Articles | Volume 15, issue 17
https://doi.org/10.5194/acp-15-10127-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/acp-15-10127-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Quantitative assessment of atmospheric emissions of toxic heavy metals from anthropogenic sources in China: historical trend, spatial distribution, uncertainties, and control policies
State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
C. Y. Zhu
State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
J. J. Gao
State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
K. Cheng
State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
School of Environment, Henan Normal University, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Xinxiang 453007, China
J. M. Hao
State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, School of Environment, Tsinghua University, Beijing 10084, China
K. Wang
State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
S. B. Hua
State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
Y. Wang
State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
J. R. Zhou
State Key Joint Laboratory of Environmental Simulation & Pollution Control, School of Environment, Beijing Normal University, Beijing 100875, China
Related authors
Lulu Cui, Di Wu, Shuxiao Wang, Qingcheng Xu, Ruolan Hu, and Jiming Hao
Atmos. Chem. Phys., 22, 11931–11944, https://doi.org/10.5194/acp-22-11931-2022, https://doi.org/10.5194/acp-22-11931-2022, 2022
Short summary
Short summary
A 1-year campaign was conducted to characterize VOCs at a Beijing urban site during different episodes. VOCs from fuel evaporation and diesel exhaust, particularly toluene, xylenes, trans-2-butene, acrolein, methyl methacrylate, vinyl acetate, 1-butene, and 1-hexene, were the main contributors. VOCs from diesel exhaust as well as coal and biomass combustion were found to be the dominant contributors for SOAFP, particularly the VOC species toluene, 1-hexene, xylenes, ethylbenzene, and styrene.
Jingsha Xu, Shaojie Song, Roy M. Harrison, Congbo Song, Lianfang Wei, Qiang Zhang, Yele Sun, Lu Lei, Chao Zhang, Xiaohong Yao, Dihui Chen, Weijun Li, Miaomiao Wu, Hezhong Tian, Lining Luo, Shengrui Tong, Weiran Li, Junling Wang, Guoliang Shi, Yanqi Huangfu, Yingze Tian, Baozhu Ge, Shaoli Su, Chao Peng, Yang Chen, Fumo Yang, Aleksandra Mihajlidi-Zelić, Dragana Đorđević, Stefan J. Swift, Imogen Andrews, Jacqueline F. Hamilton, Ye Sun, Agung Kramawijaya, Jinxiu Han, Supattarachai Saksakulkrai, Clarissa Baldo, Siqi Hou, Feixue Zheng, Kaspar R. Daellenbach, Chao Yan, Yongchun Liu, Markku Kulmala, Pingqing Fu, and Zongbo Shi
Atmos. Meas. Tech., 13, 6325–6341, https://doi.org/10.5194/amt-13-6325-2020, https://doi.org/10.5194/amt-13-6325-2020, 2020
Short summary
Short summary
An interlaboratory comparison was conducted for the first time to examine differences in water-soluble inorganic ions (WSIIs) measured by 10 labs using ion chromatography (IC) and by two online aerosol chemical speciation monitor (ACSM) methods. Major ions including SO42−, NO3− and NH4+ agreed well in 10 IC labs and correlated well with ACSM data. WSII interlab variability strongly affected aerosol acidity results based on ion balance, but aerosol pH computed by ISORROPIA II was very similar.
Qing Yu, Jing Chen, Weihua Qin, Yuepeng Zhang, Siming Cheng, Mushtaq Ahmad, Xingang Liu, and Hezhong Tian
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-675, https://doi.org/10.5194/acp-2018-675, 2018
Preprint withdrawn
Short summary
Short summary
Large-scale regional haze characterized by high concentrations of PM2.5 has frequently occurred in North China in recent years. Water soluble organic carbon (WSOC) in atmospheric aerosols may pose significant impacts on haze formation, climate change, and human health. This study investigated the distribution characteristics and sources of WSOC in Beijing during haze episodes in an effort to reveal the sources and formation mechanism of WSOC in a typical polluted megacity.
Yuying Cui, Qingru Wu, Shuxiao Wang, Kaiyun Liu, Shengyue Li, Zhezhe Shi, Daiwei Ouyang, Zhongyan Li, Qinqin Chen, Changwei Lü, Fei Xie, Yi Tang, Yan Wang, and Jiming Hao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-252, https://doi.org/10.5194/essd-2024-252, 2024
Revised manuscript accepted for ESSD
Short summary
Short summary
A comprehensive emission inventory has been developed at a resolution of 0.25°×0.3125° for total mercury (HgT) and each mercury species, namely gaseous elemental mercury (Hg0), gaseous oxidized mercury (HgII), and particulate-bound mercury (HgP). The inventory stems from the Point-source Integrated China Atmospheric Mercury Emission Model, ensuring both temporal and spatial coherence.
Shengyue Li, Shuxiao Wang, Qingru Wu, Yanning Zhang, Daiwei Ouyang, Haotian Zheng, Licong Han, Xionghui Qiu, Yifan Wen, Min Liu, Yueqi Jiang, Dejia Yin, Kaiyun Liu, Bin Zhao, Shaojun Zhang, Ye Wu, and Jiming Hao
Earth Syst. Sci. Data, 15, 2279–2294, https://doi.org/10.5194/essd-15-2279-2023, https://doi.org/10.5194/essd-15-2279-2023, 2023
Short summary
Short summary
This study compiled China's emission inventory of air pollutants and CO2 during 2005–2021 (ABaCAS-EI v2.0) based on unified emission-source framework. The emission trends and its drivers are analyzed. Key sectors and regions with higher synergistic reduction potential of air pollutants and CO2 are identified. Future control measures are suggested. The dataset and analyses provide insights into the synergistic reduction of air pollutants and CO2 emissions for China and other developing countries.
Rui Li, Yining Gao, Yubao Chen, Meng Peng, Weidong Zhao, Gehui Wang, and Jiming Hao
Atmos. Chem. Phys., 23, 4709–4726, https://doi.org/10.5194/acp-23-4709-2023, https://doi.org/10.5194/acp-23-4709-2023, 2023
Short summary
Short summary
A random forest model was used to isolate the effects of emission and meteorology to trace elements in PM2.5 in Tangshan. The results suggested that control measures facilitated decreases of Ga, Co, Pb, Zn, and As, due to the strict implementation of coal-to-gas strategies and optimisation of industrial structure and layout. However, the deweathered levels of Ca, Cr, and Fe only displayed minor decreases, indicating that ferrous metal smelting and vehicle emission controls should be enhanced.
Kun Wang, Chao Gao, Kai Wu, Kaiyun Liu, Haofan Wang, Mo Dan, Xiaohui Ji, and Qingqing Tong
Geosci. Model Dev., 16, 1961–1973, https://doi.org/10.5194/gmd-16-1961-2023, https://doi.org/10.5194/gmd-16-1961-2023, 2023
Short summary
Short summary
This study establishes an easy-to-use and integrated framework for a model-ready emission inventory for the Weather Research and Forecasting (WRF)–Air Quality Numerical Model (AQM). A free tool called the ISAT (Inventory Spatial Allocation Tool) was developed based on this framework. ISAT helps users complete the workflow from the WRF nested-domain configuration to a model-ready emission inventory for AQM with a regional emission inventory and a shapefile for the target region.
Lulu Cui, Di Wu, Shuxiao Wang, Qingcheng Xu, Ruolan Hu, and Jiming Hao
Atmos. Chem. Phys., 22, 11931–11944, https://doi.org/10.5194/acp-22-11931-2022, https://doi.org/10.5194/acp-22-11931-2022, 2022
Short summary
Short summary
A 1-year campaign was conducted to characterize VOCs at a Beijing urban site during different episodes. VOCs from fuel evaporation and diesel exhaust, particularly toluene, xylenes, trans-2-butene, acrolein, methyl methacrylate, vinyl acetate, 1-butene, and 1-hexene, were the main contributors. VOCs from diesel exhaust as well as coal and biomass combustion were found to be the dominant contributors for SOAFP, particularly the VOC species toluene, 1-hexene, xylenes, ethylbenzene, and styrene.
Jiandong Wang, Jia Xing, Shuxiao Wang, Rohit Mathur, Jiaping Wang, Yuqiang Zhang, Chao Liu, Jonathan Pleim, Dian Ding, Xing Chang, Jingkun Jiang, Peng Zhao, Shovan Kumar Sahu, Yuzhi Jin, David C. Wong, and Jiming Hao
Atmos. Chem. Phys., 22, 5147–5156, https://doi.org/10.5194/acp-22-5147-2022, https://doi.org/10.5194/acp-22-5147-2022, 2022
Short summary
Short summary
Aerosols reduce surface solar radiation and change the photolysis rate and planetary boundary layer stability. In this study, the online coupled meteorological and chemistry model was used to explore the detailed pathway of how aerosol direct effects affect secondary inorganic aerosol. The effects through the dynamics pathway act as an equally or even more important route compared with the photolysis pathway in affecting secondary aerosol concentration in both summer and winter.
Xiaomeng Wu, Daoyuan Yang, Ruoxi Wu, Jiajun Gu, Yifan Wen, Shaojun Zhang, Rui Wu, Renjie Wang, Honglei Xu, K. Max Zhang, Ye Wu, and Jiming Hao
Atmos. Chem. Phys., 22, 1939–1950, https://doi.org/10.5194/acp-22-1939-2022, https://doi.org/10.5194/acp-22-1939-2022, 2022
Short summary
Short summary
Our work pioneered land-use machine learning methods for developing link-level emission inventories, utilizing hourly traffic profiles, including volume, speed, and fleet mix, obtained from the governmental intercity highway monitoring network in the "capital circles" of China. This research provides a platform to realize the near-real-time process of establishing high-resolution vehicle emission inventories for policy makers to engage in sophisticated traffic management.
Runlong Cai, Chao Yan, Dongsen Yang, Rujing Yin, Yiqun Lu, Chenjuan Deng, Yueyun Fu, Jiaxin Ruan, Xiaoxiao Li, Jenni Kontkanen, Qiang Zhang, Juha Kangasluoma, Yan Ma, Jiming Hao, Douglas R. Worsnop, Federico Bianchi, Pauli Paasonen, Veli-Matti Kerminen, Yongchun Liu, Lin Wang, Jun Zheng, Markku Kulmala, and Jingkun Jiang
Atmos. Chem. Phys., 21, 2457–2468, https://doi.org/10.5194/acp-21-2457-2021, https://doi.org/10.5194/acp-21-2457-2021, 2021
Short summary
Short summary
Based on long-term measurements, we discovered that the collision of H2SO4–amine clusters is the governing mechanism that initializes fast new particle formation in the polluted atmospheric environment of urban Beijing. The mechanism and the governing factors for H2SO4–amine nucleation in the polluted atmosphere are quantitatively investigated in this study.
Jingsha Xu, Shaojie Song, Roy M. Harrison, Congbo Song, Lianfang Wei, Qiang Zhang, Yele Sun, Lu Lei, Chao Zhang, Xiaohong Yao, Dihui Chen, Weijun Li, Miaomiao Wu, Hezhong Tian, Lining Luo, Shengrui Tong, Weiran Li, Junling Wang, Guoliang Shi, Yanqi Huangfu, Yingze Tian, Baozhu Ge, Shaoli Su, Chao Peng, Yang Chen, Fumo Yang, Aleksandra Mihajlidi-Zelić, Dragana Đorđević, Stefan J. Swift, Imogen Andrews, Jacqueline F. Hamilton, Ye Sun, Agung Kramawijaya, Jinxiu Han, Supattarachai Saksakulkrai, Clarissa Baldo, Siqi Hou, Feixue Zheng, Kaspar R. Daellenbach, Chao Yan, Yongchun Liu, Markku Kulmala, Pingqing Fu, and Zongbo Shi
Atmos. Meas. Tech., 13, 6325–6341, https://doi.org/10.5194/amt-13-6325-2020, https://doi.org/10.5194/amt-13-6325-2020, 2020
Short summary
Short summary
An interlaboratory comparison was conducted for the first time to examine differences in water-soluble inorganic ions (WSIIs) measured by 10 labs using ion chromatography (IC) and by two online aerosol chemical speciation monitor (ACSM) methods. Major ions including SO42−, NO3− and NH4+ agreed well in 10 IC labs and correlated well with ACSM data. WSII interlab variability strongly affected aerosol acidity results based on ion balance, but aerosol pH computed by ISORROPIA II was very similar.
