.5194/acp-20-1497-2020, https://doi.org/10.5194/acp-20-1497-2020, 2020
Short summary
Short summary
We quantified the relative influences of anthropogenic emissions and meteorological conditions on PM2.5 concentrations in Beijing over the winters of 2002–2016. Meteorological conditions over the study period would have led to an increase of haze in Beijing, but the strict emission control measures have suppressed the unfavorable influences of the recent climate.
Lei Kong, Xiao Tang, Jiang Zhu, Zifa Wang, Joshua S. Fu, Xuemei Wang, Syuichi Itahashi, Kazuyo Yamaji, Tatsuya Nagashima, Hyo-Jung Lee, Cheol-Hee Kim, Chuan-Yao Lin, Lei Chen, Meigen Zhang, Zhining Tao, Jie Li, Mizuo Kajino, Hong Liao, Zhe Wang, Kengo Sudo, Yuesi Wang, Yuepeng Pan, Guiqian Tang, Meng Li, Qizhong Wu, Baozhu Ge, and Gregory R. Carmichael
Atmos. Chem. Phys., 20, 181–202, https://doi.org/10.5194/acp-20-181-2020, https://doi.org/10.5194/acp-20-181-2020, 2020
Short summary
Short summary
Evaluation and uncertainty investigation of NO2, CO and NH3 modeling over China were conducted in this study using 14 chemical transport model results from MICS-Asia III. All models largely underestimated CO concentrations and showed very poor performance in reproducing the observed monthly variations of NH3 concentrations. Potential factors related to such deficiencies are investigated and discussed in this paper.
Yonghong Wang, Miao Yu, Yuesi Wang, Guiqian Tang, Tao Song, Putian Zhou, Zirui Liu, Bo Hu, Dongsheng Ji, Lili Wang, Xiaowan Zhu, Chao Yan, Mikael Ehn, Wenkang Gao, Yuepeng Pan, Jinyuan Xin, Yang Sun, Veli-Matti Kerminen, Markku Kulmala, and Tuukka Petäjä
Atmos. Chem. Phys., 20, 45–53, https://doi.org/10.5194/acp-20-45-2020, https://doi.org/10.5194/acp-20-45-2020, 2020
Short summary
Short summary
We found a positive particle matter-mixing layer height feedback at three observation platforms at the 325 m Beijing meteorology tower, which is characterized by a shallower mixing layer height and a higher particle matter concentration. Measurements of solar radiation, aerosol chemical composition, meteorology parameters, trace gases and turbulent kinetic energy (TKE) could explain the feedback mechanism to some extent.
Ana Bastos, Philippe Ciais, Frédéric Chevallier, Christian Rödenbeck, Ashley P. Ballantyne, Fabienne Maignan, Yi Yin, Marcos Fernández-Martínez, Pierre Friedlingstein, Josep Peñuelas, Shilong L. Piao, Stephen Sitch, William K. Smith, Xuhui Wang, Zaichun Zhu, Vanessa Haverd, Etsushi Kato, Atul K. Jain, Sebastian Lienert, Danica Lombardozzi, Julia E. M. S. Nabel, Philippe Peylin, Benjamin Poulter, and Dan Zhu
Atmos. Chem. Phys., 19, 12361–12375, https://doi.org/10.5194/acp-19-12361-2019, https://doi.org/10.5194/acp-19-12361-2019, 2019
Short summary
Short summary
Here we show that land-surface models improved their ability to simulate the increase in the amplitude of seasonal CO2-cycle exchange (SCANBP) by ecosystems compared to estimates by two atmospheric inversions. We find a dominant role of vegetation growth over boreal Eurasia to the observed increase in SCANBP, strongly driven by CO2 fertilization, and an overall negative effect of temperature on SCANBP. Biases can be explained by the sensitivity of simulated microbial respiration to temperature.
Lei Chen, Jia Zhu, Hong Liao, Yi Gao, Yulu Qiu, Meigen Zhang, Zirui Liu, Nan Li, and Yuesi Wang
Atmos. Chem. Phys., 19, 10845–10864, https://doi.org/10.5194/acp-19-10845-2019, https://doi.org/10.5194/acp-19-10845-2019, 2019
Short summary
Short summary
The formation mechanism of a severe haze episode that occurred over North China in December 2015, the aerosol radiative impacts on the haze event and the influence mechanism were examined. The PM2.5 increase during the aerosol accumulation stage was mainly attributed to strong production by the aerosol chemistry process and weak removal by advection and vertical mixing. Restrained vertical mixing was the main reason for near-surface PM2.5 increase when aerosol radiative feedback was considered.
Yonghong Wang, Yuesi Wang, Lili Wang, Tuukka Petäjä, Qiaozhi Zha, Chongshui Gong, Sixuan Li, Yuepeng Pan, Bo Hu, Jinyuan Xin, and Markku Kulmala
Atmos. Chem. Phys., 19, 5881–5888, https://doi.org/10.5194/acp-19-5881-2019, https://doi.org/10.5194/acp-19-5881-2019, 2019
Short summary
Short summary
Satellite observations combined with in situ measurements demonstrate that increased inorganic aerosol fractions of NO2 and SO2 contribute to air pollution and frequently occurring haze in China from 1980 to 2010. Currently, the reduction of nitrate, sulfate and their precursor gases would contribute towards better visibility in China.
Zun Yin, Catherine Ottlé, Philippe Ciais, Matthieu Guimberteau, Xuhui Wang, Dan Zhu, Fabienne Maignan, Shushi Peng, Shilong Piao, Jan Polcher, Feng Zhou, Hyungjun Kim, and other China-Trend-Stream project members
Hydrol. Earth Syst. Sci., 22, 5463–5484, https://doi.org/10.5194/hess-22-5463-2018, https://doi.org/10.5194/hess-22-5463-2018, 2018
Short summary
Short summary
Simulations in China were performed in ORCHIDEE driven by different forcing datasets: GSWP3, PGF, CRU-NCEP, and WFDEI. Simulated soil moisture was compared to several datasets to evaluate the ability of ORCHIDEE in reproducing soil moisture dynamics. Results showed that ORCHIDEE soil moisture coincided well with other datasets in wet areas and in non-irrigated areas. It suggested that the ORCHIDEE-MICT was suitable for further hydrological studies in China.
Yilong Wang, Philippe Ciais, Daniel Goll, Yuanyuan Huang, Yiqi Luo, Ying-Ping Wang, A. Anthony Bloom, Grégoire Broquet, Jens Hartmann, Shushi Peng, Josep Penuelas, Shilong Piao, Jordi Sardans, Benjamin D. Stocker, Rong Wang, Sönke Zaehle, and Sophie Zechmeister-Boltenstern
Geosci. Model Dev., 11, 3903–3928, https://doi.org/10.5194/gmd-11-3903-2018, https://doi.org/10.5194/gmd-11-3903-2018, 2018
Short summary
Short summary
We present a new modeling framework called Global Observation-based Land-ecosystems Utilization Model of Carbon, Nitrogen and Phosphorus (GOLUM-CNP) that combines a data-constrained C-cycle analysis with data-driven estimates of N and P inputs and losses and with observed stoichiometric ratios. GOLUM-CNP provides a traceable tool, where a consistency between different datasets of global C, N, and P cycles has been achieved.
Xin Lin, Philippe Ciais, Philippe Bousquet, Michel Ramonet, Yi Yin, Yves Balkanski, Anne Cozic, Marc Delmotte, Nikolaos Evangeliou, Nuggehalli K. Indira, Robin Locatelli, Shushi Peng, Shilong Piao, Marielle Saunois, Panangady S. Swathi, Rong Wang, Camille Yver-Kwok, Yogesh K. Tiwari, and Lingxi Zhou
Atmos. Chem. Phys., 18, 9475–9497, https://doi.org/10.5194/acp-18-9475-2018, https://doi.org/10.5194/acp-18-9475-2018, 2018
Short summary
Short summary
We simulate CH4 and CO2 using a zoomed global transport model with a horizontal resolution of ~50 km over South and East Asia, as well as a standard model version for comparison. Model performance is evaluated for both gases and versions at multiple timescales against a new collection of surface stations over this key GHG-emitting region. The evaluation at different timescales and comparisons between gases and model versions have implications for possible model improvements and inversions.
Zirui Liu, Wenkang Gao, Yangchun Yu, Bo Hu, Jinyuan Xin, Yang Sun, Lili Wang, Gehui Wang, Xinhui Bi, Guohua Zhang, Honghui Xu, Zhiyuan Cong, Jun He, Jingsha Xu, and Yuesi Wang
Atmos. Chem. Phys., 18, 8849–8871, https://doi.org/10.5194/acp-18-8849-2018, https://doi.org/10.5194/acp-18-8849-2018, 2018
Short summary
Short summary
We have established a national-level network (CARE-China) that conducted continuous monitoring of PM2.5 and its chemical compositions in China. Our analysis reveals the spatial and seasonal variabilities of the urban and background aerosol species and their contributions to the PM2.5 budget. The integration of data provided an extensive spatial coverage of fine-particle concentrations and could be used to validate model results and implement effective air pollution control strategies.
Donghai Wu, Philippe Ciais, Nicolas Viovy, Alan K. Knapp, Kevin Wilcox, Michael Bahn, Melinda D. Smith, Sara Vicca, Simone Fatichi, Jakob Zscheischler, Yue He, Xiangyi Li, Akihiko Ito, Almut Arneth, Anna Harper, Anna Ukkola, Athanasios Paschalis, Benjamin Poulter, Changhui Peng, Daniel Ricciuto, David Reinthaler, Guangsheng Chen, Hanqin Tian, Hélène Genet, Jiafu Mao, Johannes Ingrisch, Julia E. S. M. Nabel, Julia Pongratz, Lena R. Boysen, Markus Kautz, Michael Schmitt, Patrick Meir, Qiuan Zhu, Roland Hasibeder, Sebastian Sippel, Shree R. S. Dangal, Stephen Sitch, Xiaoying Shi, Yingping Wang, Yiqi Luo, Yongwen Liu, and Shilong Piao
Biogeosciences, 15, 3421–3437, https://doi.org/10.5194/bg-15-3421-2018, https://doi.org/10.5194/bg-15-3421-2018, 2018
Short summary
Short summary
Our results indicate that most ecosystem models do not capture the observed asymmetric responses under normal precipitation conditions, suggesting an overestimate of the drought effects and/or underestimate of the watering impacts on primary productivity, which may be the result of inadequate representation of key eco-hydrological processes. Collaboration between modelers and site investigators needs to be strengthened to improve the specific processes in ecosystem models in following studies.
Xiaowan Zhu, Guiqian Tang, Jianping Guo, Bo Hu, Tao Song, Lili Wang, Jinyuan Xin, Wenkang Gao, Christoph Münkel, Klaus Schäfer, Xin Li, and Yuesi Wang
Atmos. Chem. Phys., 18, 4897–4910, https://doi.org/10.5194/acp-18-4897-2018, https://doi.org/10.5194/acp-18-4897-2018, 2018
Short summary
Short summary
Our study first conducted a long-term observation of mixing layer height (MLH) with high resolution on the North China Plain (NCP), analyzed the spatiotemporal variations of regional MLH, investigated the reasons for MLH differences in the NCP and revealed the meteorological reasons for heavy haze pollution in southern Hebei. The study results provide scientific suggestions for regional industrial structure readjustment and have great importance for achieving the integrated development goals.
Meng Gao, Zhiwei Han, Zirui Liu, Meng Li, Jinyuan Xin, Zhining Tao, Jiawei Li, Jeong-Eon Kang, Kan Huang, Xinyi Dong, Bingliang Zhuang, Shu Li, Baozhu Ge, Qizhong Wu, Yafang Cheng, Yuesi Wang, Hyo-Jung Lee, Cheol-Hee Kim, Joshua S. Fu, Tijian Wang, Mian Chin, Jung-Hun Woo, Qiang Zhang, Zifa Wang, and Gregory R. Carmichael
Atmos. Chem. Phys., 18, 4859–4884, https://doi.org/10.5194/acp-18-4859-2018, https://doi.org/10.5194/acp-18-4859-2018, 2018
Short summary
Short summary
Topic 3 of the Model Inter-Comparison Study for Asia (MICS-Asia) Phase III examines how online coupled air quality models perform in simulating high aerosol pollution in the North China Plain region during wintertime haze events and evaluates the importance of aerosol radiative and microphysical feedbacks. A comprehensive overview of the MICS-ASIA III Topic 3 study design is presented.
