Articles | Volume 14, issue 7
https://doi.org/10.5194/acp-14-3739-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-14-3739-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Ice particle habit and surface roughness derived from PARASOL polarization measurements
B. H. Cole
Department of Atmospheric Sciences, Texas A&M University, College Station, Texas, USA
P. Yang
Department of Atmospheric Sciences, Texas A&M University, College Station, Texas, USA
B. A. Baum
Space Science and Engineering Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
Laboratoire d'Optique Atmosphérique, UMR CNRS 8518, Université de Lille 1 – Sciences et Technologies, Villeneuve d'Ascq, France
L. C.-Labonnote
Laboratoire d'Optique Atmosphérique, UMR CNRS 8518, Université de Lille 1 – Sciences et Technologies, Villeneuve d'Ascq, France
Related authors
No articles found.
Gianluca Di Natale, Helen Brindley, Laura Warwick, Sanjeevani Panditharatne, Ping Yang, Robert Oscar David, Tim Carlsen, Sorin Nicolae Vâjâiac, Alex Vlad, Sorin Ghemulet, Richard Bantges, Andreas Foth, Martin Flügge, Reidar Lyngra, Hilke Oetjen, Dirk Schuettemeyer, Luca Palchetti, and Jonathan Murray
EGUsphere, https://doi.org/10.5194/egusphere-2025-3547, https://doi.org/10.5194/egusphere-2025-3547, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Cirrus clouds play a vital role in regulating the energy balance of our planet. Unfortunately, these are still not completely understood representing the major source of error in the predictive performance of climate models. We show that a good consinstency between in situ measurements of cirrus cloud microphysics and remote sensing observations from ground base is achievable by simulating the emitted spectrum with the current parameterization of cirrus optical properties.
Matthieu Dabrowski, José Mennesson, Jérôme Riedi, Chaabane Djeraba, and Pierre Nabat
Geosci. Model Dev., 18, 3707–3733, https://doi.org/10.5194/gmd-18-3707-2025, https://doi.org/10.5194/gmd-18-3707-2025, 2025
Short summary
Short summary
This work focuses on the prediction of aerosol concentration values at the ground level, which are a strong indicator of air quality, using artificial neural networks. A study of different variables and their efficiency as inputs for these models is also proposed and reveals that the best results are obtained when using all of them. Comparison between network architectures and information fusion methods allows for the extraction of knowledge on the most efficient methods in the context of this study.
Karlie N. Rees, Timothy J. Garrett, Thomas D. DeWitt, Corey Bois, Steven K. Krueger, and Jérôme C. Riedi
Nonlin. Processes Geophys., 31, 497–513, https://doi.org/10.5194/npg-31-497-2024, https://doi.org/10.5194/npg-31-497-2024, 2024
Short summary
Short summary
The shapes of clouds viewed from space reflect vertical and horizontal motions in the atmosphere. We theorize that, globally, cloud perimeter complexity is related to the dimension of turbulence also governed by horizontal and vertical motions. We find agreement between theory and observations from various satellites and a numerical model and, remarkably, that the theory applies globally using only basic planetary physical parameters from the smallest scales of turbulence to the planetary scale.
Christian Matar, Céline Cornet, Frédéric Parol, Laurent C.-Labonnote, Frédérique Auriol, and Marc Nicolas
Atmos. Meas. Tech., 16, 3221–3243, https://doi.org/10.5194/amt-16-3221-2023, https://doi.org/10.5194/amt-16-3221-2023, 2023
Short summary
Short summary
The optimal estimation formalism is applied to OSIRIS airborne high-resolution multi-angular measurements to retrieve COT and Reff. The corresponding uncertainties related to measurement errors, which are up to 6 and 12 %, the non-retrieved parameters, which are less than 0.5 %, and the cloud model assumptions show that the heterogeneous vertical profiles and the 3D radiative transfer effects lead to average uncertainties of 5 and 4 % for COT and 13 and 9 % for Reff.