Jia Xing, Siwei Li, Yueqi Jiang, Shuxiao Wang, Dian Ding, Zhaoxin Dong, Yun Zhu, and Jiming Hao
Atmos. Chem. Phys., 20, 14347–14359, https://doi.org/10.5194/acp-20-14347-2020, https://doi.org/10.5194/acp-20-14347-2020, 2020
Short summary
Short summary
Quantifying emission changes is a prerequisite for assessment of control effectiveness in improving air quality. However, traditional bottom-up methods usually take months to perform and limit timely assessments. A novel method was developed by using a response model that provides real-time estimation of emission changes based on air quality observations. It was successfully applied to quantify emission changes on the North China Plain due to the COVID-19 pandemic shutdown.
Jia Xing, Dian Ding, Shuxiao Wang, Zhaoxin Dong, James T. Kelly, Carey Jang, Yun Zhu, and Jiming Hao
Atmos. Chem. Phys., 19, 13627–13646, https://doi.org/10.5194/acp-19-13627-2019, https://doi.org/10.5194/acp-19-13627-2019, 2019
Short summary
Short summary
The study aims at addressing the challenge in efficient quantification of the nonlinear response of air pollution to precursor emission perturbations. The newly developed observable response indicators can be easily calculated by a combination of ambient concentrations of certain species. Their capability in representing the spatial and temporal variation in PM2.5 and O3 chemistry has also been well evaluated and applied in China.
Xiaoxiao Li, Shaojie Song, Wei Zhou, Jiming Hao, Douglas R. Worsnop, and Jingkun Jiang
Atmos. Chem. Phys., 19, 12163–12174, https://doi.org/10.5194/acp-19-12163-2019, https://doi.org/10.5194/acp-19-12163-2019, 2019
Short summary
Short summary
Aerosol liquid water is ubiquitous in ambient aerosol. Using long-term aerosol chemical composition to model the aerosol water in Beijing, we found that water absorbed by organics contributes a significant fraction to the total aerosol water. We emphasize the hygroscopicity of organics is highly variable and should be taken into consideration in modelling. A positive feedback loop between organic hygroscopicity and aerosol water was found as one of the driving factors of severe haze in Beijing.
Xionghui Qiu, Qi Ying, Shuxiao Wang, Lei Duan, Jian Zhao, Jia Xing, Dian Ding, Yele Sun, Baoxian Liu, Aijun Shi, Xiao Yan, Qingcheng Xu, and Jiming Hao
Atmos. Chem. Phys., 19, 6737–6747, https://doi.org/10.5194/acp-19-6737-2019, https://doi.org/10.5194/acp-19-6737-2019, 2019
Short summary
Short summary
Current chemical transport models cannot capture the diurnal and nocturnal variation in atmospheric nitrate, which may be relative to the missing atmospheric chlorine chemistry. In this work, the Community Multiscale Air Quality (CMAQ) model with improved chlorine heterogeneous chemistry is applied to simulate the impact of chlorine chemistry on summer nitrate concentrations in Beijing. The results of this work can improve our understanding of nitrate formation.
Haotian Zheng, Siyi Cai, Shuxiao Wang, Bin Zhao, Xing Chang, and Jiming Hao
Atmos. Chem. Phys., 19, 3447–3462, https://doi.org/10.5194/acp-19-3447-2019, https://doi.org/10.5194/acp-19-3447-2019, 2019
Short summary
Short summary
The heavy air pollution in the Beijing-Tianjin-Hebei (BTH) region is a global hot topic. We established a unit-based industrial emission inventory for the BTH region. The inventory significantly improved air quality modeling results; this improvement subsequently contributes to an accurate source apportionment of haze pollution and more precisely targeted decision making.
Runlong Cai, Indra Chandra, Dongsen Yang, Lei Yao, Yueyun Fu, Xiaoxiao Li, Yiqun Lu, Lun Luo, Jiming Hao, Yan Ma, Lin Wang, Jun Zheng, Takafumi Seto, and Jingkun Jiang
Atmos. Chem. Phys., 18, 16587–16599, https://doi.org/10.5194/acp-18-16587-2018, https://doi.org/10.5194/acp-18-16587-2018, 2018
Short summary
Short summary
Significant influences of transport on measured aerosol size distributions are commonly observed. We propose a method for estimating the contributions of transport to nanoparticles during new particle formation events. This method was used to analyze new particle formation events in Southeast Tibet, Fukue Island, and urban Beijing. The changes in the contributions of transport have a good correlation with the changes in wind speed and direction, indicating the feasibility of the method.
Qing Yu, Jing Chen, Weihua Qin, Yuepeng Zhang, Siming Cheng, Mushtaq Ahmad, Xingang Liu, and Hezhong Tian
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-675, https://doi.org/10.5194/acp-2018-675, 2018
Preprint withdrawn
Short summary
Short summary
Large-scale regional haze characterized by high concentrations of PM2.5 has frequently occurred in North China in recent years. Water soluble organic carbon (WSOC) in atmospheric aerosols may pose significant impacts on haze formation, climate change, and human health. This study investigated the distribution characteristics and sources of WSOC in Beijing during haze episodes in an effort to reveal the sources and formation mechanism of WSOC in a typical polluted megacity.
Runlong Cai, Dongsen Yang, Lauri R. Ahonen, Linlin Shi, Frans Korhonen, Yan Ma, Jiming Hao, Tuukka Petäjä, Jun Zheng, Juha Kangasluoma, and Jingkun Jiang
Atmos. Meas. Tech., 11, 4477–4491, https://doi.org/10.5194/amt-11-4477-2018, https://doi.org/10.5194/amt-11-4477-2018, 2018
Short summary
Short summary
We tested the performance of four inversion methods to recover sub-3 nm aerosol size distributions using the particle size magnifier (PSM). The PSM is widely used in new particle formation study; however, the inversion methods used in previous studies may report false particle concentrations. Due to the results, we suggest using the expectation–maximization algorithm to address the PSM inversion problem. We also gave practical suggestions on PSM operation based on the inversion analysis.
Yi Tang, Shuxiao Wang, Qingru Wu, Kaiyun Liu, Long Wang, Shu Li, Wei Gao, Lei Zhang, Haotian Zheng, Zhijian Li, and Jiming Hao
Atmos. Chem. Phys., 18, 8279–8291, https://doi.org/10.5194/acp-18-8279-2018, https://doi.org/10.5194/acp-18-8279-2018, 2018
Short summary
Short summary
In this study, 3-year measurements of atmospheric Hg were carried out at a rural site in East China. A significant downward trend was observed during the sampling period. This study used a new approach that considers both cluster frequency and the Hg concentration associated with each cluster, and we calculated that atmospheric Hg from the whole region of China has caused a 70 % decline of GEM concentration at the Chongming monitoring site due to strict air pollution control policies in China.
Xing Chang, Shuxiao Wang, Bin Zhao, Siyi Cai, and Jiming Hao
Atmos. Chem. Phys., 18, 4843–4858, https://doi.org/10.5194/acp-18-4843-2018, https://doi.org/10.5194/acp-18-4843-2018, 2018
Short summary
Short summary
The Beijing–Tianjin–Hebei region in China has been suffering from a severe particulate matter pollution, and the inter-city transport of the pollutant plays an important role. The current research quantitatively assesses the transport process. We identify three transport pathways. The southwest–northwest one happens in both winter and summer. The transport is stronger at 300–1000 m, or 1–2 days before a pollution peak. The result may guide the joint emission control along the transport pathway.
Qian Yu, Yao Luo, Shuxiao Wang, Zhiqi Wang, Jiming Hao, and Lei Duan
Atmos. Chem. Phys., 18, 495–509, https://doi.org/10.5194/acp-18-495-2018, https://doi.org/10.5194/acp-18-495-2018, 2018
Short summary
Short summary
This study provides high-quality direct observation data of a clean and a contaminated site in subtropical south China and quantifies the natural forest Hg emission. We find that clean and contaminated forests present a net GEM source with annual average values of 6.67 and 0.30 ng m-2 h-1, respectively; daily variations of GEM fluxes showed a source in the daytime with a peak at 13:00, and as a sink or balance at night; and higher atmospheric GEM concentration restricted the forest GEM emission.
Runlong Cai, Dongsen Yang, Yueyun Fu, Xing Wang, Xiaoxiao Li, Yan Ma, Jiming Hao, Jun Zheng, and Jingkun Jiang
Atmos. Chem. Phys., 17, 12327–12340, https://doi.org/10.5194/acp-17-12327-2017, https://doi.org/10.5194/acp-17-12327-2017, 2017
Short summary
Short summary
The governing factors for new particle formation (NPF) events in Beijing were analyzed. The roles of gaseous precursors and aerosol surface area were illustrated. It appears that the abundance of gaseous precursors in Beijing is high enough to have nucleation; however, it is aerosol surface area that determines the occurrence of NPF events in Beijing. Aerosol loading thresholds (in the form of aerosol surface area and PM2.5 concentration) for predicting NPF days in Beijing were suggested.
Qingru Wu, Wei Gao, Shuxiao Wang, and Jiming Hao
Atmos. Chem. Phys., 17, 10423–10433, https://doi.org/10.5194/acp-17-10423-2017, https://doi.org/10.5194/acp-17-10423-2017, 2017
Short summary
Short summary
Iron and steel production (ISP) is one of the most significant atmospheric Hg emission sources in China. Atmospheric Hg emissions from ISP increased from 11.5 t in 2000 to 32.75 t in 2015 with a peak of 35.65 t in 2013. In the coming years, emissions from ISP are expected to decrease. Although sinter/pellet plants and blast furnaces were the largest two emission processes, emissions from roasting plants and coke ovens accounted for 22 %–34 % of ISP’s emissions.
Jia Xing, Jiandong Wang, Rohit Mathur, Shuxiao Wang, Golam Sarwar, Jonathan Pleim, Christian Hogrefe, Yuqiang Zhang, Jingkun Jiang, David C. Wong, and Jiming Hao
Atmos. Chem. Phys., 17, 9869–9883, https://doi.org/10.5194/acp-17-9869-2017, https://doi.org/10.5194/acp-17-9869-2017, 2017
Short summary
Short summary
The assessment of the impacts of aerosol direct effects (ADE) is important for understanding emission reduction strategies that seek co-benefits associated with reductions in both particulate matter and ozone. This study quantifies the ADE impacts on tropospheric ozone by using a two-way coupled meteorology and atmospheric chemistry model. Results suggest that reducing ADE may have the potential risk of increasing ozone in winter, but it will benefit the reduction of maxima ozone in summer.
Biwu Chu, Xiao Zhang, Yongchun Liu, Hong He, Yele Sun, Jingkun Jiang, Junhua Li, and Jiming Hao
Atmos. Chem. Phys., 16, 14219–14230, https://doi.org/10.5194/acp-16-14219-2016, https://doi.org/10.5194/acp-16-14219-2016, 2016
Short summary
Short summary
The interactive effects between inorganic and organic species under highly complex pollution conditions remain uncertain and were studied in a smog chamber. This study indicated that the synergistic formation of secondary inorganic and organic aerosol might increase the secondary aerosol load in the atmosphere and contribute haze pollution in eastern China. These synergistic effects were related to the heterogeneous process on aerosol surface and need to be considered in air quality models.