Syuichi Itahashi, Keiya Yumimoto, Itsushi Uno, Hiroshi Hayami, Shin-ichi Fujita, Yuepeng Pan, and Yuesi Wang
Atmos. Chem. Phys., 18, 2835–2852, https://doi.org/10.5194/acp-18-2835-2018, https://doi.org/10.5194/acp-18-2835-2018, 2018
Short summary
Short summary
Ground-based observations of precipitation chemistry over China, Korea, and Japan from 2001 to 2015 were compiled, and the ratio of nitrate to non-sea-salt sulfate concentration in precipitation was analyzed to identify the long-term record of acidifying species. The variations in the ratio in East Asia corresponded to the NOx / SO2 emission ratio and the NO2 / SO2 column ratio in China. The results indicated that the acidity of precipitation shifted from sulfur to nitrogen.
Xiaojuan Huang, Zirui Liu, Jingyun Liu, Bo Hu, Tianxue Wen, Guiqian Tang, Junke Zhang, Fangkun Wu, Dongsheng Ji, Lili Wang, and Yuesi Wang
Atmos. Chem. Phys., 17, 12941–12962, https://doi.org/10.5194/acp-17-12941-2017, https://doi.org/10.5194/acp-17-12941-2017, 2017
Short summary
Short summary
Recently, haze pollution has frequently occurred in North China. Therefore, we conducted synchronous measurements of PM2.5 for 1 year to investigate the haze formation mechanism, sources, and influences of regional transport. The results revealed that secondary aerosols, coal combustion, and motor vehicle exhaust exerted significant impacts on urban haze formation. The mitigation strategy of reducing gaseous precursors emitted from fossil fuel combustion was suggested.
Chang-Eui Park, Su-Jong Jeong, Chang-Hoi Ho, Hoonyoung Park, Shilong Piao, Jinwon Kim, and Song Feng
Atmos. Chem. Phys., 17, 10467–10476, https://doi.org/10.5194/acp-17-10467-2017, https://doi.org/10.5194/acp-17-10467-2017, 2017
Short summary
Short summary
In dry monsoon regions, a decrease in precipitation induces drying trends. In contrast, the increase in potential evapotranspiration due to increased atmospheric water-holding capacity, a secondary impact of warming, works to increase aridity over the humid monsoon regions despite the increase in precipitation. Our results explain the recent drying in the humid monsoon regions. This also supports the drying trends over the warm and water-sufficient regions in future climate.
Xu-Ri and I. Colin Prentice
Biogeosciences, 14, 2003–2017, https://doi.org/10.5194/bg-14-2003-2017, https://doi.org/10.5194/bg-14-2003-2017, 2017
Short summary
Short summary
We estimated the global demand for new N fixation (NNF) by terrestrial ecosystem using a DyN-LPJ model. Modelled NPP and C : N ratios of litter and soil organic matter were consistent with independent estimates. Modelled NNF was sensitive to the fraction of litter carbon respired to CO2 during decomposition and plant-type-specific C : N ratios of litter and soil. The modelled annual NNF increased 15% due to increasing CO2, while the future capacity of N sources to support this is unknown.
Dongwei Liu, Weixing Zhu, Xiaobo Wang, Yuepeng Pan, Chao Wang, Dan Xi, Edith Bai, Yuesi Wang, Xingguo Han, and Yunting Fang
Biogeosciences, 14, 989–1001, https://doi.org/10.5194/bg-14-989-2017, https://doi.org/10.5194/bg-14-989-2017, 2017
Short summary
Short summary
The use of 15N natural abundance of soil ammonium and nitrate demonstrates a clear shifting contribution from abiotic to biotic controls on N cycling along a 3200 km dryland transect in northern China, with a threshold at mean annual precipitation of 100 mm. Abiotic factors were the main driver below threshold, shown by the accumulation of atmospheric N and NH3 losses. In the area above threshold, soil N cycling was controlled mainly by biological factors, e.g., plant uptake and denitrification.
Bin Liu, Zhiyuan Cong, Yuesi Wang, Jinyuan Xin, Xin Wan, Yuepeng Pan, Zirui Liu, Yonghong Wang, Guoshuai Zhang, Zhongyan Wang, Yongjie Wang, and Shichang Kang
Atmos. Chem. Phys., 17, 449–463, https://doi.org/10.5194/acp-17-449-2017, https://doi.org/10.5194/acp-17-449-2017, 2017
Short summary
Short summary
The first observation net of background atmospheric aerosols of the Himalayas and Tibetan Plateau were conducted in 2011–2013, and the aerosol mass loadings were especially illustrated in this paper. Consequently, these terrestrial aerosol masses were strongly ecosystem-dependent, with various seasonality and diurnal cycles at these sites. These findings implicate that regional characteristics and fine-particle emissions need to be treated sensitively when assessing their climatic effects.
Shushi Peng, Shilong Piao, Philippe Bousquet, Philippe Ciais, Bengang Li, Xin Lin, Shu Tao, Zhiping Wang, Yuan Zhang, and Feng Zhou
Atmos. Chem. Phys., 16, 14545–14562, https://doi.org/10.5194/acp-16-14545-2016, https://doi.org/10.5194/acp-16-14545-2016, 2016
Short summary
Short summary
Methane is an important greenhouse gas, which accounts for about 20 % of the warming induced by long-lived greenhouse gases since 1750. Anthropogenic methane emissions from China may have been growing rapidly in the past decades because of increased coal mining and fast growing livestock. A good long-term methane emissions dataset is still lacking. Here, we produced a detailed bottom-up inventory of anthropogenic methane emissions from the eight major source sectors in China during 1980–2010.
Jinfeng Chang, Philippe Ciais, Mario Herrero, Petr Havlik, Matteo Campioli, Xianzhou Zhang, Yongfei Bai, Nicolas Viovy, Joanna Joiner, Xuhui Wang, Shushi Peng, Chao Yue, Shilong Piao, Tao Wang, Didier A. Hauglustaine, Jean-Francois Soussana, Anna Peregon, Natalya Kosykh, and Nina Mironycheva-Tokareva
Biogeosciences, 13, 3757–3776, https://doi.org/10.5194/bg-13-3757-2016, https://doi.org/10.5194/bg-13-3757-2016, 2016
Short summary
Short summary
We derived the global maps of grassland management intensity of 1901–2012, including the minimum area of managed grassland with fraction of mown/grazed part. These maps, to our knowledge for the first time, provide global, time-dependent information for drawing up global estimates of management impact on biomass production and yields and for global vegetation models to enable simulations of carbon stocks and GHG budgets beyond simple tuning of grassland productivities to account for management.
Lan Cuo, Yongxin Zhang, Shilong Piao, and Yanhong Gao
Biogeosciences, 13, 3533–3548, https://doi.org/10.5194/bg-13-3533-2016, https://doi.org/10.5194/bg-13-3533-2016, 2016
Short summary
Short summary
The improved LPJ model was used to investigate plant functional type (PFT) changes in 1957–2009 and their responses to changes in root zone soil temperature, soil moisture, air temperature, precipitation, and CO2 concentrations. The results show spatially heterogeneous changes in PFTs in the northern Tibetan Plateau in 1957–2009. Dominant driver for PFT change is precipitation. The implications of the study are on the regional fresh water resources, onset, and intensity of monsoon circulations.
Andrea Ghirardo, Junfei Xie, Xunhua Zheng, Yuesi Wang, Rüdiger Grote, Katja Block, Jürgen Wildt, Thomas Mentel, Astrid Kiendler-Scharr, Mattias Hallquist, Klaus Butterbach-Bahl, and Jörg-Peter Schnitzler
Atmos. Chem. Phys., 16, 2901–2920, https://doi.org/10.5194/acp-16-2901-2016, https://doi.org/10.5194/acp-16-2901-2016, 2016
Short summary
Short summary
Trees can impact urban air quality. Large emissions of plant volatiles are emitted in Beijing as a stress response to the urban polluted environment, but their impacts on secondary particulate matter remain relatively low compared to those originated from anthropogenic activities. The present study highlights the importance of including stress-induced compounds when studying plant volatile emissions.
Guiqian Tang, Jinqiang Zhang, Xiaowan Zhu, Tao Song, Christoph Münkel, Bo Hu, Klaus Schäfer, Zirui Liu, Junke Zhang, Lili Wang, Jinyuan Xin, Peter Suppan, and Yuesi Wang
Atmos. Chem. Phys., 16, 2459–2475, https://doi.org/10.5194/acp-16-2459-2016, https://doi.org/10.5194/acp-16-2459-2016, 2016
Short summary
Short summary
This is the first paper to validate and characterize mixing layer height and discuss its relationship with air pollution, using a ceilometer in Beijing. The novelty, originality, and importance of this paper are as follows: (1) the applicable conditions of the ceilometer; (2) the variations of mixing layer height; (3) thermal/dynamic structure inside mixing layers with different degrees of pollution; and (4) critical meteorological conditions for the formation of heavy air pollution.
M. Gao, G. R. Carmichael, Y. Wang, P. E. Saide, M. Yu, J. Xin, Z. Liu, and Z. Wang
Atmos. Chem. Phys., 16, 1673–1691, https://doi.org/10.5194/acp-16-1673-2016, https://doi.org/10.5194/acp-16-1673-2016, 2016
Short summary
Short summary
The WRF-Chem model was applied to study the 2010 winter haze in North China. Air pollutants outside Beijing contributed about 64.5 % to the PM2.5 levels in Beijing during this haze event, and most of them are from south Hebei, Tianjin city, Shandong and Henan provinces. In addition, aerosol feedback has important impacts on surface temperature, Relative Humidity (RH) and wind speeds, and these meteorological variables affect aerosol distribution and formation in turn.
C. Yue, P. Ciais, D. Zhu, T. Wang, S. S. Peng, and S. L. Piao
Biogeosciences, 13, 675–690, https://doi.org/10.5194/bg-13-675-2016, https://doi.org/10.5194/bg-13-675-2016, 2016
Short summary
Short summary
The pan-boreal biome (> N45°) removes CO2 from the atmosphere (i.e., it is a carbon sink). Fires can alter this carbon balance because they release CO2 to the atmosphere but also initiate a long-term carbon sink during post-fire vegetation recovery. We found that historical fires of 1850–2009 have a small net sink contribution (~6 %) to the 2000–2009 regional carbon sink, which is a balance between immediate source effect of fires in 2000–2009 and sink effects of those in 1850–1999.
S. L. Tian, Y. P. Pan, and Y. S. Wang
Atmos. Chem. Phys., 16, 1–19, https://doi.org/10.5194/acp-16-1-2016, https://doi.org/10.5194/acp-16-1-2016, 2016
Short summary
Short summary
Size-resolved chemical information of particulate matter remains unclear in China due to a paucity of measurement data. One-year observation of water-soluble ions, carbonaceous species and trace elements in size-resolved particles with cutoff points as 0.43, 0.65, 1.1, 2.1, 3.3, 4.7, 5.8 and 9.0 μm were conducted in mega city Beijing. This unique dataset provided multidimensional insights into the sources among different size fractions, seasons or wind flows and between non-haze and haze days.
G. Tang, X. Zhu, B. Hu, J. Xin, L. Wang, C. Münkel, G. Mao, and Y. Wang
Atmos. Chem. Phys., 15, 12667–12680, https://doi.org/10.5194/acp-15-12667-2015, https://doi.org/10.5194/acp-15-12667-2015, 2015
Short summary
Short summary
The manuscript is the first paper to validate and discuss the high-resolution vertical profiles of aerosols using a ceilometer in Beijing, China. We introduce the contribution of aerosols during different air pollution episodes in Beijing. Also, we seize the opportunity of emission reduction during APEC to study the contribution of aerosols. The results are helpful to provide guidance in redefining coordinated emission control strategies to control the regional pollution over northern China.
Y. Zhao, L. Zhang, Y. Pan, Y. Wang, F. Paulot, and D. K. Henze
Atmos. Chem. Phys., 15, 10905–10924, https://doi.org/10.5194/acp-15-10905-2015, https://doi.org/10.5194/acp-15-10905-2015, 2015
Short summary
Short summary
Rapid Asian industrialization has led to increased atmospheric nitrogen deposition downwind. This work analyzes the sources and processes controlling atmospheric nitrogen deposition to the northwestern Pacific. Both nitrogen emissions and meteorology, largely controlled by the East Asian Monsoon, determine the seasonality of nitrogen deposition. Ascribing deposition over the marginal seas to nitrogen sources from different regions and sectors shows important contribution from fertilizer use.