Xavier Ceamanos, Bruno Six, Suman Moparthy, Dominique Carrer, Adèle Georgeot, Josef Gasteiger, Jérôme Riedi, Jean-Luc Attié, Alexei Lyapustin, and Iosif Katsev
Atmos. Meas. Tech., 16, 2575–2599, https://doi.org/10.5194/amt-16-2575-2023, https://doi.org/10.5194/amt-16-2575-2023, 2023
Short summary
Short summary
A new algorithm to retrieve the diurnal evolution of aerosol optical depth over land and ocean from geostationary meteorological satellites is proposed and successfully evaluated with reference ground-based and satellite data. The high-temporal-resolution aerosol observations that are obtained from the EUMETSAT Meteosat Second Generation mission are unprecedented and open the door to studies that cannot be conducted with the once-a-day observations available from low-Earth-orbit satellites.
Huazhe Shang, Souichiro Hioki, Guillaume Penide, Céline Cornet, Husi Letu, and Jérôme Riedi
Atmos. Chem. Phys., 23, 2729–2746, https://doi.org/10.5194/acp-23-2729-2023, https://doi.org/10.5194/acp-23-2729-2023, 2023
Short summary
Short summary
We find that cloud profiles can be divided into four prominent patterns, and the frequency of these four patterns is related to intensities of cloud-top entrainment and precipitation. Based on these analyses, we further propose a cloud profile parameterization scheme allowing us to represent these patterns. Our results shed light on how to facilitate the representation of cloud profiles and how to link them to cloud entrainment or precipitating status in future remote-sensing applications.
Thibault Vaillant de Guélis, Gérard Ancellet, Anne Garnier, Laurent C.-Labonnote, Jacques Pelon, Mark A. Vaughan, Zhaoyan Liu, and David M. Winker
Atmos. Meas. Tech., 15, 1931–1956, https://doi.org/10.5194/amt-15-1931-2022, https://doi.org/10.5194/amt-15-1931-2022, 2022
Short summary
Short summary
A new IIR-based cloud and aerosol discrimination (CAD) algorithm is developed using the IIR brightness temperature differences for cloud and aerosol features confidently identified by the CALIOP version 4 CAD algorithm. IIR classifications agree with the majority of V4 cloud identifications, reduce the ambiguity in a notable fraction of
not confidentV4 cloud classifications, and correct a few V4 misclassifications of cloud layers identified as dense dust or elevated smoke layers by CALIOP.
Souichiro Hioki, Jérôme Riedi, and Mohamed S. Djellali
Atmos. Meas. Tech., 14, 1801–1816, https://doi.org/10.5194/amt-14-1801-2021, https://doi.org/10.5194/amt-14-1801-2021, 2021
Short summary
Short summary
This research estimates the magnitude of a motion-induced error in the measurement of polarimetric state of light by a planned instrument on a future satellite. We discovered that the motion-induced error can not be cancelled out by spatiotemporal averaging, but it can be predicted from the along-track change of the intensity of light. With the estimated statistics and the simulation model, this research paves a way to provide pixel-level quality information in the future satellite products.
E. Eva Borbas, Elisabeth Weisz, Chris Moeller, W. Paul Menzel, and Bryan A. Baum
Atmos. Meas. Tech., 14, 1191–1203, https://doi.org/10.5194/amt-14-1191-2021, https://doi.org/10.5194/amt-14-1191-2021, 2021
Short summary
Short summary
As the VIIRS satellite sensor has no infrared (IR) H2O absorption bands, we construct the missing bands through the fusion of imager (VIIRS) and sounder (CrIS) data in an attempt to improve derivation of moisture products. This study clearly demonstrates the positive impact by adding fusion IR absorption spectral bands and the potential for continuing the moisture record from MODIS and the previous generations of polar-orbiting satellite sensors.
Richard J. Bantges, Helen E. Brindley, Jonathan E. Murray, Alan E. Last, Jacqueline E. Russell, Cathryn Fox, Stuart Fox, Chawn Harlow, Sebastian J. O'Shea, Keith N. Bower, Bryan A. Baum, Ping Yang, Hilke Oetjen, and Juliet C. Pickering
Atmos. Chem. Phys., 20, 12889–12903, https://doi.org/10.5194/acp-20-12889-2020, https://doi.org/10.5194/acp-20-12889-2020, 2020
Short summary
Short summary
Understanding how ice clouds influence the Earth's energy balance remains a key challenge for predicting the future climate. These clouds are ubiquitous and are composed of ice crystals that have complex shapes that are incredibly difficult to model. This work exploits new measurements of the Earth's emitted thermal energy made from instruments flown on board an aircraft to test how well the latest ice cloud models can represent these clouds. Results indicate further developments are required.