Shaojun Zhang, Ye Wu, Ruikun Huang, Jiandong Wang, Han Yan, Yali Zheng, and Jiming Hao
Atmos. Chem. Phys., 16, 9965–9981, https://doi.org/10.5194/acp-16-9965-2016, https://doi.org/10.5194/acp-16-9965-2016, 2016
Short summary
Short summary
For highly populated cities in eastern Asian, traffic management has played an increasingly important role in mitigating local emissions from vehicles. Therefore, high-resolution vehicle emission inventory is an irreplaceable assessment tool. This study selected Macau, the most populated city in the world, to demonstrate a high-resolution simulation of vehicular pollution by coupling detailed local data collected and interdisciplinary models.
Lei Zhang, Shuxiao Wang, Qingru Wu, Fengyang Wang, Che-Jen Lin, Leiming Zhang, Mulin Hui, Mei Yang, Haitao Su, and Jiming Hao
Atmos. Chem. Phys., 16, 2417–2433, https://doi.org/10.5194/acp-16-2417-2016, https://doi.org/10.5194/acp-16-2417-2016, 2016
A. Stohl, B. Aamaas, M. Amann, L. H. Baker, N. Bellouin, T. K. Berntsen, O. Boucher, R. Cherian, W. Collins, N. Daskalakis, M. Dusinska, S. Eckhardt, J. S. Fuglestvedt, M. Harju, C. Heyes, Ø. Hodnebrog, J. Hao, U. Im, M. Kanakidou, Z. Klimont, K. Kupiainen, K. S. Law, M. T. Lund, R. Maas, C. R. MacIntosh, G. Myhre, S. Myriokefalitakis, D. Olivié, J. Quaas, B. Quennehen, J.-C. Raut, S. T. Rumbold, B. H. Samset, M. Schulz, Ø. Seland, K. P. Shine, R. B. Skeie, S. Wang, K. E. Yttri, and T. Zhu
Atmos. Chem. Phys., 15, 10529–10566, https://doi.org/10.5194/acp-15-10529-2015, https://doi.org/10.5194/acp-15-10529-2015, 2015
Short summary
Short summary
This paper presents a summary of the findings of the ECLIPSE EU project. The project has investigated the climate and air quality impacts of short-lived climate pollutants (especially methane, ozone, aerosols) and has designed a global mitigation strategy that maximizes co-benefits between air quality and climate policy. Transient climate model simulations allowed quantifying the impacts on temperature (e.g., reduction in global warming by 0.22K for the decade 2041-2050) and precipitation.
X. Fu, S. X. Wang, L. M. Ran, J. E. Pleim, E. Cooter, J. O. Bash, V. Benson, and J. M. Hao
Atmos. Chem. Phys., 15, 6637–6649, https://doi.org/10.5194/acp-15-6637-2015, https://doi.org/10.5194/acp-15-6637-2015, 2015
Short summary
Short summary
In this study, we estimate, for the first time, the NH3 emission from the agricultural fertilizer application in China online using the bi-directional CMAQ model coupled to an agro-ecosystem model. Compared with previous researches, this method considers more influencing factors, such as meteorological fields, soil and the fertilizer application, and provides improved NH3 emission with higher spatial and temporal resolution.
B. Zhao, S. X. Wang, J. Xing, K. Fu, J. S. Fu, C. Jang, Y. Zhu, X. Y. Dong, Y. Gao, W. J. Wu, J. D. Wang, and J. M. Hao
Geosci. Model Dev., 8, 115–128, https://doi.org/10.5194/gmd-8-115-2015, https://doi.org/10.5194/gmd-8-115-2015, 2015
S. X. Wang, B. Zhao, S. Y. Cai, Z. Klimont, C. P. Nielsen, T. Morikawa, J. H. Woo, Y. Kim, X. Fu, J. Y. Xu, J. M. Hao, and K. B. He
Atmos. Chem. Phys., 14, 6571–6603, https://doi.org/10.5194/acp-14-6571-2014, https://doi.org/10.5194/acp-14-6571-2014, 2014
Z. Cheng, S. Wang, X. Fu, J. G. Watson, J. Jiang, Q. Fu, C. Chen, B. Xu, J. Yu, J. C. Chow, and J. Hao
Atmos. Chem. Phys., 14, 4573–4585, https://doi.org/10.5194/acp-14-4573-2014, https://doi.org/10.5194/acp-14-4573-2014, 2014
X. Fu, S. X. Wang, Z. Cheng, J. Xing, B. Zhao, J. D. Wang, and J. M. Hao
Atmos. Chem. Phys., 14, 1239–1254, https://doi.org/10.5194/acp-14-1239-2014, https://doi.org/10.5194/acp-14-1239-2014, 2014
L. Zhang, S. X. Wang, L. Wang, and J. M. Hao
Atmos. Chem. Phys., 13, 10505–10516, https://doi.org/10.5194/acp-13-10505-2013, https://doi.org/10.5194/acp-13-10505-2013, 2013
B. Zhao, S. X. Wang, H. Liu, J. Y. Xu, K. Fu, Z. Klimont, J. M. Hao, K. B. He, J. Cofala, and M. Amann
Atmos. Chem. Phys., 13, 9869–9897, https://doi.org/10.5194/acp-13-9869-2013, https://doi.org/10.5194/acp-13-9869-2013, 2013
Related subject area
Subject: Aerosols | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Modeling simulation of aerosol light absorption over the Beijing–Tianjin–Hebei region: the impact of mixing state and aging processes
An investigation of the impact of Canadian wildfires on US air quality using model, satellite, and ground measurements
How to trace the origins of short-lived atmospheric species: an Arctic example
Dust-producing weather patterns of the North American Great Plains
High-resolution air quality maps for Bucharest using a mixed-effects modeling framework
Construction and application of a pollen emissions model based on phenology and random forests
The impact of uncertainty in black carbon's refractive index on simulated optical depth and radiative forcing
Characterization of brown carbon absorption in different European environments through source contribution analysis
Accounting for the black carbon aging process in a two-way coupled meteorology–air quality model
The effectiveness of solar radiation management using fine sea spray across multiple climatic regions
A global dust emission dataset for estimating dust radiative forcings in climate models
Tropospheric aerosols over the western North Atlantic Ocean during the winter and summer deployments of ACTIVATE 2020: life cycle, transport, and distribution
Spatial and temporal evolution of future atmospheric reactive nitrogen deposition in China under different climate change mitigation strategies
Steady-state mixing state of black carbon aerosols from a particle-resolved model
Direct radiative forcing of light-absorbing carbonaceous aerosol and the influencing factors over China
Distinctive dust weather intensities in North China resulted from two types of atmospheric circulation anomalies
Biomass burning emission analysis based on MODIS aerosol optical depth and AeroCom multi-model simulations: implications for model constraints and emission inventories
Quasi-weekly oscillation of regional PM2.5 transport over China driven by the synoptic-scale disturbance of the East Asian winter monsoon circulation
Solar radiation estimation in West Africa: impact of dust conditions during the 2021 dry season
Machine Learning Assisted Inference of the Particle Charge Fraction and the Ion-induced Nucleation Rates during New Particle Formation Events
Modeling urban pollutant transport at multi-resolutions: Impacts of turbulent mixing
Gaps in our understanding of ice-nucleating particle sources exposed by global simulation of the UK Earth System Model
The role of interfacial tension in the size-dependent phase separation of atmospheric aerosol particles
Impact of Topographic Wind Conditions on Dust Particle Size Distribution: Insights from a Regional Dust Reanalysis Dataset
Warming effects of reduced sulfur emissions from shipping
The key role of atmospheric absorption in the Asian summer monsoon response to dust emissions in CMIP6 models
Multi-model effective radiative forcing of the 2020 sulfur cap for shipping
Exploring the Aerosol Activation Properties in a Coastal Area Using Cloud and Particle-resolving Models
Representation of iron aerosol size distributions of anthropogenic emissions is critical in evaluating atmospheric soluble iron input to the ocean
Revealing dominant patterns of aerosol regimes in the lower troposphere and their evolution from preindustrial times to the future in global climate model simulations
A Novel Method to Quantify the Uncertainty Contribution of Aerosol-Radiative Interaction Factors
Improving estimation of a record-breaking east Asian dust storm emission with lagged aerosol Ångström exponent observations
Impact of biomass burning aerosols (BBA) on the tropical African climate in an ocean–atmosphere–aerosol coupled climate model
Retrieval of refractive index and water content for the coating materials of aged black carbon aerosol based on optical properties: a theoretical analysis
Strong inter-model differences and biases in CMIP6 simulations of PM2.5, aerosol optical depth, and precipitation over Africa
Impact of post monsoon crop residue burning on PM2.5 over North India: Optimizing emissions using a high-density in situ surface observation network
Predicting hygroscopic growth of organosulfur aerosol particles using COSMOtherm
Dust aerosol from the Aralkum Desert influences the radiation budget and atmospheric dynamics of Central Asia
Global modeling of aerosol nucleation with a semi-explicit chemical mechanism for highly oxygenated organic molecules (HOMs)
Synergistic effects of the winter North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) on dust activities in North China during the following spring
Aerosol composition, air quality, and boundary layer dynamics in the urban background of Stuttgart in winter
Response of the link between ENSO and the East Asian winter monsoon to Asian anthropogenic aerosols
Measurement report: Source attribution and estimation of black carbon levels in an urban hotspot of the central Po Valley – an integrated approach combining high-resolution dispersion modelling and micro-aethalometers
Modeling CMAQ dry deposition treatment over Western Pacific: A distinct characteristic of mineral dust and anthropogenic aerosol
Microphysical modelling of aerosol scavenging by different types of clouds: description and validation of the approach
Insights into the sources of ultrafine particle numbers at six European urban sites obtained by investigating COVID-19 lockdowns
In-plume and out-of-plume analysis of aerosol–cloud interactions derived from the 2014–2015 Holuhraun volcanic eruption
Impacts of atmospheric circulation patterns and cloud inhibition on aerosol radiative effect and boundary layer structure during winter air pollution in Sichuan Basin, China
Investigating the sign of stratocumulus adjustments to aerosols in the ICON global storm-resolving model
A model study investigating the sensitivity of aerosol forcing to the volatilities of semi-volatile organic compounds
Huiyun Du, Jie Li, Xueshun Chen, Gabriele Curci, Fangqun Yu, Yele Sun, Xu Dao, Song Guo, Zhe Wang, Wenyi Yang, Lianfang Wei, and Zifa Wang
Atmos. Chem. Phys., 25, 5665–5681, https://doi.org/10.5194/acp-25-5665-2025, https://doi.org/10.5194/acp-25-5665-2025, 2025
Short summary
Short summary
Inadequate consideration of mixing states and coatings on black carbon (BC) hinders aerosol radiation forcing quantification. Core–shell mixing aligns well with observations, but partial internal mixing is a more realistic representation. We used a microphysics module to determine the fraction of embedded BC and coating aerosols, constraining the mixing state. This reduced absorption enhancement by 30 %–43 % in northern China, offering insights into BC's radiative effects.
Zhixin Xue, Nair Udaysankar, and Sundar A. Christopher
Atmos. Chem. Phys., 25, 5497–5517, https://doi.org/10.5194/acp-25-5497-2025, https://doi.org/10.5194/acp-25-5497-2025, 2025
Short summary
Short summary
Canadian wildfires in August 2018 significantly increased surface air pollution across the United States (US) – by up to 69 % in some areas. Using model, satellite, and ground measurements, the study highlights how weather patterns and long-range smoke transport drive pollution. The northwestern US was most affected by Canadian wildfire smoke, while the northeastern US experienced the least impact. These findings indicate the growing concern that wildfire smoke poses to air quality across the US.