D. Zhu, S. S. Peng, P. Ciais, N. Viovy, A. Druel, M. Kageyama, G. Krinner, P. Peylin, C. Ottlé, S. L. Piao, B. Poulter, D. Schepaschenko, and A. Shvidenko
Geosci. Model Dev., 8, 2263–2283, https://doi.org/10.5194/gmd-8-2263-2015, https://doi.org/10.5194/gmd-8-2263-2015, 2015
Short summary
Short summary
This study presents a new parameterization of the vegetation dynamics module in the process-based ecosystem model ORCHIDEE for mid- to high-latitude regions, showing significant improvements in the modeled distribution of tree functional types north of 40°N. A new set of metrics is proposed to quantify the performance of ORCHIDEE, which integrates uncertainties in the observational data sets.
J. K. Zhang, D. S. Ji, Z. R. Liu, B. Hu, L. L. Wang, X. J. Huang, and Y. S. Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-18537-2015, https://doi.org/10.5194/acpd-15-18537-2015, 2015
Revised manuscript has not been submitted
Y. H. Wang, Z. R. Liu, J. K. Zhang, B. Hu, D. S. Ji, Y. C. Yu, and Y. S. Wang
Atmos. Chem. Phys., 15, 3205–3215, https://doi.org/10.5194/acp-15-3205-2015, https://doi.org/10.5194/acp-15-3205-2015, 2015
Y. P. Pan and Y. S. Wang
Atmos. Chem. Phys., 15, 951–972, https://doi.org/10.5194/acp-15-951-2015, https://doi.org/10.5194/acp-15-951-2015, 2015
Short summary
Short summary
This paper presents the first concurrent measurements of wet and dry deposition of various trace elements in Northern China, covering an extensive area over 3 years in a global hotspot of air pollution. The unique field data can serve as a sound basis for the validation of regional emission inventories and biogeochemical or atmospheric chemistry models. The findings are very important for policy makers to create legislation to reduce the emissions and protect soil and water from air pollution.
J. K. Zhang, Y. Sun, Z. R. Liu, D. S. Ji, B. Hu, Q. Liu, and Y. S. Wang
Atmos. Chem. Phys., 14, 2887–2903, https://doi.org/10.5194/acp-14-2887-2014, https://doi.org/10.5194/acp-14-2887-2014, 2014
N. Chao, G. Tang, Y. Wang, H. Wang, J. Huang, and J. Chen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-4905-2014, https://doi.org/10.5194/acpd-14-4905-2014, 2014
Revised manuscript not accepted
Y. Kanaya, H. Akimoto, Z.-F. Wang, P. Pochanart, K. Kawamura, Y. Liu, J. Li, Y. Komazaki, H. Irie, X.-L. Pan, F. Taketani, K. Yamaji, H. Tanimoto, S. Inomata, S. Kato, J. Suthawaree, K. Okuzawa, G. Wang, S. G. Aggarwal, P. Q. Fu, T. Wang, J. Gao, Y. Wang, and G. Zhuang
Atmos. Chem. Phys., 13, 8265–8283, https://doi.org/10.5194/acp-13-8265-2013, https://doi.org/10.5194/acp-13-8265-2013, 2013
Related subject area
Subject: Clouds and Precipitation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Molecular composition of clouds: a comparison between samples collected at tropical (Réunion Island, France) and mid-north (Puy de Dôme, France) latitudes
Response patterns of moss to atmospheric nitrogen deposition and nitrogen saturation in an urban–agro–forest transition
Influences of sources and weather dynamics on atmospheric deposition of Se species and other trace elements
Revealing the chemical characteristics of Arctic low-level cloud residuals – in situ observations from a mountain site
Long-term monitoring of cloud water chemistry at Whiteface Mountain: the emergence of a new chemical regime
Measurement report: Closure analysis of aerosol–cloud composition in tropical maritime warm convection
Free amino acid quantification in cloud water at the Puy de Dôme station (France)
Wet deposition in the remote western and central Mediterranean as a source of trace metals to surface seawater
Insights into tropical cloud chemistry in Réunion (Indian Ocean): results from the BIO-MAÏDO campaign
Measurement report: Molecular characteristics of cloud water in southern China and insights into aqueous-phase processes from Fourier transform ion cyclotron resonance mass spectrometry
Total organic carbon and the contribution from speciated organics in cloud water: airborne data analysis from the CAMP2Ex field campaign
A link between the ice nucleation activity and the biogeochemistry of seawater
Impact of convection on the upper-tropospheric composition (water vapor and ozone) over a subtropical site (Réunion island; 21.1° S, 55.5° E) in the Indian Ocean
Chemical characteristics of cloud water and the impacts on aerosol properties at a subtropical mountain site in Hong Kong SAR
Diurnal cycle of iodine, bromine, and mercury concentrations in Svalbard surface snow
Wet deposition of inorganic ions in 320 cities across China: spatio-temporal variation, source apportionment, and dominant factors
Deposition of ionic species and black carbon to the Arctic snowpack: combining snow pit observations with modeling
Mercury and trace metal wet deposition across five stations in Alaska: controlling factors, spatial patterns, and source regions
Drivers of atmospheric deposition of polycyclic aromatic hydrocarbons at European high-altitude sites
Cloud scavenging of anthropogenic refractory particles at a mountain site in North China
Composition of ice particle residuals in mixed-phase clouds at Jungfraujoch (Switzerland): enrichment and depletion of particle groups relative to total aerosol
Snow scavenging and phase partitioning of nitrated and oxygenated aromatic hydrocarbons in polluted and remote environments in central Europe and the European Arctic
Continuous non-marine inputs of per- and polyfluoroalkyl substances to the High Arctic: a multi-decadal temporal record
Biogenic, urban, and wildfire influences on the molecular composition of dissolved organic compounds in cloud water
The single-particle mixing state and cloud scavenging of black carbon: a case study at a high-altitude mountain site in southern China
Composition, size and cloud condensation nuclei activity of biomass burning aerosol from northern Australian savannah fires
Five-year records of mercury wet deposition flux at GMOS sites in the Northern and Southern hemispheres
Atmospheric wet and litterfall mercury deposition at urban and rural sites in China
Hydroxyl radical in/on illuminated polar snow: formation rates, lifetimes, and steady-state concentrations
Cloud water composition during HCCT-2010: Scavenging efficiencies, solute concentrations, and droplet size dependence of inorganic ions and dissolved organic carbon
Fog composition at Baengnyeong Island in the eastern Yellow Sea: detecting markers of aqueous atmospheric oxidations
Atmospheric wet and dry deposition of trace elements at 10 sites in Northern China
Natural or anthropogenic? On the origin of atmospheric sulfate deposition in the Andes of southeastern Ecuador
Temporal variations in rainwater methanol
Comprehensive assessment of meteorological conditions and airflow connectivity during HCCT-2010
Influence of cloud processing on CCN activation behaviour in the Thuringian Forest, Germany during HCCT-2010
Classification of clouds sampled at the puy de Dôme (France) based on 10 yr of monitoring of their physicochemical properties
Preliminary signs of the initiation of deep convection by GNSS
Dissolved organic carbon (DOC) and select aldehydes in cloud and fog water: the role of the aqueous phase in impacting trace gas budgets
Insights into dissolved organic matter complexity in rainwater from continental and coastal storms by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry
Dynamics of the chemical composition of rainwater throughout Hurricane Irene
Spatial and temporal distributions of total and methyl mercury in precipitation in core urban areas, Chongqing, China
Wet and dry deposition of atmospheric nitrogen at ten sites in Northern China
Spatial distribution of mercury deposition fluxes in Wanshan Hg mining area, Guizhou province, China
Molecular characterization of water soluble organic nitrogen in marine rainwater by ultra-high resolution electrospray ionization mass spectrometry
Five-year record of atmospheric precipitation chemistry in urban Beijing, China
Mercury deposition in Southern New Hampshire, 2006–2009
Chemical composition of rainwater at Maldives Climate Observatory at Hanimaadhoo (MCOH)
Chemistry of rain events in West Africa: evidence of dust and biogenic influence in convective systems
Atmospheric deposition of mercury and major ions to the Pensacola (Florida) watershed: spatial, seasonal, and inter-annual variability
Lucas Pailler, Laurent Deguillaume, Hélène Lavanant, Isabelle Schmitz, Marie Hubert, Edith Nicol, Mickaël Ribeiro, Jean-Marc Pichon, Mickaël Vaïtilingom, Pamela Dominutti, Frédéric Burnet, Pierre Tulet, Maud Leriche, and Angelica Bianco
Atmos. Chem. Phys., 24, 5567–5584, https://doi.org/10.5194/acp-24-5567-2024, https://doi.org/10.5194/acp-24-5567-2024, 2024
Short summary
Short summary
The composition of dissolved organic matter of cloud water has been investigated through non-targeted high-resolution mass spectrometry on only a few samples collected in the Northern Hemisphere. In this work, the chemical composition of samples collected at Réunion Island (SH) is investigated and compared to samples collected at Puy de Dôme (NH). Sampling, analysis and data treatment with the same methodology produced a unique dataset for investigating the molecular composition of clouds.
Ouping Deng, Yuanyuan Chen, Jingze Zhao, Xi Li, Wei Zhou, Ting Lan, Dinghua Ou, Yanyan Zhang, Jiang Liu, Ling Luo, Yueqiang He, Hanqing Yang, and Rong Huang
Atmos. Chem. Phys., 24, 5303–5314, https://doi.org/10.5194/acp-24-5303-2024, https://doi.org/10.5194/acp-24-5303-2024, 2024
Short summary
Short summary
Estimating atmospheric nitrogen (N) deposition is critical to understanding the biogeochemical N cycle. Moss has long been considered as a bio-indicator for N deposition due to its accumulation of N from the atmosphere. Here, we improved the method for monitoring atmospheric N deposition using mosses. The sampling frequency and time were optimized. This study contributes to improving the accuracy of the model of quantifying N deposition by using mosses.
Esther S. Breuninger, Julie Tolu, Iris Thurnherr, Franziska Aemisegger, Aryeh Feinberg, Sylvain Bouchet, Jeroen E. Sonke, Véronique Pont, Heini Wernli, and Lenny H. E. Winkel
Atmos. Chem. Phys., 24, 2491–2510, https://doi.org/10.5194/acp-24-2491-2024, https://doi.org/10.5194/acp-24-2491-2024, 2024
Short summary
Short summary
Atmospheric deposition is an important source of selenium (Se) and other health-relevant trace elements in surface environments. We found that the variability in elemental concentrations in atmospheric deposition reflects not only changes in emission sources but also weather conditions during atmospheric removal. Depending on the sources and if Se is derived more locally or from further away, the Se forms can be different, affecting the bioavailability of Se atmospherically supplied to soils.
Yvette Gramlich, Karolina Siegel, Sophie L. Haslett, Gabriel Freitas, Radovan Krejci, Paul Zieger, and Claudia Mohr
Atmos. Chem. Phys., 23, 6813–6834, https://doi.org/10.5194/acp-23-6813-2023, https://doi.org/10.5194/acp-23-6813-2023, 2023
Short summary
Short summary
In this study, we investigate the chemical composition of aerosol particles forming clouds in the Arctic. During year-long observations at a mountain site on Svalbard, we find a large contribution of naturally derived aerosol particles in the fraction forming clouds in the summer. Our observations indicate that most aerosol particles can serve as cloud seeds in this remote environment.
Christopher E. Lawrence, Paul Casson, Richard Brandt, James J. Schwab, James E. Dukett, Phil Snyder, Elizabeth Yerger, Daniel Kelting, Trevor C. VandenBoer, and Sara Lance
Atmos. Chem. Phys., 23, 1619–1639, https://doi.org/10.5194/acp-23-1619-2023, https://doi.org/10.5194/acp-23-1619-2023, 2023
Short summary
Short summary
Atmospheric aqueous chemistry can have profound effects on our environment, as illustrated by historical data from Whiteface Mountain (WFM) that were critical for uncovering the process of acid rain. The current study updates the long-term trends in cloud water composition at WFM for the period 1994 to 2021. We highlight the emergence of a new chemical regime at WFM dominated by organics and ammonium, quite different from the highly acidic regime observed in the past but not necessarily
clean.