Cited articles
Baran, A. J.: A review of the light scattering properties of cirrus, J. Quant. Spectrosc. Radiat. Transfer, 110, 1239–1260, 2009.
Baran, A. J.: From the single-scattering properties of ice crystals to climate prediction: a way forward, Atmos. Res., 112, 45–69, 2012.
Baran, A. J. and C.-Labonnote, L.: On the reflection and polarization properties of ice cloud, J. Quant. Spectrosc. Ra., 100, 41–54, 2006.
Baran, A. J. and C.-Labonnote, L.: A self-consistent scattering model for cirrus, I: The solar region, Q. J. Roy. Meteor. Soc., 133, 1899–1912, 2007.
Baran, A. J., Connolly, P. J., Heymsfield, A. J., and Bansemer, A.: Using in situ estimates of ice water content, volume extinction coefficient, and the total solar optical depth obtained during the tropical ACTIVE campaign to test an ensemble model of cirrus ice crystals, Q. J. Roy. Meteor. Soc., 137, 199–218, 2011.
Baum, B. A., Yang, P., Heymsfield, A. J., Platnick, S., King, M. D., and Bedka, S. T.: Bulk scattering models for the remote sensing of ice clouds. Part 2: Narrowband models, J. Appl. Meteorol., 44, 1896–911, 2005.
Baum, B. A., Yang, P., Heymsfield, A. J., Schmitt, C., Xie, Y., Bansemer, A., Hu, Y.-X., and Zhang, Z.: Improvements to shortwave bulk scattering and absorption models for the remote sensing of ice clouds, J. Appl. Meteorol. Clim., 50, 1037–1056, 2011.
Baumgardner, D., Chepfer, H., Raga, G. B., and Kok, G. L.: The shapes of very small cirrus particles derived from in situ measurements, Geophys. Res. Lett., 32, L01806, https://doi.org/10.1029/2004GL021300, 2005.
Baumgardner, D., Brenguier, J. L., Bucholtz, A., Coe, H., DeMott, P., and Garrett, T. J.: Airborne instruments to measure atmospheric aerosol particles, clouds and radiation: a cook's tour of mature and emerging technology, Atmos. Res., 102, 10–29, 2011.
Breon, F. M.: Parasol Level-2 Product Data Format and User Manual. Ed 1 - Rev. 3, 1–32, 2009.
C.-Labonnote, L., Brogniez, G., Buriez, J. C., and Doutriaux-Boucher, M.: Polarized light scattering by inhomogeneous hexagonal monocrystals: validation with ADEOS-POLDER measurements, J. Geophys. Res. 106, 12139–12153, 2001.
Cairns, B., Russell, E. E., LaVeigne, J. D., and Tennant, P. M. W.: Research scanning polarimeter and airborne usage for remote sensing of aerosols, Proc. SPIE, 5158, 33–44, 2003.
Chepfer, H., Brogniez, G., and Fouquart, Y.: Cirrus clouds' microphysical properties deduced from POLDER observations, J. Quant. Spectrosc. Radiat. Transfer, 60, 375–390, 1998.
Chepfer, H., Goloub, P., Riedi, J., de Haan, J. F., and Hovenier, J. W.: Ice crystal shapes in cirrus clouds derived from POLDER-1/ADEOS-1, J. Geophys. Res., 106, 7955–7966, https://doi.org/10.1029/2000JD900285, 2001.
Cole, B. H., Yang, P., Baum, B. A., Riedi, J., C.-Labonnote, L., Thieuleux, F., and Platnick, S.: Comparison of PARASOL observations with polarized reflectances simulated using different ice habit mixtures, J. Appl. Meteor. Climatol., 52, 186–96, 2013.
de Haan, J. F., Bosma, P. B., and Hovenier, J. W.: The adding method for multiple scattering calculations of polarized light, Astron. Astrophys., 183, 371–391, 1987.
Deschamps, P., Breon, F. M., Leroy, M., Podaire, A., Bricaud, A., Buriez, J. C., and Seze, G.: The POLDER mission: instrument characteristics and scientific objectives, IEEE Trans. Geosci. Rem. Sensing, 32, 598–615, 1994.