Anderson Da Silva, Louis Marelle, Jean-Christophe Raut, Yvette Gramlich, Karolina Siegel, Sophie L. Haslett, Claudia Mohr, and Jennie L. Thomas
Atmos. Chem. Phys., 25, 5331–5354, https://doi.org/10.5194/acp-25-5331-2025, https://doi.org/10.5194/acp-25-5331-2025, 2025
Short summary
Short summary
Particle sources in polar climates are unclear, affecting climate representation in models. This study introduces an evaluated method for tracking particles with backward modeling. Tests on simulated particles allowed us to show that traditional detection methods often misidentify sources. An improved method that accurately traces the origins of aerosol particles in the Arctic is presented. The study recommends using this enhanced method for better source identification of atmospheric species.
Stuart Evans
Atmos. Chem. Phys., 25, 4833–4845, https://doi.org/10.5194/acp-25-4833-2025, https://doi.org/10.5194/acp-25-4833-2025, 2025
Short summary
Short summary
This study of the North American Great Plains identifies the various weather patterns responsible for blowing dust in all parts of the region using a weather pattern classification. In the southwestern plains passing cold fronts are the primary cause of dust; in the understudied northern plains, summertime patterns and southerly pre-frontal winds are most important in the west and east, respectively. These results are valuable to understanding and forecasting dust in this complex source region.
Camelia Talianu, Jeni Vasilescu, Doina Nicolae, Alexandru Ilie, Andrei Dandocsi, Anca Nemuc, and Livio Belegante
Atmos. Chem. Phys., 25, 4639–4654, https://doi.org/10.5194/acp-25-4639-2025, https://doi.org/10.5194/acp-25-4639-2025, 2025
Short summary
Short summary
For Bucharest, Romania's capital, mobile measurements during two intensive campaigns and mixed-effect LUR (land-use regression) models to derive seasonal maps of near-surface PM10, NO2 and UFPs (ultrafine particles) have successfully been used. The model's performance was evaluated, demonstrating its potential for high-resolution mapping in other cities with well-characterized urban structures and diverse in situ monitoring stations.
Jiangtao Li, Xingqin An, Zhaobin Sun, Caihua Ye, Qing Hou, Yuxin Zhao, and Zhe Liu
Atmos. Chem. Phys., 25, 3583–3602, https://doi.org/10.5194/acp-25-3583-2025, https://doi.org/10.5194/acp-25-3583-2025, 2025
Short summary
Short summary
Climate change and pollution have intensified pollen allergies. We developed a pollen emissions model using phenology and random forests. Key factors affecting annual pollen emissions include temperature, relative humidity and sunshine hours. Pollen dispersal starts around 10 August, peaks around 30 August and ends by 25 September, lasting about 45 d. Over time, annual pollen emissions exhibit significant fluctuations and a downward trend.
Ruth A. R. Digby, Knut von Salzen, Adam H. Monahan, Nathan P. Gillett, and Jiangnan Li
Atmos. Chem. Phys., 25, 3109–3130, https://doi.org/10.5194/acp-25-3109-2025, https://doi.org/10.5194/acp-25-3109-2025, 2025
Short summary
Short summary
The refractive index of black carbon (BCRI), which determines how much energy black carbon absorbs and scatters, is difficult to measure, and different climate models use different values. We show that varying the BCRI across commonly used values can increase absorbing aerosol optical depth by 42 % and the warming effect from interactions between black carbon and radiation by 47 %, an appreciable fraction of the overall spread between models reported in recent literature assessments.
Hector Navarro-Barboza, Jordi Rovira, Vincenzo Obiso, Andrea Pozzer, Marta Via, Andres Alastuey, Xavier Querol, Noemi Perez, Marjan Savadkoohi, Gang Chen, Jesus Yus-Díez, Matic Ivancic, Martin Rigler, Konstantinos Eleftheriadis, Stergios Vratolis, Olga Zografou, Maria Gini, Benjamin Chazeau, Nicolas Marchand, Andre S. H. Prevot, Kaspar Dallenbach, Mikael Ehn, Krista Luoma, Tuukka Petäjä, Anna Tobler, Jaroslaw Necki, Minna Aurela, Hilkka Timonen, Jarkko Niemi, Olivier Favez, Jean-Eudes Petit, Jean-Philippe Putaud, Christoph Hueglin, Nicolas Pascal, Aurélien Chauvigné, Sébastien Conil, Marco Pandolfi, and Oriol Jorba
Atmos. Chem. Phys., 25, 2667–2694, https://doi.org/10.5194/acp-25-2667-2025, https://doi.org/10.5194/acp-25-2667-2025, 2025
Short summary
Short summary
Brown carbon (BrC) absorbs ultraviolet (UV) and visible light, influencing climate. This study explores BrC's imaginary refractive index (k) using data from 12 European sites. Residential emissions are a major organic aerosol (OA) source in winter, while secondary organic aerosol (SOA) dominates in summer. Source-specific k values were derived, improving model accuracy. The findings highlight BrC's climate impact and emphasize source-specific constraints in atmospheric models.
Yuzhi Jin, Jiandong Wang, Chao Liu, David C. Wong, Golam Sarwar, Kathleen M. Fahey, Shang Wu, Jiaping Wang, Jing Cai, Zeyuan Tian, Zhouyang Zhang, Jia Xing, Aijun Ding, and Shuxiao Wang
Atmos. Chem. Phys., 25, 2613–2630, https://doi.org/10.5194/acp-25-2613-2025, https://doi.org/10.5194/acp-25-2613-2025, 2025
Short summary
Short summary
Black carbon (BC) affects climate and the environment, and its aging process alters its properties. Current models, like WRF-CMAQ, lack full accounting for it. We developed the WRF-CMAQ-BCG model to better represent BC aging by introducing bare and coated BC species and their conversion. The WRF-CMAQ-BCG model introduces the capability to simulate BC mixing states and bare and coated BC wet deposition, and it improves the accuracy of BC mass concentration and aerosol optics.
Zhe Song, Shaocai Yu, Pengfei Li, Ningning Yao, Lang Chen, Yuhai Sun, Boqiong Jiang, and Daniel Rosenfeld
Atmos. Chem. Phys., 25, 2473–2494, https://doi.org/10.5194/acp-25-2473-2025, https://doi.org/10.5194/acp-25-2473-2025, 2025
Short summary
Short summary
Our results with injected sea salt aerosols for five open oceans show that sea salt aerosols with low injection amounts dominate shortwave radiation, mainly through indirect effects. As indirect aerosol effects saturate with increasing injection rates, direct effects exceed indirect effects. This implies that marine cloud brightening is best implemented in areas with extensive cloud cover, while aerosol direct scattering effects remain dominant when clouds are scarce.
Danny M. Leung, Jasper F. Kok, Longlei Li, David M. Lawrence, Natalie M. Mahowald, Simone Tilmes, and Erik Kluzek
Atmos. Chem. Phys., 25, 2311–2331, https://doi.org/10.5194/acp-25-2311-2025, https://doi.org/10.5194/acp-25-2311-2025, 2025
Short summary
Short summary
This study derives a gridded dust emission dataset for 1841–2000 by employing a combination of observed dust from core records and reanalyzed global dust cycle constraints. We evaluate the ability of global models to replicate the observed historical dust variability by using the emission dataset to force a historical simulation in an Earth system model. We show that prescribing our emissions forces the model to better match observations than other mechanistic models.
Hongyu Liu, Bo Zhang, Richard H. Moore, Luke D. Ziemba, Richard A. Ferrare, Hyundeok Choi, Armin Sorooshian, David Painemal, Hailong Wang, Michael A. Shook, Amy Jo Scarino, Johnathan W. Hair, Ewan C. Crosbie, Marta A. Fenn, Taylor J. Shingler, Chris A. Hostetler, Gao Chen, Mary M. Kleb, Gan Luo, Fangqun Yu, Mark A. Vaughan, Yongxiang Hu, Glenn S. Diskin, John B. Nowak, Joshua P. DiGangi, Yonghoon Choi, Christoph A. Keller, and Matthew S. Johnson
Atmos. Chem. Phys., 25, 2087–2121, https://doi.org/10.5194/acp-25-2087-2025, https://doi.org/10.5194/acp-25-2087-2025, 2025
Short summary
Short summary
We use the GEOS-Chem model to simulate aerosol distributions and properties over the western North Atlantic Ocean (WNAO) during the winter and summer deployments in 2020 of the NASA ACTIVATE mission. Model results are evaluated against aircraft, ground-based, and satellite observations. The improved understanding of life cycle, composition, transport pathways, and distribution of aerosols has important implications for characterizing aerosol–cloud–meteorology interactions over WNAO.
Mingrui Ma, Jiachen Cao, Dan Tong, Bo Zheng, and Yu Zhao
Atmos. Chem. Phys., 25, 2147–2166, https://doi.org/10.5194/acp-25-2147-2025, https://doi.org/10.5194/acp-25-2147-2025, 2025
Short summary
Short summary
We combined two global climate change pathways and three national emission control scenarios to analyze the future evolution of reactive nitrogen (Nr) deposition till the 2060s in China with air quality modeling. We show China’s clean air and carbon neutrality policies would overcome the adverse effects of climate change and efficiently reduce Nr deposition. The outflow of Nr fluxes from mainland China to the west Pacific would also be clearly reduced from continuous stringent emission controls.
Zhouyang Zhang, Jiandong Wang, Jiaping Wang, Nicole Riemer, Chao Liu, Yuzhi Jin, Zeyuan Tian, Jing Cai, Yueyue Cheng, Ganzhen Chen, Bin Wang, Shuxiao Wang, and Aijun Ding
Atmos. Chem. Phys., 25, 1869–1881, https://doi.org/10.5194/acp-25-1869-2025, https://doi.org/10.5194/acp-25-1869-2025, 2025
Short summary
Short summary
Black carbon (BC) exerts notable warming effects. We use a particle-resolved model to investigate the long-term behavior of the BC mixing state, revealing its compositions, coating thickness distribution, and optical properties all stabilize with a characteristic time of less than 1 d. This study can effectively simplify the description of the BC mixing state, which facilitates the precise assessment of the optical properties of BC aerosols in global and chemical transport models.
Shuangqin Yang, Yusi Liu, Li Chen, Nan Cao, Jing Wang, and Shuang Gao
EGUsphere, https://doi.org/10.5194/egusphere-2024-3705, https://doi.org/10.5194/egusphere-2024-3705, 2025
Short summary
Short summary
Black carbon, primary brown carbon, and secondary brown carbon are the leading light-absorbing carbonaceous aerosols (LACs) that contribute significantly to climate change. We modified the GEOS-Chem model to simulate the climate change by LACs based on local emission inventory, and explored the impacts of LACs properties and atmospheric variables on the corresponding DRFs in seven regions of China. The study confirms the warming effect of LACs and deepens our knowledge of their climatic effects.
Qianyi Huo, Zhicong Yin, Xiaoqing Ma, and Huijun Wang
Atmos. Chem. Phys., 25, 1711–1724, https://doi.org/10.5194/acp-25-1711-2025, https://doi.org/10.5194/acp-25-1711-2025, 2025
Short summary
Short summary
Dust days during the spring seasons of 2015–2023 in North China were classified into Mongolian cyclone and cold high types depending on the presence of the Mongolian cyclone. The Mongolian cyclone type led to more frequent and severe dust weather, indicated by PM10 concentrations. To comprehensively forecast the two types of dust weather, a common predictor was established based on 500 hPa anomalous circulation systems, offering insights for dust weather forecasting and climate prediction.