Ewan Crosbie, Luke D. Ziemba, Michael A. Shook, Claire E. Robinson, Edward L. Winstead, K. Lee Thornhill, Rachel A. Braun, Alexander B. MacDonald, Connor Stahl, Armin Sorooshian, Susan C. van den Heever, Joshua P. DiGangi, Glenn S. Diskin, Sarah Woods, Paola Bañaga, Matthew D. Brown, Francesca Gallo, Miguel Ricardo A. Hilario, Carolyn E. Jordan, Gabrielle R. Leung, Richard H. Moore, Kevin J. Sanchez, Taylor J. Shingler, and Elizabeth B. Wiggins
Atmos. Chem. Phys., 22, 13269–13302, https://doi.org/10.5194/acp-22-13269-2022, https://doi.org/10.5194/acp-22-13269-2022, 2022
Short summary
Short summary
The linkage between cloud droplet and aerosol particle chemical composition was analyzed using samples collected in a polluted tropical marine environment. Variations in the droplet composition were related to physical and dynamical processes in clouds to assess their relative significance across three cases that spanned a range of rainfall amounts. In spite of the pollution, sea salt still remained a major contributor to the droplet composition and was preferentially enhanced in rainwater.
Pascal Renard, Maxence Brissy, Florent Rossi, Martin Leremboure, Saly Jaber, Jean-Luc Baray, Angelica Bianco, Anne-Marie Delort, and Laurent Deguillaume
Atmos. Chem. Phys., 22, 2467–2486, https://doi.org/10.5194/acp-22-2467-2022, https://doi.org/10.5194/acp-22-2467-2022, 2022
Short summary
Short summary
Amino acids (AAs) have been quantified in cloud water collected at the Puy de Dôme station (France). Concentrations and speciation of those compounds are highly variable among the samples. Sources from the sea surface and atmospheric transformations during the air mass transport, mainly in the free troposphere, have been shown to modulate AA levels in cloud water.
Karine Desboeufs, Franck Fu, Matthieu Bressac, Antonio Tovar-Sánchez, Sylvain Triquet, Jean-François Doussin, Chiara Giorio, Patrick Chazette, Julie Disnaquet, Anaïs Feron, Paola Formenti, Franck Maisonneuve, Araceli Rodríguez-Romero, Pascal Zapf, François Dulac, and Cécile Guieu
Atmos. Chem. Phys., 22, 2309–2332, https://doi.org/10.5194/acp-22-2309-2022, https://doi.org/10.5194/acp-22-2309-2022, 2022
Short summary
Short summary
This article reports the first concurrent sampling of wet deposition samples and surface seawater and was performed during the PEACETIME cruise in the remote Mediterranean (May–June 2017). Through the chemical composition of trace metals (TMs) in these samples, it emphasizes the decrease of atmospheric metal pollution in this area during the last few decades and the critical role of wet deposition as source of TMs for Mediterranean surface seawater, especially for intense dust deposition events.
Pamela A. Dominutti, Pascal Renard, Mickaël Vaïtilingom, Angelica Bianco, Jean-Luc Baray, Agnès Borbon, Thierry Bourianne, Frédéric Burnet, Aurélie Colomb, Anne-Marie Delort, Valentin Duflot, Stephan Houdier, Jean-Luc Jaffrezo, Muriel Joly, Martin Leremboure, Jean-Marc Metzger, Jean-Marc Pichon, Mickaël Ribeiro, Manon Rocco, Pierre Tulet, Anthony Vella, Maud Leriche, and Laurent Deguillaume
Atmos. Chem. Phys., 22, 505–533, https://doi.org/10.5194/acp-22-505-2022, https://doi.org/10.5194/acp-22-505-2022, 2022
Short summary
Short summary
We present here the results obtained during an intensive field campaign conducted in March to April 2019 in Reunion. Our study integrates a comprehensive chemical and microphysical characterization of cloud water. Our investigations reveal that air mass history and cloud microphysical properties do not fully explain the variability observed in their chemical composition. This highlights the complexity of emission sources, multiphasic exchanges, and transformations in clouds.
Wei Sun, Yuzhen Fu, Guohua Zhang, Yuxiang Yang, Feng Jiang, Xiufeng Lian, Bin Jiang, Yuhong Liao, Xinhui Bi, Duohong Chen, Jianmin Chen, Xinming Wang, Jie Ou, Ping'an Peng, and Guoying Sheng
Atmos. Chem. Phys., 21, 16631–16644, https://doi.org/10.5194/acp-21-16631-2021, https://doi.org/10.5194/acp-21-16631-2021, 2021
Short summary
Short summary
We sampled cloud water at a remote mountain site and investigated the molecular characteristics. CHON and CHO are dominant in cloud water. No statistical difference in the oxidation state is observed between cloud water and interstitial PM2.5. Most of the formulas are aliphatic and olefinic species. CHON, with aromatic structures and organosulfates, are abundant, especially in nighttime samples. The in-cloud and multi-phase dark reactions likely contribute significantly.
Connor Stahl, Ewan Crosbie, Paola Angela Bañaga, Grace Betito, Rachel A. Braun, Zenn Marie Cainglet, Maria Obiminda Cambaliza, Melliza Templonuevo Cruz, Julie Mae Dado, Miguel Ricardo A. Hilario, Gabrielle Frances Leung, Alexander B. MacDonald, Angela Monina Magnaye, Jeffrey Reid, Claire Robinson, Michael A. Shook, James Bernard Simpas, Shane Marie Visaga, Edward Winstead, Luke Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 21, 14109–14129, https://doi.org/10.5194/acp-21-14109-2021, https://doi.org/10.5194/acp-21-14109-2021, 2021
Short summary
Short summary
A total of 159 cloud water samples were collected and measured for total organic carbon (TOC) during CAMP2Ex. On average, 30 % of TOC was speciated based on carboxylic/sulfonic acids and dimethylamine. Results provide a critical constraint on cloud composition and vertical profiles of TOC and organic species ranging from ~250 m to ~ 7 km and representing a variety of cloud types and air mass source influences such as biomass burning, marine emissions, anthropogenic activity, and dust.
Martin J. Wolf, Megan Goodell, Eric Dong, Lilian A. Dove, Cuiqi Zhang, Lesly J. Franco, Chuanyang Shen, Emma G. Rutkowski, Domenic N. Narducci, Susan Mullen, Andrew R. Babbin, and Daniel J. Cziczo
Atmos. Chem. Phys., 20, 15341–15356, https://doi.org/10.5194/acp-20-15341-2020, https://doi.org/10.5194/acp-20-15341-2020, 2020
Short summary
Short summary
Sea spray is the largest aerosol source on Earth. These aerosol particles can impact climate by inducing ice formation in clouds. The role that ocean biology plays in determining the composition and ice nucleation abilities of sea spray aerosol is unclarified. In this study, we demonstrate that atomized seawater from highly productive ocean regions is more effective at nucleating ice than seawater from lower-productivity regions.
Damien Héron, Stéphanie Evan, Jérôme Brioude, Karen Rosenlof, Françoise Posny, Jean-Marc Metzger, and Jean-Pierre Cammas
Atmos. Chem. Phys., 20, 8611–8626, https://doi.org/10.5194/acp-20-8611-2020, https://doi.org/10.5194/acp-20-8611-2020, 2020
Short summary
Short summary
Using a statistical method, summer variations (between 2013 and 2016) of ozone and water vapor are characterized in the upper troposphere above Réunion island (21° S, 55° E). It suggests a convective influence between 9 and 13 km. As deep convection is rarely observed near Réunion island, this study provides new insights on the long-range impact of deep convective outflow from the Intertropical Convergence Zone (ITCZ) on the upper troposphere over a subtropical site.
Tao Li, Zhe Wang, Yaru Wang, Chen Wu, Yiheng Liang, Men Xia, Chuan Yu, Hui Yun, Weihao Wang, Yan Wang, Jia Guo, Hartmut Herrmann, and Tao Wang
Atmos. Chem. Phys., 20, 391–407, https://doi.org/10.5194/acp-20-391-2020, https://doi.org/10.5194/acp-20-391-2020, 2020
Short summary
Short summary
This work presents a field study of cloud water chemistry and interactions of cloud, gas, and aerosols in the polluted coastal boundary layer in southern China. Substantial dissolved organic matter in the acidic cloud water was observed, and the gas- and aqueous-phase partitioning of carbonyl compounds was investigated. The results demonstrated the significant role of cloud processing in altering aerosol properties, especially in producing aqueous organics and droplet-mode aerosols.
Andrea Spolaor, Elena Barbaro, David Cappelletti, Clara Turetta, Mauro Mazzola, Fabio Giardi, Mats P. Björkman, Federico Lucchetta, Federico Dallo, Katrine Aspmo Pfaffhuber, Hélène Angot, Aurelien Dommergue, Marion Maturilli, Alfonso Saiz-Lopez, Carlo Barbante, and Warren R. L. Cairns
Atmos. Chem. Phys., 19, 13325–13339, https://doi.org/10.5194/acp-19-13325-2019, https://doi.org/10.5194/acp-19-13325-2019, 2019
Short summary
Short summary
The main aims of the study are to (a) detect whether mercury in the surface snow undergoes a daily cycle as determined in the atmosphere, (b) compare the mercury concentration in surface snow with the concentration in the atmosphere, (c) evaluate the effect of snow depositions, (d) detect whether iodine and bromine in the surface snow undergo a daily cycle, and (e) evaluate the role of metereological and atmospheric conditions. Different behaviours were determined during different seasons.
Rui Li, Lulu Cui, Yilong Zhao, Ziyu Zhang, Tianming Sun, Junlin Li, Wenhui Zhou, Ya Meng, Kan Huang, and Hongbo Fu
Atmos. Chem. Phys., 19, 11043–11070, https://doi.org/10.5194/acp-19-11043-2019, https://doi.org/10.5194/acp-19-11043-2019, 2019
Short summary
Short summary
Acid deposition is still an important environmental issue in China. Rainwater samples in 320 cities in China were collected to determine the acidic ion concentrations and identify their spatiotemporal variations and sources. The higher acidic ions showed higher concentrations in winter. Furthermore, the highest acidic ion concentrations were mainly distributed in YRD and SB. These acidic ions were mainly sourced from industrial emissions and agricultural activities.
Hans-Werner Jacobi, Friedrich Obleitner, Sophie Da Costa, Patrick Ginot, Konstantinos Eleftheriadis, Wenche Aas, and Marco Zanatta
Atmos. Chem. Phys., 19, 10361–10377, https://doi.org/10.5194/acp-19-10361-2019, https://doi.org/10.5194/acp-19-10361-2019, 2019
Short summary
Short summary
By combining atmospheric, precipitation, and snow measurements with snowpack simulations for a high Arctic site in Svalbard, we find that during wintertime the transfer of sea salt components to the snowpack was largely dominated by wet deposition. However, dry deposition contributed significantly for nitrate, non-sea-salt sulfate, and black carbon. The comparison of monthly deposition and snow budgets indicates an important redistribution of the impurities in the snowpack even during winter.
Christopher Pearson, Dean Howard, Christopher Moore, and Daniel Obrist
Atmos. Chem. Phys., 19, 6913–6929, https://doi.org/10.5194/acp-19-6913-2019, https://doi.org/10.5194/acp-19-6913-2019, 2019
Short summary
Short summary
Precipitation-based deposition of mercury and other trace metals throughout Alaska provides a significant input of pollutants. Deposition shows significant seasonal and spatial variability, largely driven by precipitation patterns. Annual wet deposition of Hg at all AK collection sites is consistently lower than other monitoring stations throughout the CONUS. Hg showed no clear relationship to other metals, likely due to its highly volatile nature and capability of long-range transport.
Lourdes Arellano, Pilar Fernández, Barend L. van Drooge, Neil L. Rose, Ulrike Nickus, Hansjoerg Thies, Evzen Stuchlík, Lluís Camarero, Jordi Catalan, and Joan O. Grimalt
Atmos. Chem. Phys., 18, 16081–16097, https://doi.org/10.5194/acp-18-16081-2018, https://doi.org/10.5194/acp-18-16081-2018, 2018
Short summary
Short summary
Mountain areas are key for studying the impact of diffuse pollution due to human activities on the continental areas. Polycyclic aromatic hydrocarbons (PAHs), human carcinogens with increased levels since the 1950s, are significant constituents of this pollution. We determined PAHs in monthly atmospheric deposition collected in European high mountain areas. The number of sites, period of study and sampling frequency provide the most comprehensive description of PAH fallout at remote sites.
Lei Liu, Jian Zhang, Liang Xu, Qi Yuan, Dao Huang, Jianmin Chen, Zongbo Shi, Yele Sun, Pingqing Fu, Zifa Wang, Daizhou Zhang, and Weijun Li
Atmos. Chem. Phys., 18, 14681–14693, https://doi.org/10.5194/acp-18-14681-2018, https://doi.org/10.5194/acp-18-14681-2018, 2018
Short summary
Short summary
Using transmission electron microscopy, we studied individual cloud droplet residual and interstitial particles collected in cloud events at Mt. Tai in the polluted North China region. We found that individual cloud droplets were an extremely complicated mixture containing abundant refractory soot (i.e., black carbon), fly ash, and metals. The complicated cloud droplets have not been reported in clean continental or marine air before.
Stine Eriksen Hammer, Stephan Mertes, Johannes Schneider, Martin Ebert, Konrad Kandler, and Stephan Weinbruch
Atmos. Chem. Phys., 18, 13987–14003, https://doi.org/10.5194/acp-18-13987-2018, https://doi.org/10.5194/acp-18-13987-2018, 2018
Short summary
Short summary
It is important to study ice-nucleating particles in the environment to learn more about cloud formation. We studied the composition of ice particle residuals and total aerosol particles sampled in parallel during mixed-phase cloud events at Jungfraujoch and discovered that soot and complex secondary particles were not present. In contrast, silica, aluminosilicates, and other aluminosilicates were the most important ice particle residual groups at site temperatures between −11 and −18 °C.
Pourya Shahpoury, Zoran Kitanovski, and Gerhard Lammel
Atmos. Chem. Phys., 18, 13495–13510, https://doi.org/10.5194/acp-18-13495-2018, https://doi.org/10.5194/acp-18-13495-2018, 2018
Heidi M. Pickard, Alison S. Criscitiello, Christine Spencer, Martin J. Sharp, Derek C. G. Muir, Amila O. De Silva, and Cora J. Young
Atmos. Chem. Phys., 18, 5045–5058, https://doi.org/10.5194/acp-18-5045-2018, https://doi.org/10.5194/acp-18-5045-2018, 2018
Short summary
Short summary
Perfluoroalkyl acids (PFAAs) are persistent, bioaccumulative compounds found in the environment far from source regions, including the remote Arctic. We collected a 15 m ice core from the Canadian High Arctic to measure a 38-year deposition record of PFAAs, proving information about major pollutant sources and production changes over time. Our results demonstrate that PFAAs have continuous and increasing deposition, despite recent North American regulations and phase-outs.
Ryan D. Cook, Ying-Hsuan Lin, Zhuoyu Peng, Eric Boone, Rosalie K. Chu, James E. Dukett, Matthew J. Gunsch, Wuliang Zhang, Nikola Tolic, Alexander Laskin, and Kerri A. Pratt
Atmos. Chem. Phys., 17, 15167–15180, https://doi.org/10.5194/acp-17-15167-2017, https://doi.org/10.5194/acp-17-15167-2017, 2017
Short summary
Short summary
Reactions occur within water in both atmospheric particles and cloud droplets, yet little is known about the organic compounds in cloud water. In this work, cloud water samples were collected at Whiteface Mountain, New York, and analyzed using ultra-high-resolution mass spectrometry to investigate the molecular composition of the dissolved organic compounds. The results focus on changes in cloud water composition with air mass origin – influences of forest, urban, and wildfire emissions.
Guohua Zhang, Qinhao Lin, Long Peng, Xinhui Bi, Duohong Chen, Mei Li, Lei Li, Fred J. Brechtel, Jianxin Chen, Weijun Yan, Xinming Wang, Ping'an Peng, Guoying Sheng, and Zhen Zhou
Atmos. Chem. Phys., 17, 14975–14985, https://doi.org/10.5194/acp-17-14975-2017, https://doi.org/10.5194/acp-17-14975-2017, 2017
Short summary
Short summary
The mixing state of black carbon (BC)-containing particles and the mass scavenging efficiency of BC in cloud were investigated at a mountain site (1690 m a.s.l.) in southern China. The measured BC-containing particles were internally mixed extensively with sulfate, and thus the number fraction of scavenged BC-containing particles is close to that of all the measured particles. BC-containing particles with higher fractions of organics were scavenged relatively less.
Marc D. Mallet, Luke T. Cravigan, Andelija Milic, Joel Alroe, Zoran D. Ristovski, Jason Ward, Melita Keywood, Leah R. Williams, Paul Selleck, and Branka Miljevic
Atmos. Chem. Phys., 17, 3605–3617, https://doi.org/10.5194/acp-17-3605-2017, https://doi.org/10.5194/acp-17-3605-2017, 2017
Short summary
Short summary
This paper presents data on the size, composition and concentration of aerosol particles emitted from north Australian savannah fires and how these properties influence cloud condensation nuclei (CCN) concentrations. Both the size and composition of aerosol were found to be important in determining CCN. Despite large CCNc enhancements during periods of close biomass burning, the aerosol was very weakly hygroscopic which should be accounted for in climate models to avoid large CCNc overestimates.
Francesca Sprovieri, Nicola Pirrone, Mariantonia Bencardino, Francesco D'Amore, Helene Angot, Carlo Barbante, Ernst-Günther Brunke, Flor Arcega-Cabrera, Warren Cairns, Sara Comero, María del Carmen Diéguez, Aurélien Dommergue, Ralf Ebinghaus, Xin Bin Feng, Xuewu Fu, Patricia Elizabeth Garcia, Bernd Manfred Gawlik, Ulla Hageström, Katarina Hansson, Milena Horvat, Jože Kotnik, Casper Labuschagne, Olivier Magand, Lynwill Martin, Nikolay Mashyanov, Thumeka Mkololo, John Munthe, Vladimir Obolkin, Martha Ramirez Islas, Fabrizio Sena, Vernon Somerset, Pia Spandow, Massimiliano Vardè, Chavon Walters, Ingvar Wängberg, Andreas Weigelt, Xu Yang, and Hui Zhang
Atmos. Chem. Phys., 17, 2689–2708, https://doi.org/10.5194/acp-17-2689-2017, https://doi.org/10.5194/acp-17-2689-2017, 2017
Short summary
Short summary
The results on total mercury (THg) wet deposition flux obtained within the GMOS network have been presented and discussed to understand the atmospheric Hg cycling and its seasonal depositional patterns over the 2011–2015 period. The data set provides new insight into baseline concentrations of THg concentrations in precipitation particularly in regions where wet deposition and atmospheric Hg species were not investigated before, opening the way for additional measurements and modeling studies.
Xuewu Fu, Xu Yang, Xiaofang Lang, Jun Zhou, Hui Zhang, Ben Yu, Haiyu Yan, Che-Jen Lin, and Xinbin Feng
Atmos. Chem. Phys., 16, 11547–11562, https://doi.org/10.5194/acp-16-11547-2016, https://doi.org/10.5194/acp-16-11547-2016, 2016
Zeyuan Chen, Liang Chu, Edward S. Galbavy, Keren Ram, and Cort Anastasio
Atmos. Chem. Phys., 16, 9579–9590, https://doi.org/10.5194/acp-16-9579-2016, https://doi.org/10.5194/acp-16-9579-2016, 2016
Short summary
Short summary
We made the first measurements of the concentrations of hydroxyl radical (•OH), a dominant environmental oxidant, in snow grains. Concentrations of •OH in snow at Summit, Greenland, are comparable to values reported for midlatitude cloud and fog drops, even though impurity levels in the snow are much lower. At these concentrations, the lifetimes of organics and bromide in Summit snow are approximately 3 days and 7 h, respectively, suggesting that OH is a major oxidant for both species.
Dominik van Pinxteren, Khanneh Wadinga Fomba, Stephan Mertes, Konrad Müller, Gerald Spindler, Johannes Schneider, Taehyoung Lee, Jeffrey L. Collett, and Hartmut Herrmann
Atmos. Chem. Phys., 16, 3185–3205, https://doi.org/10.5194/acp-16-3185-2016, https://doi.org/10.5194/acp-16-3185-2016, 2016
A. J. Boris, T. Lee, T. Park, J. Choi, S. J. Seo, and J. L. Collett Jr.
Atmos. Chem. Phys., 16, 437–453, https://doi.org/10.5194/acp-16-437-2016, https://doi.org/10.5194/acp-16-437-2016, 2016
Short summary
Short summary
Samples of fog water collected in the Yellow Sea during summer 2014 represent fog downwind of polluted regions and provide new insight into the fate of regional emissions. Organic and inorganic components reveal contributions from urban, biogenic, marine, and biomass burning emissions, as well as evidence of aqueous organic processing reactions. Many fog components are products of extensive photochemical aging during multiday transport, including oxidation within wet aerosols or fogs.
Y. P. Pan and Y. S. Wang
Atmos. Chem. Phys., 15, 951–972, https://doi.org/10.5194/acp-15-951-2015, https://doi.org/10.5194/acp-15-951-2015, 2015
Short summary
Short summary
This paper presents the first concurrent measurements of wet and dry deposition of various trace elements in Northern China, covering an extensive area over 3 years in a global hotspot of air pollution. The unique field data can serve as a sound basis for the validation of regional emission inventories and biogeochemical or atmospheric chemistry models. The findings are very important for policy makers to create legislation to reduce the emissions and protect soil and water from air pollution.
S. Makowski Giannoni, R. Rollenbeck, K. Trachte, and J. Bendix
Atmos. Chem. Phys., 14, 11297–11312, https://doi.org/10.5194/acp-14-11297-2014, https://doi.org/10.5194/acp-14-11297-2014, 2014
J. D. Felix, S. B. Jones, G. B. Avery, J. D. Willey, R. N. Mead, and R. J. Kieber
Atmos. Chem. Phys., 14, 10509–10516, https://doi.org/10.5194/acp-14-10509-2014, https://doi.org/10.5194/acp-14-10509-2014, 2014
A. Tilgner, L. Schöne, P. Bräuer, D. van Pinxteren, E. Hoffmann, G. Spindler, S. A. Styler, S. Mertes, W. Birmili, R. Otto, M. Merkel, K. Weinhold, A. Wiedensohler, H. Deneke, R. Schrödner, R. Wolke, J. Schneider, W. Haunold, A. Engel, A. Wéber, and H. Herrmann
Atmos. Chem. Phys., 14, 9105–9128, https://doi.org/10.5194/acp-14-9105-2014, https://doi.org/10.5194/acp-14-9105-2014, 2014
S. Henning, K. Dieckmann, K. Ignatius, M. Schäfer, P. Zedler, E. Harris, B. Sinha, D. van Pinxteren, S. Mertes, W. Birmili, M. Merkel, Z. Wu, A. Wiedensohler, H. Wex, H. Herrmann, and F. Stratmann
Atmos. Chem. Phys., 14, 7859–7868, https://doi.org/10.5194/acp-14-7859-2014, https://doi.org/10.5194/acp-14-7859-2014, 2014
L. Deguillaume, T. Charbouillot, M. Joly, M. Vaïtilingom, M. Parazols, A. Marinoni, P. Amato, A.-M. Delort, V. Vinatier, A. Flossmann, N. Chaumerliac, J. M. Pichon, S. Houdier, P. Laj, K. Sellegri, A. Colomb, M. Brigante, and G. Mailhot
Atmos. Chem. Phys., 14, 1485–1506, https://doi.org/10.5194/acp-14-1485-2014, https://doi.org/10.5194/acp-14-1485-2014, 2014
H. Brenot, J. Neméghaire, L. Delobbe, N. Clerbaux, P. De Meutter, A. Deckmyn, A. Delcloo, L. Frappez, and M. Van Roozendael
Atmos. Chem. Phys., 13, 5425–5449, https://doi.org/10.5194/acp-13-5425-2013, https://doi.org/10.5194/acp-13-5425-2013, 2013
B. Ervens, Y. Wang, J. Eagar, W. R. Leaitch, A. M. Macdonald, K. T. Valsaraj, and P. Herckes
Atmos. Chem. Phys., 13, 5117–5135, https://doi.org/10.5194/acp-13-5117-2013, https://doi.org/10.5194/acp-13-5117-2013, 2013
R. N. Mead, K. M. Mullaugh, G. Brooks Avery, R. J. Kieber, J. D. Willey, and D. C. Podgorski
Atmos. Chem. Phys., 13, 4829–4838, https://doi.org/10.5194/acp-13-4829-2013, https://doi.org/10.5194/acp-13-4829-2013, 2013