Mariya Petrenko, Ralph Kahn, Mian Chin, Susanne E. Bauer, Tommi Bergman, Huisheng Bian, Gabriele Curci, Ben Johnson, Johannes W. Kaiser, Zak Kipling, Harri Kokkola, Xiaohong Liu, Keren Mezuman, Tero Mielonen, Gunnar Myhre, Xiaohua Pan, Anna Protonotariou, Samuel Remy, Ragnhild Bieltvedt Skeie, Philip Stier, Toshihiko Takemura, Kostas Tsigaridis, Hailong Wang, Duncan Watson-Parris, and Kai Zhang
Atmos. Chem. Phys., 25, 1545–1567, https://doi.org/10.5194/acp-25-1545-2025, https://doi.org/10.5194/acp-25-1545-2025, 2025
Short summary
Short summary
We compared smoke plume simulations from 11 global models to each other and to satellite smoke amount observations aimed at constraining smoke source strength. In regions where plumes are thick and background aerosol is low, models and satellites compare well. However, the input emission inventory tends to underestimate in many places, and particle property and loss rate assumptions vary enormously among models, causing uncertainties that require systematic in situ measurements to resolve.
Yongqing Bai, Tianliang Zhao, Kai Meng, Yue Zhou, Jie Xiong, Xiaoyun Sun, Lijuan Shen, Yanyu Yue, Yan Zhu, Weiyang Hu, and Jingyan Yao
Atmos. Chem. Phys., 25, 1273–1287, https://doi.org/10.5194/acp-25-1273-2025, https://doi.org/10.5194/acp-25-1273-2025, 2025
Short summary
Short summary
We proposed a composite statistical method to identify the quasi-weekly oscillation (QWO) of regional PM2.5 transport over China in winter from 2015 to 2019. The QWO of regional PM2.5 transport is constrained by synoptic-scale disturbances of the East Asian winter monsoon circulation with the periodic activities of the Siberian high, providing a new insight into the understanding of regional pollutant transport with meteorological drivers in atmospheric environment changes.
Léo Clauzel, Sandrine Anquetin, Christophe Lavaysse, Gilles Bergametti, Christel Bouet, Guillaume Siour, Rémy Lapere, Béatrice Marticorena, and Jennie Thomas
Atmos. Chem. Phys., 25, 997–1021, https://doi.org/10.5194/acp-25-997-2025, https://doi.org/10.5194/acp-25-997-2025, 2025
Short summary
Short summary
Solar energy production in West Africa is set to rise and needs accurate solar radiation estimates which are affected by desert dust. This work analyses a March 2021 dust event using a modelling strategy incorporating desert dust. Results show that considering desert dust cuts errors in solar radiation estimates by 75 % and reduces surface solar radiation by 18 %. This highlights the importance of incorporating dust aerosols into solar forecasting for better accuracy.
Pan Wang, Yue Zhao, Jiandong Wang, Veli-Matti Kerminen, Jingkun Jiang, and Chenxi Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-3666, https://doi.org/10.5194/egusphere-2024-3666, 2025
Short summary
Short summary
We developed a numerical model to explore how the charge state of newly formed atmospheric particles evolves during growth and how this relates to ion-induced nucleation rates. We identify the governing factors of particle charging and further apply neural networks to predict particle charge states and estimate ion induced nucleation rates. This study offers insights into particle charging dynamics and introduces new methods for assessing ion induced nucleation in atmospheric research.
Zining Yang, Qiuyan Du, Qike Yang, Chun Zhao, Gudongze Li, Zihan Xia, Mingyue Xu, Renmin Yuan, Yubin Li, Kaihui Xia, Jun Gu, and Jiawang Feng
EGUsphere, https://doi.org/10.5194/egusphere-2024-3890, https://doi.org/10.5194/egusphere-2024-3890, 2025
Short summary
Short summary
This study investigates the impact of turbulent mixing on black carbon (BC) concentrations in urban areas using WRF-Chem at 25, 5, and 1 km resolutions. Significant variations in BC and turbulent mixing occur mainly at night. Higher resolutions reduce BC overestimation due to enhanced PBL mixing coefficients and vertical wind fluxes. Small-scale eddies at higher resolutions increase BC lifetime and column concentrations. Land use and terrain variations across multi-resolutions affect PBL mixing.
Ross J. Herbert, Alberto Sanchez-Marroquin, Daniel P. Grosvenor, Kirsty J. Pringle, Stephen R. Arnold, Benjamin J. Murray, and Kenneth S. Carslaw
Atmos. Chem. Phys., 25, 291–325, https://doi.org/10.5194/acp-25-291-2025, https://doi.org/10.5194/acp-25-291-2025, 2025
Short summary
Short summary
Aerosol particles that help form ice in clouds vary in number and type around the world and with time. However, in many weather and climate models cloud ice is not linked to aerosols that are known to nucleate ice. Here we report the first steps towards representing ice-nucleating particles within the UK Earth System Model. We conclude that in addition to ice nucleation by sea spray and mineral components of soil dust, we also need to represent ice nucleation by the organic components of soils.
Ryan Schmedding and Andreas Zuend
Atmos. Chem. Phys., 25, 327–346, https://doi.org/10.5194/acp-25-327-2025, https://doi.org/10.5194/acp-25-327-2025, 2025
Short summary
Short summary
Four different approaches for computing the interfacial tension between liquid phases in aerosol particles were tested for particles with diameters from 10 nm to more than 5 μm. Antonov's rule led to the strongest reductions in the onset relative humidity of liquid–liquid phase separation and reproduced measured interfacial tensions for highly immiscible systems. A modified form of the Butler equation was able to best reproduce measured interfacial tensions in more miscible systems.
Xinyue Huang, Wenyu Gao, and Hosein Foroutan
EGUsphere, https://doi.org/10.5194/egusphere-2024-3076, https://doi.org/10.5194/egusphere-2024-3076, 2024
Short summary
Short summary
This study investigates the relationship between wind-blown dust aerosols size distribution and wind conditions over topography at a regional scale, utilizing 10 years of dust reanalysis data. Linear regression models suggest that higher wind speeds and steeper land slopes, particularly under uphill winds, are associated with increased fractions of coarser dust particles. Moreover, these positive correlations weaken during summer and afternoon events, likely related to the haboob storms.
Masaru Yoshioka, Daniel P. Grosvenor, Ben B. B. Booth, Colin P. Morice, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 13681–13692, https://doi.org/10.5194/acp-24-13681-2024, https://doi.org/10.5194/acp-24-13681-2024, 2024
Short summary
Short summary
A 2020 regulation has reduced sulfur emissions from shipping by about 80 %, leading to a decrease in atmospheric aerosols that have a cooling effect primarily by affecting cloud properties and amounts. Our climate model simulations predict a global temperature increase of 0.04 K over the next 3 decades as a result, which could contribute to surpassing the Paris Agreement's 1.5 °C target. Reduced aerosols may have also contributed to the recent temperature spikes.
Alcide Zhao, Laura J. Wilcox, and Claire L. Ryder
Atmos. Chem. Phys., 24, 13385–13402, https://doi.org/10.5194/acp-24-13385-2024, https://doi.org/10.5194/acp-24-13385-2024, 2024
Short summary
Short summary
Climate models include desert dust aerosols, which cause atmospheric heating and can change circulation patterns. We assess the effect of dust on the Indian and east Asian summer monsoons through multi-model experiments isolating the effect of dust in current climate models for the first time. Dust atmospheric heating results in a southward shift of western Pacific equatorial rainfall and an enhanced Indian summer monsoon. This shows the importance of accurate dust representation in models.
Ragnhild Bieltvedt Skeie, Rachael Byrom, Øivind Hodnebrog, Caroline Jouan, and Gunnar Myhre
Atmos. Chem. Phys., 24, 13361–13370, https://doi.org/10.5194/acp-24-13361-2024, https://doi.org/10.5194/acp-24-13361-2024, 2024
Short summary
Short summary
In 2020, new regulations by the International Maritime Organization regarding sulfur emissions came into force, reducing emissions of SO2 from the shipping sector by approximately 80 %. In this study, we use multiple models to calculate how much the Earth energy balance changed due to the emission reduction or the so-called effective radiative forcing. The calculated effective radiative forcing is weak, comparable to the effect of the increase in CO2 over the last 2 to 3 years.
Ge Yu, Yueya Wang, Zhe Wang, and Xiaoming Shi
EGUsphere, https://doi.org/10.5194/egusphere-2024-3581, https://doi.org/10.5194/egusphere-2024-3581, 2024
Short summary
Short summary
Studying the cloud-forming capacity of aerosols is crucial in climate research. The PartMC model can provide detailed particle information and help these studies. This model is integrated with the ideal meteorological Cloud Model 1 (CM1) to simulate the aerosols at cloud-forming locations. Significant changes are revealed in the hygroscopicity distribution of aerosols within ascending air parcels. Additionally, different ascent times also affect aerosol aging processes.
Mingxu Liu, Hitoshi Matsui, Douglas S. Hamilton, Sagar D. Rathod, Kara D. Lamb, and Natalie M. Mahowald
Atmos. Chem. Phys., 24, 13115–13127, https://doi.org/10.5194/acp-24-13115-2024, https://doi.org/10.5194/acp-24-13115-2024, 2024
Short summary
Short summary
Atmospheric aerosol deposition provides bioavailable iron to promote marine primary production, yet the estimates of its fluxes remain highly uncertain. This study, by performing global aerosol simulations, demonstrates that iron-containing particle size upon emission is a critical factor in regulating soluble iron input to open oceans. Further observational constraints on this are needed to reduce modeling uncertainties.
Jingmin Li, Mattia Righi, Johannes Hendricks, Christof G. Beer, Ulrike Burkhardt, and Anja Schmidt
Atmos. Chem. Phys., 24, 12727–12747, https://doi.org/10.5194/acp-24-12727-2024, https://doi.org/10.5194/acp-24-12727-2024, 2024
Short summary
Short summary
Aiming to understand underlying patterns and trends in aerosols, we characterize the spatial patterns and long-term evolution of lower tropospheric aerosols by clustering multiple aerosol properties from preindustrial times to the year 2050 under three Shared
Socioeconomic Pathway scenarios. The results provide a clear and condensed picture of the spatial extent and distribution of aerosols for different time periods and emission scenarios.
Socioeconomic Pathway scenarios. The results provide a clear and condensed picture of the spatial extent and distribution of aerosols for different time periods and emission scenarios.
Bishuo He and Chunsheng Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-3441, https://doi.org/10.5194/egusphere-2024-3441, 2024
Short summary
Short summary
Factor-uncertainty analysis helps us understand their impacts on complex systems. Traditional methods have many limitations. This study introduces a new method to measure how each factor contributes to uncertainty. It gains insights into the role of each variable and works for all multi-factor systems. As an application, we analyzed how aerosols affect solar radiation and identified the key factors. These analyses can improve our understanding of the role of aerosols in climate change.
Yueming Cheng, Tie Dai, Junji Cao, Daisuke Goto, Jianbing Jin, Teruyuki Nakajima, and Guangyu Shi
Atmos. Chem. Phys., 24, 12643–12659, https://doi.org/10.5194/acp-24-12643-2024, https://doi.org/10.5194/acp-24-12643-2024, 2024
Short summary
Short summary
In March 2021, east Asia experienced an outbreak of severe dust storms after an absence of 1.5 decades. Here, we innovatively used the time-lagged ground-based aerosol size information with the fixed-lag ensemble Kalman smoother to optimize dust emission and reproduce the dust storm. This work is valuable for not only the quantification of health damage, aviation risks, and profound impacts on the Earth's system but also revealing the climatic driving force and the process of desertification.
Marc Mallet, Aurore Voldoire, Fabien Solmon, Pierre Nabat, Thomas Drugé, and Romain Roehrig
Atmos. Chem. Phys., 24, 12509–12535, https://doi.org/10.5194/acp-24-12509-2024, https://doi.org/10.5194/acp-24-12509-2024, 2024
Short summary
Short summary
This study investigates the interactions between smoke aerosols and climate in tropical Africa using a coupled ocean–atmosphere–aerosol climate model. The work shows that smoke plumes have a significant impact by increasing the low-cloud fraction, decreasing the ocean and continental surface temperature and reducing the precipitation of coastal western Africa. It also highlights the role of the ocean temperature response and its feedbacks for the September–November season.