K. M. Mullaugh, J. D. Willey, R. J. Kieber, R. N. Mead, and G. B. Avery Jr.
Atmos. Chem. Phys., 13, 2321–2330, https://doi.org/10.5194/acp-13-2321-2013, https://doi.org/10.5194/acp-13-2321-2013, 2013
Y. M. Wang, D. Y. Wang, B. Meng, Y. L. Peng, L. Zhao, and J. S. Zhu
Atmos. Chem. Phys., 12, 9417–9426, https://doi.org/10.5194/acp-12-9417-2012, https://doi.org/10.5194/acp-12-9417-2012, 2012
Y. P. Pan, Y. S. Wang, G. Q. Tang, and D. Wu
Atmos. Chem. Phys., 12, 6515–6535, https://doi.org/10.5194/acp-12-6515-2012, https://doi.org/10.5194/acp-12-6515-2012, 2012
Z. H. Dai, X. B. Feng, J. Sommar, P. Li, and X. W. Fu
Atmos. Chem. Phys., 12, 6207–6218, https://doi.org/10.5194/acp-12-6207-2012, https://doi.org/10.5194/acp-12-6207-2012, 2012
K. E. Altieri, M. G. Hastings, A. J. Peters, and D. M. Sigman
Atmos. Chem. Phys., 12, 3557–3571, https://doi.org/10.5194/acp-12-3557-2012, https://doi.org/10.5194/acp-12-3557-2012, 2012
F. Yang, J. Tan, Z. B. Shi, Y. Cai, K. He, Y. Ma, F. Duan, T. Okuda, S. Tanaka, and G. Chen
Atmos. Chem. Phys., 12, 2025–2035, https://doi.org/10.5194/acp-12-2025-2012, https://doi.org/10.5194/acp-12-2025-2012, 2012
M. A. S. Lombard, J. G. Bryce, H. Mao, and R. Talbot
Atmos. Chem. Phys., 11, 7657–7668, https://doi.org/10.5194/acp-11-7657-2011, https://doi.org/10.5194/acp-11-7657-2011, 2011
R. Das, L. Granat, C. Leck, P. S. Praveen, and H. Rodhe
Atmos. Chem. Phys., 11, 3743–3755, https://doi.org/10.5194/acp-11-3743-2011, https://doi.org/10.5194/acp-11-3743-2011, 2011
K. Desboeufs, E. Journet, J.-L. Rajot, S. Chevaillier, S. Triquet, P. Formenti, and A. Zakou
Atmos. Chem. Phys., 10, 9283–9293, https://doi.org/10.5194/acp-10-9283-2010, https://doi.org/10.5194/acp-10-9283-2010, 2010
J. M. Caffrey, W. M. Landing, S. D. Nolek, K. J. Gosnell, S. S. Bagui, and S. C. Bagui
Atmos. Chem. Phys., 10, 5425–5434, https://doi.org/10.5194/acp-10-5425-2010, https://doi.org/10.5194/acp-10-5425-2010, 2010
Cited articles
Aneja, V. P., Schlesinger, W. H., Erisman, J. W., Behera, S. N., Sharma, M., and Battye, W.: Reactive nitrogen emissions from crop and livestock farming in India, Atmos. Environ., 47, 92–103, https://doi.org/10.1016/j.atmosenv.2011.11.026, 2012.
Balasubramanian, R., Victor, T., and Chun, N.: Chemical and statistical analysis of precipitation in Singapore, Water. Air Soil Poll., 130, 451–456, https://doi.org/10.1023/A:1013801805621, 2001.
Balestrini, R., Polesello, S., and Sacchi, E.: Chemistry and isotopic composition of precipitation and surface waters in Khumbu valley (Nepal Himalaya): N dynamics of high elevation basins, Sci. Total. Environ., 485, 681–692, https://doi.org/10.1016/j.scitotenv.2014.03.096, 2014.
Basto, S., Thompson, K., Phoenix, G., Sloan, V., Leake, J., and Rees, M.: Long-term nitrogen deposition depletes grassland seed banks, Nat. Commun., 6, 6185, https://doi.org/10.1038/ncomms7185, 2015.
Canfield, D. E., Glazer, A. N., and Falkowski, P. G.: The evolution and future of Earth's nitrogen cycle, Science, 330, 192–196, https://doi.org/10.1126/science.1186120, 2010.
Cao, Y. Z., Wang, S. Y., Zhang, G., Luo, J. Y., and Lu, S. Y.: Chemical characteristics of wet precipitation at an urban site of Guangzhou, South China, Atmos. Res., 94, 462–469, https://doi.org/10.1016/j.atmosres.2009.07.004, 2009.
Chabas, A. and Lefevre, R. A.: Chemistry and microscopy of atmospheric particulates at Delos (Cyclades-Greece), Atmos. Environ., 34, 225–238, https://doi.org/10.1016/S1352-2310(99)00255-1, 2000.
Chen, X. Y. and Mulder, J.: Atmospheric deposition of nitrogen at five subtropical forested sites in South China, Sci. Total. Environ., 378, 317–330, https://doi.org/10.1016/j.scitotenv.2007.02.028, 2007.
Choudhary, P., Routh, J., and Chakrapani, G. J.: A 100-year record of changes in organic matter characteristics and productivity in Lake Bhimtal in the Kumaon Himalaya, NW India, J. Paleolimnol., 49, 129–143, https://doi.org/10.1007/s10933-012-9647-9, 2013.
Cong, Z. Y., Kawamura, K., Kang, S. C., and Fu, P. Q.: Penetration of biomass-burning emissions from South Asia through the Himalayas: new insights from atmospheric organic acids, Sci. Rep.-Uk, 5, 9580, https://doi.org/10.1038/srep09580, 2015.
Dentener, F., Drevet, J., Lamarque, J. F., Bey, I., Eickhout, B., Fiore, A. M., Hauglustaine, D., Horowitz, L. W., Krol, M., Kulshrestha, U. C., Lawrence, M., Galy-Lacaux, C., Rast, S., Shindell, D., Stevenson, D., Van Noije, T., Atherton, C., Bell, N., Bergman, D., Butler, T., Cofala, J., Collins, B., Doherty, R., Ellingsen, K., Galloway, J., Gauss, M., Montanaro, V., Muller, J. F., Pitari, G., Rodriguez, J., Sanderson, M., Solmon, F., Strahan, S., Schultz, M., Sudo, K., Szopa, S., and Wild, O.: Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation, Global Biogeochem. Cycles, 20, GB4003, https://doi.org/10.1029/2005GB002672, 2006.
Ding, G. A., Xu, X. B., and Wang, S. F.: Database from the acid rain network of China meteorological administration and it's preliminary analyses, J. Appl. Meteorol. Sci., 15, 85–94, 2004 (in Chinese with English abstract).
Ding, M., Yao, F., Chen, J., Wang, X., and Yang, S.: Chemical characteristics of acidic precipitation in Tiantong, Zhejiang Province, Acta Scientiae Circumstantiae, 32, 2245–2252, 2012 (in Chinese with English abstract).
Du, E., Jiang, Y., Fang, J. Y., and de Vries, W.: Inorganic nitrogen deposition in China's forests: Status and characteristics, Atmos. Environ., 98, 474–482, https://doi.org/10.1016/j.atmosenv.2014.09.005, 2014.
Erisman, J. W., Galloway, J., Seitzinger, S., Bleeker, A., and Butterbach-Bahl, K.: Reactive nitrogen in the environment and its effect on climate change, Curr. Opin. Env. Sust., 3, 281–290, https://doi.org/10.1016/j.cosust.2011.08.012, 2011.
Erisman, J. W., Galloway, J. N., Seitzinger, S., Bleeker, A., Dise, N. B., Petrescu, A. M. R., Leach, A. M., and de Vries, W.: Consequences of human modification of the global nitrogen cycle, Philos. T. R. Soc. B, 368, 20130116, https://doi.org/10.1098/rstb.2013.0116, 2013.
Fagerli, H. and Aas, W.: Trends of nitrogen in air and precipitation: Model results and observations at EMEP sites in Europe, 1980–2003, Environ. Pollut., 154, 448–461, https://doi.org/10.1016/j.envpol.2008.01.024, 2008.
Fang, X. M., Han, Y. X., Ma, J. H., Song, L. C., Yang, S. L., and Zhang, X. Y.: Dust storms and loess accumulation on the Tibetan Plateau: A case study of dust event on 4 March 2003 in Lhasa, Chinese Sci. Bull., 49, 953–960, https://doi.org/10.1360/03wd0180, 2004.
Galloway, J. N., Townsend, A. R., Erisman, J. W., Bekunda, M., Cai, Z. C., Freney, J. R., Martinelli, L. A., Seitzinger, S. P., and Sutton, M. A.: Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions, Science, 320, 889–892, https://doi.org/10.1126/science.1136674, 2008.
Gao, J. G., Zhang, Y. L., Liu, L. S., and Wang, Z. F.: Climate change as the major driver of alpine grasslands expansion and contraction: A case study in the Mt. Qomolangma (Everest) National Nature Preserve, southern Tibetan Plateau, Quatern. Int., 336, 108–116, https://doi.org/10.1016/j.quaint.2013.09.035, 2014.
Grigholm, B., Mayewski, P. A., Kang, S., Zhang, Y., Morgenstern, U., Schwikowski, M., Kaspari, S., Aizen, V., Aizen, E., Takeuchi, N., Maasch, K. A., Birkel, S., Handley, M., and Sneed, S.: Twentieth century dust lows and the weakening of the westerly winds over the Tibetan Plateau, Geophys. Res. Lett., 42, 2434–2441, https://doi.org/10.1002/2015gl063217, 2015
Gruber, N. and Galloway, J. N.: An Earth-system perspective of the global nitrogen cycle, Nature, 451, 293–296, https://doi.org/10.1038/nature06592, 2008.
Han, Y. X., Fang, X. M., Kang, S. C., Wang, H. J., and Kang, F. Q.: Shifts of dust source regions over central Asia and the Tibetan Plateau: Connections with the Arctic oscillation and the westerly jet, Atmos. Environ., 42, 2358–2368, https://doi.org/10.1016/j.atmosenv.2007.12.025, 2008.
Han, Y. X., Fang, M., Zhao, T. L., Bai, H. Z., Kang, S. C., and Song, L. C.: Suppression of precipitation by dust particles originated in the Tibetan Plateau, Atmos. Environ., 43, 568–574, https://doi.org/10.1016/j.atmosenv.2008.10.018, 2009.
Hou, S.: Chemical Characteristics of Precipitation at the Headwaters of the Ürümqi River in the Tianshan Mountains, Journal of Glaciology and Geocryology, 23, 80–84, 2001 (in Chinese with English abstract).
Hou, S. G., Qin, D. H., Zhang, D. Q., Kang, S. C., Mayewski, P. A., and Wake, C. P.: A 154a high-resolution ammonium record from the Rongbuk Glacier, north slope of Mt. Qomolangma (Everest), Tibet-Himal region, Atmos. Environ., 37, 721–729, https://doi.org/10.1016/S1352-2310(02)00582-4, 2003.
Hu, Z. J., Anderson, N. J., Yang, X. D., and McGowan, S.: Catchment-mediated atmospheric nitrogen deposition drives ecological change in two alpine lakes in SE Tibet, Glob. Change Biol., 20, 1614–1628, https://doi.org/10.1111/Gcb.12435, 2014.
Huang, J. P., Minnis, P., Yi, Y. H., Tang, Q., Wang, X., Hu, Y. X., Liu, Z. Y., Ayers, K., Trepte, C., and Winker, D.: Summer dust aerosols detected from CALIPSO over the Tibetan Plateau, Geophys. Res. Lett., 34, L18805, https://doi.org/10.1029/2007gl029938, 2007.
Huang, J. P., Wang, T. H., Wang, W. C., Li, Z. Q., and Yan, H. R.: Climate effects of dust aerosols over East Asian arid and semiarid regions, J. Geophys. Res.-Atmos., 119, 11398–11416, https://doi.org/10.1002/2014jd021796, 2014.
Huang, K., Zhuang, G. S., Xu, C., Wang, Y., and Tang, A. H.: The chemistry of the severe acidic precipitation in Shanghai, China, Atmos. Res., 89, 149–160, https://doi.org/10.1016/j.atmosres.2008.01.006, 2008.
Huang, Y. L., Wang, Y. L., and Zhang, L. P.: Long-term trend of chemical composition of wet atmospheric precipitation during 1986–2006 at Shenzhen City, China, Atmos. Environ., 42, 3740–3750, https://doi.org/10.1016/j.atmosenv.2007.12.063, 2008.
Jia, J.: Study of atmospheric wet deposition of nitrogen in Tibetan Plateau, Master, Tibet University, 2008 (in Chinese with English abstract).
Jia, Y., Yu, G., He, N., Zhan, X., Fang, H., Sheng, W., Zuo, Y., Zhang, D., and Wang, Q.: Spatial and decadal variations in inorganic nitrogen wet deposition in China induced by human activity, Sci. Rep.-UK, 4, 3763, https://doi.org/10.1038/srep03763, 2014.
Kang, S., Mayewski, P. A., Qin, D., Yan, Y., Hou, S., Zhang, D., Ren, J., and Kruetz, K.: Glaciochemical records from a Mt. Everest ice core: relationship to atmospheric circulation over Asia, Atmos. Environ., 36, 3351–3361, https://doi.org/10.1016/S1352-2310(02)00325-4, 2002a.
Kang, S. C., Mayewski, P. A., Qin, D. H., Yan, Y. P., Zhang, D. Q., Hou, S. G., and Ren, J. W.: Twentieth century increase of atmospheric ammonia recorded in Mount Everest ice core, J. Geophys. Res.-Atmos., 107, 4595, https://doi.org/10.1029/2001jd001413, 2002b.
Kang, S. C., Zhang, Y. L., Zhang, Y. J., Grigholm, B., Kaspari, S., Qin, D. H., Ren, J. W., and Mayewski, P.: Variability of atmospheric dust loading over the central Tibetan Plateau based on ice core glaciochemistry, Atmos. Environ., 44, 2980–2989, https://doi.org/10.1016/j.atmosenv.2010.05.014, 2010.
Kaspari, S., Mayewski, P., Kang, S., Sneed, S., Hou, S., Hooke, R., Kreutz, K., Introne, D., Handley, M., Maasch, K., Qin, D., and Ren, J.: Reduction in northward incursions of the South Asian monsoon since approximate to 1400 AD inferred from a Mt. Everest ice core, Geophys. Res. Lett., 34, L16701, https://doi.org/10.1029/2007gl030440, 2007.
Keene, W. C., Pszenny, A. A. P., Galloway, J. N., and Hawley, M. E.: Sea-salt corrections and interpretation of constituent ratios in marine precipitation, J. Geophys. Res.-Atmos., 91, 6647–6658, https://doi.org/10.1029/Jd091id06p06647, 1986.
Kulshrestha, U. C., Sarkar, A. K., Srivastava, S. S., and Parashar, D. C.: Investigation into atmospheric deposition through precipitation studies at New Delhi (India), Atmos. Environ., 30, 4149–4154, https://doi.org/10.1016/1352-2310(96)00034-9, 1996.
Kulshrestha, U. C., Kulshrestha, M. J., Sekar, R., Sastry, G. S. R., and Vairamani, M.: Chemical characteristics of rainwater at an urban site of south-central India, Atmos. Environ., 37, 3019–3026, https://doi.org/10.1016/S1352-2310(03)00266-8, 2003.
Lan, Z., Jenerette, G. D., Zhan, S., Li, W., Zheng, S., and Bai, Y.: Testing the scaling effects and mechanisms of N-induced biodiversity loss: Evidence from a decade-long grassland experiment, J. Ecol., 103, 750–760, https://doi.org/10.1111/1365-2745.12395, 2015.
Lehmann, C. M. B., Bowersox, V. C., and Larson, S. M.: Spatial and temporal trends of precipitation chemistry in the United States, 1985–2002, Environ. Pollut., 135, 347–361, https://doi.org/10.1016/j.envpol.2004.11.016, 2005.
Li, C., Kang, S. C., Zhang, Q. G., and Kaspari, S.: Major ionic composition of precipitation in the Nam Co region, Central Tibetan Plateau, Atmos. Res., 85, 351–360, https://doi.org/10.1016/j.atmosres.2007.02.006, 2007.
Li, M., Ma, Y., Ishikawa, H., Ma, W., Sun, F., Wang, Y., and Zhu, Z.: Characteristics of micrometeorological elements near surface and soil on the northern slope of Mt. Qomolangma area, Plateau Meteorology, 26, 1263–1268, 2007 (in Chinese with English abstract).
Li, Z. J., Li, Z. X., Wang, T. T., Gao, Y., Cheng, A. F., Guo, X. Y., Guo, R., Jia, B., Song, Y. X., Han, C. T., and Theakstone, W.: Composition of wet deposition in the central Qilian Mountains, China, Environ. Earth Sci., 73, 7315–7328, https://doi.org/10.1007/s12665-014-3907-0, 2015.
Liu, B., Kang, S. C., Sun, J. M., Zhang, Y. L., Xu, R., Wang, Y. J., Liu, Y. W., and Cong, Z. Y.: Wet precipitation chemistry at a high-altitude site (3326 m a.s.l.) in the southeastern Tibetan Plateau, Environ. Sci. Pollut. R., 20, 5013–5027, https://doi.org/10.1007/s11356-012-1379-x, 2013.
Liu, L. L. and Greaver, T. L.: A review of nitrogen enrichment effects on three biogenic GHGs: the CO2 sink may be largely offset by stimulated N2O and CH4 emission, Ecol. Lett., 12, 1103–1117, https://doi.org/10.1111/j.1461-0248.2009.01351.x, 2009.
Liu, X. J., Duan, L., Mo, J. M., Du, E. Z., Shen, J. L., Lu, X. K., Zhang, Y., Zhou, X. B., He, C. N., and Zhang, F. S.: Nitrogen deposition and its ecological impact in China: An overview, Environ. Pollut., 159, 2251–2264, https://doi.org/10.1016/j.envpol.2010.08.002, 2011.
Liu, X. J., Zhang, Y., Han, W. X., Tang, A. H., Shen, J. L., Cui, Z. L., Vitousek, P., Erisman, J. W., Goulding, K., Christie, P., Fangmeier, A., and Zhang, F. S.: Enhanced nitrogen deposition over China, Nature, 494, 459–462, https://doi.org/10.1038/nature11917, 2013.
Liu, Y. H., Dong, G. R., Li, S., and Dong, Y. X.: Status, causes and combating suggestions of sandy desertification in Qinghai-Tibet Plateau, Chinese Geogr. Sci., 15, 289–296, https://doi.org/10.1007/s11769-005-0015-9, 2005.
Liu, Y. W., Xu-Ri, Xu, X. L., Wei, D., Wang, Y. H., and Wang, Y. S.: Plant and soil responses of an alpine steppe on the Tibetan Plateau to multi-level nitrogen addition, Plant Soil, 373, 515–529, https://doi.org/10.1007/s11104-013-1814-x, 2013.
Lu, C. Q. and Tian, H. Q.: Spatial and temporal patterns of nitrogen deposition in China: Synthesis of observational data, J. Geophys. Res.-Atmos., 112, D22S05, https://doi.org/10.1029/2006JD007990, 2007.
Lu, C. Q. and Tian, H. Q.: Net greenhouse gas balance in response to nitrogen enrichment: perspectives from a coupled biogeochemical model, Glob. Change Biol., 19, 571–588, https://doi.org/10.1111/gcb.12049, 2013.
Lu, C. Q. and Tian, H. Q.: Half-century nitrogen deposition increase across China: A gridded time-series data set for regional environmental assessments, Atmos. Environ., 97, 68–74, https://doi.org/10.1016/j.atmosenv.2014.07.061, 2014.
Lu, C. Q. and Tian, H. Q.: Reply to "Comments on `Half-century nitrogen deposition increase across China: A gridded time-series dataset for regional environmental assessments"', Atmos. Environ., 101, 352–353, https://doi.org/10.1016/j.atmosenv.2014.11.032, 2015.
Lu, X. W., Li, L. Y., Li, N., Yang, G., Luo, D. C., and Chen, J. H.: Chemical characteristics of spring rainwater of Xi'an city, NW China, Atmos. Environ., 45, 5058–5063, https://doi.org/10.1016/j.atmosenv.2011.06.026, 2011.
Ma, Y. M., Kang, S. C., Zhu, L. P., Xu, B. Q., Tian, L. D., and Yao, T. D.: Tibetan Observation and Research Platform–atmosphere–land interaction over a heterogeneous landscape, B. Am. Meteorol. Soc., 89, 1487–1492, https://doi.org/10.1175/2008bams2545.1, 2008.
Ma, Z., Ma, M. J., Baskin, J. M., Baskin, C. C., Li, J. Y., and Du, G. Z.: Responses of alpine meadow seed bank and vegetation to nine consecutive years of soil fertilization, Ecol. Eng., 70, 92–101, https://doi.org/10.1016/j.ecoleng.2014.04.009, 2014.
Mao, R., Gong, D. Y., Shao, Y. P., Wu, G. J., and Bao, J. D.: Numerical analysis for contribution of the Tibetan Plateau to dust aerosols in the atmosphere over the East Asia, Sci. China Earth Sci., 56, 301–310, https://doi.org/10.1007/s11430-012-4460-x, 2013.
Migliavacca, D., Teixeira, E. C., Wiegand, F., Machado, A. C. M., and Sanchez, J.: Atmospheric precipitation and chemical composition of an urban site, Guaiba hydrographic basin, Brazil, Atmos. Environ., 39, 1829–1844, https://doi.org/10.1016/j.atmosenv.2004.12.005, 2005.
Morino, Y., Ohara, T., Kurokawa, J., Kuribayashi, M., Uno, I., and Hara, H.: Temporal variations of nitrogen wet deposition across Japan from 1989 to 2008, J. Geophys. Res.-Atmos., 116, D06307, https://doi.org/10.1029/2010jd015205, 2011.
Okay, C., Akkoyunlu, B. O., and Tayanc, M.: Composition of wet deposition in Kaynarca, Turkey, Environ. Pollut., 118, 401–410, https://doi.org/10.1016/S0269-7491(01)00292-5, 2002.
Pan, Y. P., Wang, Y. S., Tang, G. Q., and Wu, D.: Wet and dry deposition of atmospheric nitrogen at ten sites in Northern China, Atmos. Chem. Phys., 12, 6515–6535, https://doi.org/10.5194/acp-12-6515-2012, 2012.
Pinder, R. W., Davidson, E. A., Goodale, C. L., Greaver, T. L., Herrick, J. D., and Liu, L. L.: Climate change impacts of US reactive nitrogen, P. Natl. Acad. Sci. USA, 109, 7671–7675, https://doi.org/10.1073/pnas.1114243109, 2012.
Puxbaum, H., Simeonov, V., Kalina, M., Tsakovski, S., Loffler, H., Heimburger, G., Biebl, P., Weber, A., and Damm, A.: Long-term assessment of the wet precipitation chemistry in Austria (1984–1999), Chemosphere, 48, 733–747, https://doi.org/10.1016/S0045-6535(02)00125-X, 2002.
Qiu, J.: The third pole, Nature, 454, 393–396, https://doi.org/10.1038/454393a, 2008.
R Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, 2015.
Rodhe, H. and Granat, L.: An evaluation of sulfate in European precipitation 1955–1982, Atmos. Environ., 18, 2627–2639, https://doi.org/10.1016/0004-6981(84)90327-5, 1984.
Safai, P. D., Rao, P. S. P., Mornin, G. A., All, K., Chate, D. M., and Praveen, P. S.: Chemical composition of precipitation during 1984–2002 at Pune, India, Atmos. Environ., 38, 1705–1714, https://doi.org/10.1016/j.atmosenv.2003.12.016, 2004.
Sahai, S., Sharma, C., Singh, S. K., and Gupta, P. K.: Assessment of trace gases, carbon and nitrogen emissions from field burning of agricultural residues in India, Nutr. Cycl. Agroecosys., 89, 143–157, https://doi.org/10.1007/s10705-010-9384-2, 2011.
Shen, W. J., Ren, H. L., Jenerette, G. D., Hui, D. F., and Ren, H.: Atmospheric deposition and canopy exchange of anions and cations in two plantation forests under acid rain influence, Atmos. Environ., 64, 242–250, https://doi.org/10.1016/j.atmosenv.2012.10.015, 2013.