Jia Liu, Cancan Zhu, Donghui Zhou, and Jinbao Han
Atmos. Chem. Phys., 24, 12341–12354, https://doi.org/10.5194/acp-24-12341-2024, https://doi.org/10.5194/acp-24-12341-2024, 2024
Short summary
Short summary
The hydrophilic coatings of aged black carbon (BC) particles absorb moisture during the hygroscopic growth process, but it is difficult to characterize how much water is absorbed under different relative humidities (RHs). In this study, we propose a method to obtain the water content in the coatings based on the equivalent complex refractive index retrieved from optical properties. This method is verified from a theoretical perspective, and it performs well for thickly coated BC at high RHs.
Catherine Anne Toolan, Joe Adabouk Amooli, Laura J. Wilcox, Bjørn H. Samset, Andrew G. Turner, and Daniel M. Westervelt
EGUsphere, https://doi.org/10.5194/egusphere-2024-3057, https://doi.org/10.5194/egusphere-2024-3057, 2024
Short summary
Short summary
Our research explores how well air pollution and rainfall patterns in Africa are represented in current climate models, by comparing model data to observations from 1981 to 2023. While most models capture seasonal air quality changes well, they struggle to replicate the distribution of non-dust pollutants and certain rainfall patterns, especially over east Africa. Improving these models is crucial for better climate predictions and preparing for future risks.
Mizuo Kajino, Kentaro Ishijima, Joseph Ching, Kazuyo Yamaji, Rio Ishikawa, Tomoki Kajikawa, Tanbir Singh, Tomoki Nakayama, Yutaka Matsumi, Koyo Kojima, Prabir K. Patra, and Sachiko Hayashida
EGUsphere, https://doi.org/10.5194/egusphere-2024-1811, https://doi.org/10.5194/egusphere-2024-1811, 2024
Short summary
Short summary
Air pollution in Delhi during post monsoon period is severe and association with intensive crop residue burning (CRB) over Punjab state has attracted attention. However, the relationship has been unclear as the CRB emissions conventionally derived from satellites were underestimated due to clouds and haze over the region. We evaluated the impact of CRB on PM2.5 as about 50 %, based on a combination of numerical modeling and high-density observation network using low-cost sensors we installed.
Zijun Li, Angela Buchholz, and Noora Hyttinen
Atmos. Chem. Phys., 24, 11717–11725, https://doi.org/10.5194/acp-24-11717-2024, https://doi.org/10.5194/acp-24-11717-2024, 2024
Short summary
Short summary
Evaluating organosulfur (OS) hygroscopicity is important for assessing aerosol–cloud climate interactions in the post-fossil-fuel future, when SO2 emissions decrease and OS compounds become increasingly important. Here a state-of-the-art quantum-chemistry-based method was used to predict the hygroscopic growth factors (HGFs) of a group of atmospherically relevant OS compounds and their mixtures with (NH4)2SO4. A good agreement was observed between their model-estimated and experimental HGFs.
Jamie R. Banks, Bernd Heinold, and Kerstin Schepanski
Atmos. Chem. Phys., 24, 11451–11475, https://doi.org/10.5194/acp-24-11451-2024, https://doi.org/10.5194/acp-24-11451-2024, 2024
Short summary
Short summary
The Aralkum is a new desert in Central Asia formed by the desiccation of the Aral Sea. This has created a source of atmospheric dust, with implications for the balance of solar and thermal radiation. Simulating these effects using a dust transport model, we find that Aralkum dust adds radiative cooling effects to the surface and atmosphere on average but also adds heating events. Increases in surface pressure due to Aralkum dust strengthen the Siberian High and weaken the summer Asian heat low.
Xinyue Shao, Minghuai Wang, Xinyi Dong, Yaman Liu, Wenxiang Shen, Stephen R. Arnold, Leighton A. Regayre, Meinrat O. Andreae, Mira L. Pöhlker, Duseong S. Jo, Man Yue, and Ken S. Carslaw
Atmos. Chem. Phys., 24, 11365–11389, https://doi.org/10.5194/acp-24-11365-2024, https://doi.org/10.5194/acp-24-11365-2024, 2024
Short summary
Short summary
Highly oxygenated organic molecules (HOMs) play an important role in atmospheric new particle formation (NPF). By semi-explicitly coupling the chemical mechanism of HOMs and a comprehensive nucleation scheme in a global climate model, the updated model shows better agreement with measurements of nucleation rate, growth rate, and NPF event frequency. Our results reveal that HOM-driven NPF leads to a considerable increase in particle and cloud condensation nuclei burden globally.
Falei Xu, Shuang Wang, Yan Li, and Juan Feng
Atmos. Chem. Phys., 24, 10689–10705, https://doi.org/10.5194/acp-24-10689-2024, https://doi.org/10.5194/acp-24-10689-2024, 2024
Short summary
Short summary
This study examines how the winter North Atlantic Oscillation (NAO) and El Niño–Southern Oscillation (ENSO) affect dust activities in North China during the following spring. The results show that the NAO and ENSO, particularly in their negative phases, greatly influence dust activities. When both are negative, their combined effect on dust activities is even greater. This research highlights the importance of these climate patterns in predicting spring dust activities in North China.
Hengheng Zhang, Wei Huang, Xiaoli Shen, Ramakrishna Ramisetty, Junwei Song, Olga Kiseleva, Christopher Claus Holst, Basit Khan, Thomas Leisner, and Harald Saathoff
Atmos. Chem. Phys., 24, 10617–10637, https://doi.org/10.5194/acp-24-10617-2024, https://doi.org/10.5194/acp-24-10617-2024, 2024
Short summary
Short summary
Our study unravels how stagnant winter conditions elevate aerosol levels in Stuttgart. Cloud cover at night plays a pivotal role, impacting morning air quality. Validating a key model, our findings aid accurate air quality predictions, crucial for effective pollution mitigation in urban areas.
Zixuan Jia, Massimo A. Bollasina, Wenjun Zhang, and Ying Xiang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2770, https://doi.org/10.5194/egusphere-2024-2770, 2024
Short summary
Short summary
Using multi-model mean data from regional aerosol perturbation experiments, we find that increased Asian sulfate aerosols strengthen the link between ENSO and the East Asian winter monsoon. In coupled simulations, aerosol-induced broad cooling increases ENSO amplitude by affecting the tropical Pacific mean state, contributing to increase monsoon interannual variability. These results provide important implications to reduce uncertainties in future projections of regional extreme variability.
Giorgio Veratti, Alessandro Bigi, Michele Stortini, Sergio Teggi, and Grazia Ghermandi
Atmos. Chem. Phys., 24, 10475–10512, https://doi.org/10.5194/acp-24-10475-2024, https://doi.org/10.5194/acp-24-10475-2024, 2024
Short summary
Short summary
In a study of two consecutive winter seasons, we used measurements and modelling tools to identify the levels and sources of black carbon pollution in a medium-sized urban area of the Po Valley, Italy. Our findings show that biomass burning and traffic-related emissions (especially from Euro 4 diesel cars) significantly contribute to BC concentrations. This research offers crucial insights for policymakers and urban planners aiming to improve air quality in cities.
Steven Soon-Kai Kong, Joshua S. Fu, Neng-Huei Lin, Guey-Rong Sheu, and Wei-Syun Huang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2549, https://doi.org/10.5194/egusphere-2024-2549, 2024
Short summary
Short summary
The accuracy of the chemical transport model, a key focus of our research, is strongly dependent on the dry deposition parameterization. Our finding shows that the refined CMAQ dust model correlated well with the ground and high altitude in-situ measurements by implementing the suggested dry deposition schemes. Furthermore, we reveal the mixing state of two types of aerosols at the upper level, a finding supported by both the optimized model and measurement.
Pascal Lemaitre, Arnaud Quérel, Alexis Dépée, Alice Guerra Devigne, Marie Monier, Thibault Hiron, Chloé Soto Minguez, Daniel Hardy, and Andrea Flossmann
Atmos. Chem. Phys., 24, 9713–9732, https://doi.org/10.5194/acp-24-9713-2024, https://doi.org/10.5194/acp-24-9713-2024, 2024
Short summary
Short summary
A new in-cloud scavenging scheme is proposed. It is based on a microphysical model of cloud formation and may be applied to long-distance atmospheric transport models (> 100 km) and climatic models. This model is applied to the two most extreme precipitating cloud types in terms of both relative humidity and vertical extension: cumulonimbus and stratus.
Alex Rowell, James Brean, David C. S. Beddows, Tuukka Petäjä, Máté Vörösmarty, Imre Salma, Jarkko V. Niemi, Hanna E. Manninen, Dominik van Pinxteren, Thomas Tuch, Kay Weinhold, Zongbo Shi, and Roy M. Harrison
Atmos. Chem. Phys., 24, 9515–9531, https://doi.org/10.5194/acp-24-9515-2024, https://doi.org/10.5194/acp-24-9515-2024, 2024
Short summary
Short summary
Different sources of airborne particles in the atmospheres of four European cities were distinguished by recognising their particle size distributions using a statistical procedure, positive matrix factorisation. The various sources responded differently to the changes in emissions associated with COVID-19 lockdowns, and the reasons are investigated. While traffic emissions generally decreased, particles formed from reactions of atmospheric gases decreased in some cities but increased in others.
Amy H. Peace, Ying Chen, George Jordan, Daniel G. Partridge, Florent Malavelle, Eliza Duncan, and Jim M. Haywood
Atmos. Chem. Phys., 24, 9533–9553, https://doi.org/10.5194/acp-24-9533-2024, https://doi.org/10.5194/acp-24-9533-2024, 2024
Short summary
Short summary
Natural aerosols from volcanic eruptions can help us understand how anthropogenic aerosols modify climate. We use observations and model simulations of the 2014–2015 Holuhraun eruption plume to examine aerosol–cloud interactions in September 2014. We find a shift to clouds with smaller, more numerous cloud droplets in the first 2 weeks of the eruption. In the third week, the background meteorology and previous conditions experienced by air masses modulate the aerosol perturbation to clouds.
Hua Lu, Min Xie, Bingliang Zhuang, Danyang Ma, Bojun Liu, Yangzhihao Zhan, Tijian Wang, Shu Li, Mengmeng Li, and Kuanguang Zhu
Atmos. Chem. Phys., 24, 8963–8982, https://doi.org/10.5194/acp-24-8963-2024, https://doi.org/10.5194/acp-24-8963-2024, 2024
Short summary
Short summary
To identify cloud, aerosol, and planetary boundary layer (PBL) interactions from an air quality perspective, we summarized two pollution patterns characterized by denser liquid cloud and by obvious cloud radiation interaction (CRI). Numerical simulation experiments showed CRI could cause a 50 % reduction in aerosol radiation interaction (ARI) under a low-trough system. The results emphasized the nonnegligible role of CRI and its inhibition of ARI under wet and cloudy pollution synoptic patterns.
Emilie Fons, Ann Kristin Naumann, David Neubauer, Theresa Lang, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 8653–8675, https://doi.org/10.5194/acp-24-8653-2024, https://doi.org/10.5194/acp-24-8653-2024, 2024
Short summary
Short summary
Aerosols can modify the liquid water path (LWP) of stratocumulus and, thus, their radiative effect. We compare storm-resolving model and satellite data that disagree on the sign of LWP adjustments and diagnose this discrepancy with causal inference. We find that strong precipitation, the absence of wet scavenging, and cloud deepening under a weak inversion contribute to positive LWP adjustments to aerosols in the model, despite weak negative effects from cloud-top entrainment enhancement.