Sheng, W. P., Yu, G. R., Jiang, C. M., Yan, J. H., Liu, Y. F., Wang, S. L., Wang, B., Zhang, J. H., Wang, C. K., Zhou, M., and Jia, B. R.: Monitoring nitrogen deposition in typical forest ecosystems along a large transect in China, Environ. Monit. Assess., 185, 833–844, https://doi.org/10.1007/s10661-012-2594-0, 2013.
Shi, Y. L., Cui, S. H., Ju, X. T., Cai, Z. C., and Zhu, Y. G.: Impacts of reactive nitrogen on climate change in China, Sci. Rep.-UK, 5, 8118, https://doi.org/10.1038/Srep08118, 2015.
Tang, J., Xue, H., Yu, X., Cheng, H., Xu, X., Zhang, X., and Ji, J.: The preliminary study on chemical characteristics of precipitation at Mt. Waliguan, Acta Scientiae Circumstantiae, 20, 420–425, 2000 (in Chinese with English abstract).
Taylor, S. R.: Abundance of chemical elements in the continental crust - a new table, Geochim. Cosmochim. Ac., 28, 1273–1285, https://doi.org/10.1016/0016-7037(64)90129-2, 1964.
Thompson, L. G., Yao, T., Mosley-Thompson, E., Davis, M. E., Henderson, K. A., and Lin, P. N.: A high-resolution millennial record of the South Asian Monsoon from Himalayan ice cores, Science, 289, 1916–1919, https://doi.org/10.1126/science.289.5486.1916, 2000.
Tripathee, L., Kang, S. C., Huang, J., Sillanpaa, M., Sharma, C. M., Luthi, Z. L., Guo, J. M., and Paudyal, R.: Ionic composition of wet precipitation over the southern slope of central Himalayas, Nepal, Environ. Sci. Pollut. R., 21, 2677–2687, https://doi.org/10.1007/s11356-013-2197-5, 2014.
Tu, J., Wang, H. S., Zhang, Z. F., Jin, X., and Li, W. Q.: Trends in chemical composition of precipitation in Nanjing, China, during 1992-2003, Atmos. Res., 73, 283–298, https://doi.org/10.1016/j.atmosres.2004.11.002, 2005.
Turekian, K. K.: Oceans, Prentice-Hall, New Jersey, United States, 1968.
Wang, L. X. and Macko, S. A.: Constrained preferences in nitrogen uptake across plant species and environments, Plant Cell Environ., 34, 525–534, https://doi.org/10.1111/j.1365-3040.2010.02260.x, 2011.
Wang, N. L., Yao, T. D., Thompson, L. G., and Davis, M. E.: Indian monsoon and North Atlantic Oscillation signals reflected by Cl- and Na+ in a shallow ice core from Dasuopu Glacier, Xixabangma, Himalaya, Ann. Glaciol., 35, 273–277, https://doi.org/10.3189/172756402781816825, 2002.
Wang, P. L., Yao, T. D., Tian, L. D., Wu, G. J., Li, Z., and Yang, W.: Recent high-resolution glaciochemical record from a Dasuopu firn core of middle Himalayas, Chinese Sci. Bull., 53, 418–425, https://doi.org/10.1007/s11434-008-0098-7, 2008.
Wang, Y., Ma, Y., Zhu, Z., and Li, M.: Variation characteristics of meteorological elements in near surface layer over the Lulang valley of southeastern Tibetan Plateau, Plateau Meteorol., 29, 63–69, 2010 (in Chinese with English abstract).
Wang, Y. Q., Zhang, X. Y., and Draxler, R. R.: TrajStat: GIS-based software that uses various trajectory statistical analysis methods to identify potential sources from long-term air pollution measurement data, Environ. Model. Soft., 24, 938–939, https://doi.org/10.1016/j.envsoft.2009.01.004, 2009.
Xia, X. G., Wang, P. C., Wang, Y. S., Li, Z. Q., Xin, J. Y., Liu, J., and Chen, H. B.: Aerosol optical depth over the Tibetan Plateau and its relation to aerosols over the Taklimakan Desert, Geophys Res Lett, 35, L16804, https://doi.org/10.1029/2008gl034981, 2008.
Xiao, H. W., Xiao, H. Y., Long, A. M., Wang, Y. L., and Liu, C. Q.: Chemical composition and source apportionment of rainwater at Guiyang, SW China, J. Atmos. Chem., 70, 269–281, https://doi.org/10.1007/s10874-013-9268-3, 2013.
Xu, H., Bi, X. H., Feng, Y. C., Lin, F. M., Jiao, L., Hong, S. M., Liu, W. G., and Zhang, X. Y.: Chemical composition of precipitation and its sources in Hangzhou, China, Environ. Monit. Assess., 183, 581–592, https://doi.org/10.1007/s10661-011-1963-4, 2011.
Xu-Ri, Prentice, I. C., Spahni, R., and Niu, H. S.: Modelling terrestrial nitrous oxide emissions and implications for climate feedback, New. Phytol., 196, 472–488, https://doi.org/10.1111/j.1469-8137.2012.04269.x, 2012.
Xu, X. L., Wanek, W., Zhou, C. P., Richter, A., Song, M. H., Cao, G. M., Ouyang, H., and Kuzyakov, Y.: Nutrient limitation of alpine plants: Implications from leaf N : P stoichiometry and leaf δ15N, J. Plant Nutr. Soil Sc., 177, 378–387, https://doi.org/10.1002/jpln.201200061, 2014.
Yang, F., Tan, J., Shi, Z. B., Cai, Y., He, K., Ma, Y., Duan, F., Okuda, T., Tanaka, S., and Chen, G.: Five-year record of atmospheric precipitation chemistry in urban Beijing, China, Atmos. Chem. Phys., 12, 2025–2035, https://doi.org/10.5194/acp-12-2025-2012, 2012.
Yang, L., Ren, Y., and Jia, L.: Preliminary study of chemical composition of precipitation at Wudaoliang, Qinghai Province, Plateau Meteorol., 10, 209–216, 1991 (in Chinese with English abstract).
Yang, Y. H., Ji, C. J., Ma, W. H., Wang, S. F., Wang, S. P., Han, W. X., Mohammat, A., Robinson, D., and Smith, P.: Significant soil acidification across northern China's grasslands during 1980s–2000s, Glob. Change Biol., 18, 2292–2300, https://doi.org/10.1111/j.1365-2486.2012.02694.x, 2012.
Yang, Z., Ou Yang, H., Xu, X., and Yang, W.: Spatial heterogeneity of soil moisture and vegetation coverage of alpine grassland in permafrost area of the Qinghai-Tibet Plateau, J. Nat. Resour., 25, 426–434, https://doi.org/10.11849/zrzyxb.2010.03.008, 2010 (in Chinese with English abstract).
Yao, T., Thompson, L. G., Mosbrugger, V., Zhang, F., Ma, Y., Luo, T., Xu, B., Yang, X., Joswiak, D. R., Wang, W., Joswiak, M. E., Devkota, L. P., Tayal, S., Jilani, R., and Fayziev, R.: Third Pole Environment (TPE), 3, 52–64, https://doi.org/10.1016/j.envdev.2012.04.002, 2012.
Yao, T. D., Masson-Delmotte, V., Gao, J., Yu, W. S., Yang, X. X., Risi, C., Sturm, C., Werner, M., Zhao, H. B., He, Y., Ren, W., Tian, L. D., Shi, C. M., and Hou, S. G.: A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: observations and simulations, Rev. Geophys., 51, 525–548, https://doi.org/10.1002/rog.20023, 2013.
Zaehle, S.: Terrestrial nitrogen - carbon cycle interactions at the global scale, Philos. T. R. Soc. B, 368, L01401, https://doi.org/10.1098/rstb.2013.0125, 2013.
Zaehle, S. and Friend, A. D.: Carbon and nitrogen cycle dynamics in the O-CN land surface model: 1. Model description, site-scale evaluation, and sensitivity to parameter estimates, Global Biogeochem. Cycles, 24, GB1005, https://doi.org/10.1029/2009gb003521, 2010.
Zaehle, S., Friedlingstein, P., and Friend, A. D.: Terrestrial nitrogen feedbacks may accelerate future climate change, Geophys. Res. Lett., 37, 20130125, https://doi.org/10.1029/2009gl041345, 2010.
Zbieranowski, A. L. and Aherne, J.: Long-term trends in atmospheric reactive nitrogen across Canada: 1988-2007, Atmos. Environ., 45, 5853–5862, https://doi.org/10.1016/j.atmosenv.2011.06.080, 2011.
Zhang, D. D., Peart, M., Jim, C. Y., He, Y. Q., Li, B. S., and Chen, J. A.: Precipitation chemistry of Lhasa and other remote towns, Tibet, Atmos. Environ., 37, 231–240, https://doi.org/10.1016/S1352-2310(02)00835-X, 2003.
Zhang, M., Wang, S., Wu, F., Yuan, X., and Zhang, Y.: Chemical compositions of wet precipitation and anthropogenic influences at a developing urban site in southeastern China, Atmos. Res., 84, 311–322, https://doi.org/10.1016/j.atmosres.2006.09.003, 2007.
Zhang, N. N., He, Y. Q., Cao, J. J., Ho, K. F., and Shen, Z. X.: Long-term trends in chemical composition of precipitation at Lijiang, southeast Tibetan Plateau, southwestern China, Atmos. Res., 106, 50–60, https://doi.org/10.1016/j.atmosres.2011.11.006, 2012.
Zhang, X. Y., Arimoto, R., Cao, J. J., An, Z. S., and Wang, D.: Atmospheric dust aerosol over the Tibetan Plateau, J. Geophys. Res.-Atmos., 106, 18471–18476, https://doi.org/10.1029/2000jd900672, 2001.
Zhang, X. Y., Jiang, H., Zhang, Q. X., and Zhang, X.: Chemical characteristics of rainwater in northeast China, a case study of Dalian, Atmos. Res., 116, 151–159, https://doi.org/10.1016/j.atmosres.2012.03.014, 2012.
Zhang, Y. J., Kang, S. C., You, Q. L., and Xu, Y. W.: Climate in the Nam Co basin, in: Modern environmental processes and changes in the Nam Co basin, Tibetan Plateau, edited by: Kang, S. C., Yang, Y. P., Zhu, L. P., and Ma, Y. M., China Meteorological Press, Beijing, 15–24, 2011 (in Chinese).
Zhang, Y. L., Li, B. Y., and Zheng, D.: A discussion on the boundary and area of the Tibetan Plateau in China, Geographical Res., 21, 1–8, 2002 (in Chinese with English abstract).
Zhao, H. B., Xu, B. Q., Yao, T. D., Tian, L. D., and Li, Z.: Records of sulfate and nitrate in an ice core from Mount Muztagata, central Asia, J. Geophys. Res.-Atmos., 116, D13304, https://doi.org/10.1029/2011jd015735, 2011.
Zhao, Z. Z., Cao, J. J., Shen, Z. X., Xu, B. Q., Zhu, C. S., Chen, L. W. A., Su, X. L., Liu, S. X., Han, Y. M., Wang, G. H., and Ho, K. F.: Aerosol particles at a high-altitude site on the Southeast Tibetan Plateau, China: Implications for pollution transport from South Asia, J. Geophys. Res-Atmos., 118, 11360–11375, https://doi.org/10.1002/jgrd.50599, 2013.
Zheng, W., Yao, T. D., Joswiak, D. R., Xu, B. Q., Wang, N. L., and Zhao, H. B.: Major ions composition records from a shallow ice core on Mt. Tanggula in the central Qinghai-Tibetan Plateau, Atmos. Res., 97, 70–79, https://doi.org/10.1016/j.atmosres.2010.03.008, 2010.
Short summary
We investigated inorganic N wet deposition at five sites in the Tibetan Plateau (TP). Combining in situ measurements in this and previous studies, the average wet deposition of NH4+-N, NO3--N, and inorganic N in the TP was estimated to be 1.06, 0.51, and 1.58 kg N ha−1 yr−1, respectively. Results suggest that earlier estimations based on chemical transport model simulations and/or limited field measurements likely overestimated substantially the regional inorganic N wet deposition in the TP.
We investigated inorganic N wet deposition at five sites in the Tibetan Plateau (TP). Combining...
Altmetrics
Final-revised paper
Preprint