Muhammed Irfan, Thomas Kühn, Taina Yli-Juuti, Anton Laakso, Eemeli Holopainen, Douglas R. Worsnop, Annele Virtanen, and Harri Kokkola
Atmos. Chem. Phys., 24, 8489–8506, https://doi.org/10.5194/acp-24-8489-2024, https://doi.org/10.5194/acp-24-8489-2024, 2024
Short summary
Short summary
The study examines how the volatility of semi-volatile organic compounds affects secondary organic aerosol (SOA) formation and climate. Our simulations show that uncertainties in these volatilities influence aerosol mass and climate impacts. Accurate representation of these compounds in climate models is crucial for predicting global climate patterns.
Cited articles
Akimoto, H., Ohara, T., Kurokawa, J, and Horii, N.: Verification of energy consumption in China during 1996–2003 by using satellite observational data, Atmos. Environ., 40, 7664–7667, https://doi.org/10.1016/j.atmosenv.2006.07.052, 2006.
Annema, J. A.: SPIN document "Productie van secundair staal", RIVM rapportnr, the Netherlands, 1993.
Biggins, P. D. and Harrison, R. M.: Atmospheric chemistry of automotive lead, Environ. Sci. Technol., 13, 558–565, https://doi.org/10.1021/es60153a017, 1979.
Bond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S., Roden, C., Streets, D. G., and Trautmann, N. M.: Historical emissions of black and organic carbon aerosol from energy related combustion, 1850–2000, Global Biogeochem. Cy., 21, 1–16, https://doi.org/10.1029/2006GB002840, 2007.
Bukowiecki, N., Lienemann, P., Hill, M., Figi, R., Richard, A., Furger, M., Rickers, K., Falkenberg, G., Zhao, Y., and Cliff, S. S.: Real-world emission factors for antimony and other brake wear related trace elements: size-segregated values for light and heavy duty vehicles, Environ. Sci. Technol., 43, 8072–8078, https://doi.org/10.1021/es9006096, 2009.
Chang, M. B., Huang, C. K., Wu, H. T., Lin, J. J., and Chang, S. H.: Characteristics of heavy metals on particles with different sizes from municipal solid waste incineration, J. Hazard. Mater., 79, 229–239, https://doi.org/10.1016/S0304-3894(00)00277-6, 2000.
Cheng, H. F. and Hu, Y. A.: Municipal solid waste (MSW) as a renewable source of energy: Current and future practices in China, Bioresour. Technol., 101, 3816–3824, https://doi.org/10.1016/j.biortech.2010.01.040, 2010.
Cheng, K., Wang, Y., Tian, H. Z., Gao, X., Zhang, Y. X., Wu, X. C., Zhu, C. Y., and Gao, J. J.: Atmospheric emission characteristics and control policies of five precedent-controlled toxic heavy metals from anthropogenic sources in China, Environ. Sci. Technol., 49, 1206–1214, https://doi.org/10.1021/es5037332, 2015.
Cheng, Z., Wang, S., Fu, X., Watson, J. G., Jiang, J., Fu, Q., Chen, C., Xu, B., Yu, J., Chow, J. C., and Hao, J.: Impact of biomass burning on haze pollution in the Yangtze River delta, China: a case study in summer 2011, Atmos. Chem. Phys., 14, 4573–4585, https://doi.org/10.5194/acp-14-4573-2014, 2014.
China Iron and Steel Association (CISA), P. R. China: China Steel Yearbook, China Steel Industry Press, Beijing, 2013 (in Chinese).
China Machinery Industry Federation (CMIF), P. R. China: China Machinery Industry Yearbook, China Machine Press, Beijing, 2013.
Department of Environment of Australia (DEA): Emissions estimation technique manual for aggregated emissions from domestic solid fuel burning, National Pollutant Inventroy (NPI), 1999.
Duan, J. C. and Tan, J. H.: Atmospheric heavy metals and arsenic in China: situation, sources and control policies, Atmos. Environ., 74, 93–101, https://doi.org/10.1016/j.atmosenv.2013.03.031, 2013.
European Commission (EC): Integrated Pollution Prevention and Control (IPPC), Best available techniques reference document on the production of iron and steel, 2001.
European Environment Agency (EEA): EMEP/EEA air pollutant emission inventory guidebook 2009, available at: http://www.eea.europa.eu/publications/emep-eea-emission-inventory-guidebook-2009 (last access: 24 December 2013), 2009.
European Environment Agency (EEA): EMEP/EEA air pollutant emission inventory guidebook 2013, available at: http://www.eea.europa.eu/publications/emep-eea-guidebook-2013 (last access: 12 November 2013), 2013.
Fang, F. M., Wang, Q. C., Ma, Z. W., Liu, R. H., and Cao, Y. H.: Estimation of atmospheric input of mercury to South Lake and Jingyue Pool, Chinese Geog. Sci., 12, 86–89, https://doi.org/10.1007/s11769-002-0076-y, 2002.
Feng, X.: Mercury pollution in China – an overview, Springer Publishers, 657–678, https://doi.org/10.1007/0-387-24494-8_27, 2005.
Gao, J. J., Tian, H. Z., Cheng, K., Lu, L., Wang, Y. X., Wu, Y., Zhu, C. Y., Liu, K. Y., Zhou, J. J., Liu, X. G., Chen, J., and Hao, J. M.: Seasonal and spatial variation of trace elements in multi-size airborne particulate matters of Beijing, China: Mass concentration, enrichment characteristics, source apportionment, chemical speciation and bioavailability, Atmos. Environ., 99, 257–265, https://doi.org/10.1016/j.atmosenv.2014.08.081, 2014.
Grübler, A., Nakićenović, N., and Victor, D. G.: Dynamics of energy technologies and global change, Energy Policy, 27, 247–280, https://doi.org/10.1016/S0301-4215(98)00067-6, 1999.
Hao, J. M., Tian, H. Z., and Lu, Y. Q.: Emission inventories of NOx from commercial energy consumption in China, 1995–1998, Environ. Sci. Technol., 36, 552–560, https://doi.org/10.1021/es015601k, 2002.
Hassel, D., Jost, P., and Dursbeck, F.: Das Abgas-Emissionsverhalten von Personenkraftwagen in der Bundesrepublik Deutschland im Bezugsjahr, 1985, UBA-Berichte, 7, 1987.
Hjortenkrans, D. S., Bergbäck, B. G., and Häggerud, A. V.: Metal emissions from brake linings and tires: case studies of Stockholm, Sweden 1995/1998 and 2005, Environ. Sci. Technol., 41, 5224–5230, https://doi.org/10.1021/es070198o, 2007.
Hulskotte, J. H. J., Schaap, M., and Visschedijk, A. J. H.: Brake wear from vehicles as an important source of diffuse copper pollution, 10th International specialized conference on diffuse pollution and sustainable basin management, 18–22, 2006.
Industrial emissions Reporting Information System (IRIS), European Commission, available at: http://iris.eionet.europa.eu/ippc/reporting-period-2003-2005/elv-reports/key-results/ (last access: 18 September 2014), 2005.
International Agency for Research on Cancer (IARC): Agents classified by the iarc monographs, volumes 1–111, available at: http://monographs.iarc.fr/ENG/Classification/index.php (last access: 23 October 2014), 2014.
Jockel, W. and Hartje, J.: Datenerhebung Ÿber die emissionen umweltgefŠhrdender schwermetalle, forschungsbericht 91-104 02 588, T V Rheinland e.V. Köln, 1991.
Johansson, C., Norman, M., and Burman, L.: Road traffic emission factors for heavy metals, Atmos. Environ., 43, 4681–4688, https://doi.org/10.1016/j.atmosenv.2008.10.024, 2009.
Kavlak, G. and Graedel, T. E.: Global anthropogenic selenium cycles for 1949–2010, Resour. Conserv. Recycl., 73, 17–22, https://doi.org/10.1016/j.resconrec.2013.01.013, 2013.
Kung, J. K. S. and Lin, J. Y.: The Causes of China's Great Leap Famine, 1959–1961, Econ. Dev. Cultural Change, 52, 51–73, https://doi.org/10.1086/380584, 2003.
Li, J. F., Song, Y., Mao, Y., Mao, Z. C., Wu, Y. S., Li, M. M., Huang, X., He, Q. C., and Hu, M.: Chemical characteristics and source apportionment of PM2.5 during the harvest season in eastern China's agricultural regions, Atmos. Environ., 92, 442–448, https://doi.org/10.1016/j.atmosenv.2014.04.058, 2014.
Lu, B., Kong, S. F., Han, B., Wang, X. Y., and Bai, Z. P.: Inventory of atmospheric pollutants discharged from biomass burning in China continent in 2007, Chin. Environ. Sci., 31, 186–194, 2011 (In Chinese with English abstract).
Ministry of Environmental Protection of the People's Republic of China (MEP), P. R. China: Emission standard of air pollutants for iron smelt industry, Beijing, 2012 (in Chinese).
Ministry of Environmental Protection of the People's Republic of China (MEP), P. R. China: The list of desulfurization facilities equipped by coal-fired boiler in China, available at: http://www.mep.gov.cn/gkml/hbb/bgg/201407/W020140711581927228220.pdf (last access: 8 July 2014), 2014a.
Ministry of Environmental Protection of the People's Republic of China (MEP), P. R. China: The list of denitration facilities equipped by coal-fired boiler in China, available at: http://www.mep.gov.cn/gkml/hbb/bgg/201407/W020140711581927393439.pdf (last access: 8 July 2014), 2014b.
Mukherjee, A. B.: Nickel: a review of occurrence, uses, emissions, and concentration in the environment in Finland, Environ. Rev., 6, 173–187, https://doi.org/10.1139/a99-001, 1998.
National Bureau of Statistics (NBS), P. R. China: Report on "12th Five-Year Plan" of the electric power industry. National Bureau of Statistics of China, Beijing, China, 2011 (in Chinese).
National Bureau of Statistics (NBS), P. R. China: China Energy Statistical Yearbook, China Statistics Press, Beijing, 2013b.
National Bureau of Statistics (NBS), P. R. China: China Statistical Yearbook, China Statistics Press, Beijing, 2013a.
Nie, Y. F.: Development and prospects of municipal solid waste (MSW) incineration in China, Front. Environ. Sci. Engin. China, 2, 1–7, https://doi.org/10.1007/s11783-008-0028-6, 2008.
Nriagu, J. O.: Global inventory of natural and anthropogenic emissions of trace metals to the atmosphere, Nature, 279, 409–411, https://doi.org/10.1038/279409a0, 1979.
Nriagu, J. O. and Pacyna, J. M.: Quantitative assessment of worldwide contamination of air, water and soils by trace metals, Nature, 333, 134–139, https://doi.org/10.1038/333134a0, 1988.
Österle, W., Prietzel, C., Kloß, H., and Dmitriev, A. I.: On the role of copper in brake friction materials, Tribol. Int., 43, 2317–2326, https://doi.org/10.1016/j.triboint.2010.08.005, 2010.
Pacyna, E. G., Pacyna, J. M., Steenhuisen, F., and Wilson, S.: Global anthropogenic mercury emission inventory for 2000, Atmos. Environ., 40, 4048–4063, https://doi.org/10.1016/j.atmosenv.2006.03.041, https://doi.org/10.1016/j.atmosenv.2006.03.041, 2006.
Pacyna, J. M.: Estimation of the atmospheric emissoins of trace elements from anthropogenic sources in Europe, Atmos. Environ., 18, 41–50, https://doi.org/10.1016/0004-6981(84)90227-0, 1984.
Pacyna, J. M. and Pacyna, E. G.: An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide, Environ. Rev., 9, 269–298, https://doi.org/10.1139/a01-012, 2001.
Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., Mason, R., Mukherjee, A. B., Stracher, G. B., Streets, D. G., and Telmer, K.: Global mercury emissions to the atmosphere from anthropogenic and natural sources, Atmos. Chem. Phys., 10, 5951–5964, https://doi.org/10.5194/acp-10-5951-2010, 2010.
Qin, J. F.: Estimation of lead emission to atmospheric from gasoline combustion, Guangdong Trace Ele. Sci., 17, 27–34, 2010 (in Chinese).
Reddy, M. S., Basha, S., Joshi, H. V., and Jha, B.: Evaluation of the emission characteristics of trace metals from coal and fuel oil fired power plants and their fate during combustion, J. Hazard. Mater., 123, 242–249, https://doi.org/10.1016/j.jhazmat.2005.04.008, 2005.
Ren, D. Y., Zhao, F. H., Dai, S., and Zhang, J.: Geochemistry of trace elements in coal, Science Press, Beijing, 2006 (in Chinese).
Robbins, N., Zhang, Z. F., Sun, J., Ketterer, M. E., Lalumandier, J. A., and Shulze, R. A.: Childhood lead exposure and uptake in teeth in the Cleveland area during the era of leaded gasoline, Sci. Total Environ., 408, 4118–4127, https://doi.org/10.1016/j.scitotenv.2010.04.060, 2010.
Song, D. Y., Qin, Y., and Wang, W. F.: Burning and migration behavior of trace elements of coal used in power plant, J. China Univ. Min. Technol., 32, 316–320, 2003 (in Chinese with English abstract).
Streets, D. G., Bond, T. C., Lee, T., and Jang, C.: On the future of carbonaceous aerosol emissions, J. Geophys. Res., 109, 1–19, https://doi.org/10.1029/2004JD004902, 2004.
Streets, D. G., Bond, T. C., Carmichael, G. R., Fernandes, S. D., and Fu, Q.: An inventory of gaseous and primary aerosol emissions in Asia in the year 2000, J. Geophys. Res. Policy, 108, 8809, https://doi.org/10.1029/2002JD003093, 2003.
Streets, D. G., Hao, J. M., Wu, Y., Jiang, J. K., Chan, M., Tian, H. Z., and Feng, X. B.: Anthropogenic mercury emissions in China, Atmos. Environ., 39, 7789–7806, https://doi.org/10.1016/j.atmosenv.2005.08.029, 2005.
Streets, D. G., Devane, M. K., Lu, Z., Bond, T. C., Sunderland, E. M., and Jacob, D. J.: All-time releases of mercury to the atmosphere from human activities, Environ. Sci. Technol., 45, 10485–10491, https://doi.org/10.1021/es202765m, 2011.
Tang, X. Y., Zhao, J. Y., and Huang, W. H.: Nine metal elements in coal of China, Coal Geol. China, 14, 43–54, 2002 (in Chinese).
Theloke, J., Kummer, U., Nitter, S., Geftler, T., and Friedrich, R.: Überarbeitung der Schwermetallkapitel im CORINAIR Guidebook zur Verbesserung der Emissionsinventare und der Berichterstattung im Rahmen der Genfer Luftreinhaltekonvention. Report for Umweltbundesamt, 2008.
Tian, H. Z., Hao, J. M., Hu, M. Y., and Nie, Y. F.: Recent trends of energy consumption and air pollution in China, J. Energy Eng., 133, 4–12, https://doi.org/10.1061/(ASCE)0733-9402(2007)133:1(4), 2007.
Tian, H. Z., Wang, Y., Xue, Z. G., Cheng, K., Qu, Y. P., Chai, F. H., and Hao, J. M.: Trend and characteristics of atmospheric emissions of Hg, As, and Se from coal combustion in China, 1980–2007, Atmos. Chem. Phys., 10, 11905–11919, https://doi.org/10.5194/acp-10-11905-2010, 2010.
Tian, H. Z., Cheng, K., Wang, Y., Zhao, D., Chai, F. H., Xue, Z. G., and Hao, J. M.: Quantitative assessment of variability and uncertainty of hazardous trace element (Cd, Cr, and Pb) contents in Chinese coals by using bootstrap simulation, J. Air Waste Manage. Assoc., 61, 755–763, https://doi.org/10.3155/1047-3289.61.7.755, 2011a.
Tian, H. Z., Zhao, D., and Wang, Y.: Emission inventories of atmospheric pollutants discharged from biom ass burning in China, Acta Sci. Circumstantiae, 31, 349–357, 2011b (in Chinese with English abstract).
Tian, H. Z., Cheng, K., Wang, Y., Zhao, D., Lu, L., Jia, W. X., and Hao, J. M.: Temporal and spatial variation characteristics of atmospheric emissions of Cd, Cr, and Pb from coal in China, Atmos. Environ., 50, 157–163, https://doi.org/10.1016/j.atmosenv.2011.12.045, 2012a.
Tian, H. Z., Lu, L., Cheng, K., Hao, J. M., Zhao, D., Wang, Y., Jia, W. X., and Qiu, P. P.: Anthropogenic atmospheric nickel emissions and its distribution characteristics in China, Sci. Total Environ., 417, 148–157, https://doi.org/10.1016/j.scitotenv.2011.11.069, 2012b.
Tian, H. Z., Zhao, D., Cheng, K., Lu, L., He, M. C., and Hao, J. M.: Anthropogenic atmospheric emissions of antimony and its spatial distribution characteristics in China, Environ. Sci. Technol., 46, 3973–3980, https://doi.org/10.1021/es2041465, 2012c.
Tian, H. Z., Gao, J. J., Lu, L., Zhao, D., Cheng, K., and Qiu, P. P.: Temporal trends and spatial variation characteristics of hazardous air pollutant emission inventory from municipal solid waste incineration in China, Environ. Sci. Technol., 46, 10364–10371, https://doi.org/10.1021/es302343s, 2012d.
Tian, H., Lu, L., Hao, J. M., Gao, J. J., Cheng, K., Liu, K. Y., Qiu, P. P., and Zhu, C. Y.: A review of key hazardous trace elements in Chinese coals: Abundance, occurrence, behavior during coal combustion and their environmental impacts, Energy Fuels, 27, 601–614, https://doi.org/10.1021/ef3017305, 2013.
Tian, H., Liu, K. Y., Zhou, J. J., Lu, L., Hao, J. M., Qiu, P. P., Gao, J. J., Zhu, C. Y., Wang, K., and Hua, S. B.: Atmospheric emission inventory of hazardous trace elements from China's coal-fired power plants–Temporal trends and spatial variation characteristics, Environ. Sci. Technol., 48, 3575–3582, https://doi.org/10.1021/es404730j, 2014a.
Tian, H. Z., Zhou, J. R., Zhu, C. Y., Zhao, D., Gao, J. J., Hao, J. M., He, M. C., Liu, K. Y., Wang, K., and Hua, S. B.: A Comprehensive global inventory of atmospheric antimony emissions from anthropogenic activities, 1995–2010, Environ. Sci. Technol., 48, 10235–10241, https://doi.org/10.1021/es405817u, 2014b.
United Kingdom (UK): emission factor databases of NAEI, 1970–1995, availiable at: http://naei.defra.gov.uk/data/ef-all-resultsfiq=14774, (last access: 10 August 2014), 1995.
United Kingdom (UK): emission factor databases of NAEI, available at: http://naei.defra.gov.uk/data/ef-all-resultsfiq=15354 (last access: 11 September 2014), 2012.
US Environmental Protection Agency (US EPA): AP 42, fifth edition, volume I, chapter 1, section 1.1: bituminous and subbituminous coal combustion, availabe at: http://www.epa.gov/ttn/chief/ap42/ch01/index.html (last access: 12 October 2014), 1993.
US Environmental Protection Agency (US EPA): AP 42, fifth edition, volume I, chapter 2, section 2.1: refuese combustion, availiable at: http://www.epa.gov/ttn/chief/ap42/ch02/index.html (last access: 23 July 2014), 1996.
US Environmental Protection Agency (US EPA): Web Factor Information Retrieval System (WebFIRE), availabe at: http://cfpub.epa.gov/webfire/index.cfmfiaction=fire.FactorsBasedOnDetailedSearch (last access: 21 September 2014), 2012.
Van der Most, P. F. J. and Veldt, C.: Emission factors Manual PARCOM-ATMOS, TNO-MEP, Apeldoorn, the Netherlands, 1991.
von Uexküll, O., Skerfving, S., Doyle, R., and Braungart, M.: Antimony in brake pads-a carcinogenic componentfi, J. Cleaner Prod., 13, 19–31, https://doi.org/10.1016/j.jclepro.2003.10.008, 2005.
Wu, Q. R., Wang, S. X., Zhang, L., Song, J. X., Yang, H., and Meng, Y.: Update of mercury emissions from China's primary zinc, lead and copper smelters, 2000–2010, Atmos. Chem. Phys., 12, 11153–11163, https://doi.org/10.5194/acp-12-11153-2012, 2012.
Wu, Y., Wang, S. X., Streets, D. G., Hao, J. M., Chan, M., and Jiang, J. K.: Trends in anthropogenic mercury emissions in China from 1995 to 2003, Environ. Sci. Technol., 40, 5312–5318, https://doi.org/10.1021/es060406x, 2006.
Wu, Y. Y., Qin, Y., Yi, T. S., and Xia, X. H.: Enrichment and geochemical origin of some trace elements in high-sulfur coal from Kaili, eastern Guizhou Province, Geochimica, 37, 615–622, 2008 (in Chinese with English abstract).
Wu, Y., Streets, D. G., Wang, S. X., and Hao, J. M.: Uncertainties in estimating mercury emissions from coal-fired power plants in China, Atmos. Chem. Phys., 10, 2937–2946, https://doi.org/10.5194/acp-10-2937-2010, 2010.
Xu, H. M., Cao, J. J., Ho, K. F., Ding, H., Han, Y. M., Wang, G. H., Chow, J. C., Watson, J. G., Khol, S. D., Qiang, J., and Li, W. T.: Lead concentrations in fine particulate matter after the phasing out of leaded gasoline in Xi'an, China, Atmos. Environ., 46, 217–224, https://doi.org/10.1016/j.atmosenv.2011.09.078, 2012.
Xu, M. H., Yan, R., Zheng, C. G., Qiao, Y., Han, J., and Sheng, C. D.: Status of trace element emission in a coal combustion process: a review, Fuel Process. Technol., 85, 215–223, https://doi.org/10.1016/S0378-3820(03)00174-7, 2004.
Yuan, X. L., Mi, M., Mu, R. M., and Zuo, J.: Strategic route map of sulphur dioxide reduction in China, Energy Policy, 60, 844–851, https://doi.org/10.1016/j.enpol.2013.05.072, 2013.
Zhang, J. L. and Wang, G. S.: Energy saving technologies and productive efficiency in the Chinese iron and steel sector, Energy, 33, 525–537, https://doi.org/10.1016/j.energy.2007.11.002, 2008.
Zhao, Y., Nielsen, C. P., Lei, Y., McElroy, M. B., and Hao, J.: Quantifying the uncertainties of a bottom-up emission inventory of anthropogenic atmospheric pollutants in China, Atmos. Chem. Phys., 11, 2295–2308, https://doi.org/10.5194/acp-11-2295-2011, 2011.
Zhu, C. Y., Tian, H. Z., Cheng, K., Liu, K. Y., Wang, K., Hua, S. B., Gao, J. J., and Zhou, J. R.: Potentials of whole process control of heavy metals emissions from coal-fired power plants in China, J. Cleaner Prod., https://doi.org/10.1016/j.jclepro.2015.05.008, in press, 2015.
Short summary
For the first time, with S-shaped curves, the best available representation of time-varying emission factors of 12 heavy metals (Hg, As, Se, Pb, Cd, Cr, Ni, Sb, Mn, Co, Cu and Zn) from primary anthropogenic sources of China are determined on account of economic transitions and pollution control technology improvement. The temporal and spatial variation characteristics of these heavy metals emissions during the period of 1949−2012 are calculated and evaluated with uncertainty analysis.
For the first time, with S-shaped curves, the best available representation of time-varying...
Special issue
Altmetrics
Final-revised paper
Preprint