Ding, S., Xie, Y., Yang, P., Weng, F., Liu, Q., Baum, B. A., and Hu, Y.-X.: Estimates of radiation over clouds and dust aerosols: optimized number of terms in phase function expansion, IEEE T. Geosci. Remote, 110, 1190–1198, 2009.
Forster, P., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D., Haywood, J., Lean, J., Lowe, D., Myhre, G., Nganga, J., Prinn, R., Raga, G., Schulz, M., and Van Dorland, R.: Chapter 2: Changes in Atmospheric Constituents and in Radiative Forcing, in: IPCC Fourth Assessment Report WG 1, edited by: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., Cambridge University Press, Cambridge, 129–234, 2007.
Garrett, T. J., Navarro, B. C., Twohy, C. H., Jensen, E. J., Baumgardner, D. G., Bui, P. T., Gerber, H., Herman, R. L., Heymsfield, A. J., Lawson, P., Minnis, P., Nguyen, L., Poellot, M., Pope, S. K., Valero, F. P. J., and Weinstock, E. M.: Evolution of a Florida Cirrus Anvil, J. Atmos. Sci., 62, 2352–2372, 2005.
Gayet, J. F., Crépel, O., Fournol, J. F., and Oshchepkov, S.: A new airborne polar Nephelometer for the measurements of optical and microphysical cloud properties. Part I: Theoretical design, Ann. Geophys., 15, 451–459, https://doi.org/10.1007/s00585-997-0451-1, 1997.
Gayet, J.-F., Mioche, G., Shcherbakov, V., Gourbeyre, C., Busen, R., and Minikin, A.: Optical properties of pristine ice crystals in mid-latitude cirrus clouds: a case study during CIRCLE-2 experiment, Atmos. Chem. Phys., 11, 2537–2544, https://doi.org/10.5194/acp-11-2537-2011, 2011.
Gerber, H., Takano, Y., Garrett, T. J., and Hobbs, P. V.: Nephelometer measurements of the asymmetry parameter, volume extinction coefficient, and backscatter ratio in Arctic clouds, J. Atmos. Sci., 57, 3021–3034, 2000.
Guignard, A., Stubenrauch, C. J., Baran, A. J., and Armante, R.: Bulk microphysical properties of semi-transparent cirrus from AIRS: a six year global climatology and statistical analysis in synergy with geometrical profiling data from CloudSat-CALIPSO, Atmos. Chem. Phys., 12, 503–525, https://doi.org/10.5194/acp-12-503-2012, 2012.
Heymsfield, A. J. and Miloschevich, L. M.: Parameterizations for the cross-sectional area and extinction of cirrus and stratiform ice cloud particles, J. Atmos. Sci., 60, 936–956, 2003.
Hu, Y. X., Wielicki, B., Lin, B., Gibson, G., Tsay, S. C., and Stamnes, K., and Wong, T.: delta-fit: a fast and accurate treatment of particle scattering phase functions with weighted singular-value decomposition least-squares fitting, J. Quant. Spectrosc. Ra., 65, 681–90, 2000.
Joseph, J. H., Wiscombe, W. J., and Weinman, J. A.: Delta-Eddington approximation for radiative flux-transfer, J. Atmos. Sci., 33, 2452–2459, 1976.
Knap, W. H., C.-Labonnote, L., Brogniez, G., and Stammes, P.: Modeling total and polarized reflectances of ice clouds: Evaluation by means of POLDER and ATSR-2 measurements, Appl. Optics, 44, 4060-4073, 2005.
Kokhanovsky, A. A., Budak, V. P., Cornet, C., Duan, M., Emde, C., Katsev, I. L., Klyukov, D. A., Korkin, S. V., C-Labonnote, L., Mayer, B., Min, Q., Nakajima, T., Ota, Y., Prikhach, A. S., Rozanov, V. V., Yokota, T., and Zege, E. P.: Benchmark results in vector atmospheric radiative transfer, J. Quant. Spectrosc. Ra., 111, 1931-1946, 2010.
Korolev, A. V., Isaac, G. A., and Hallett, J.: Ice particle habits in Arctic clouds, Geophys. Res. Lett., 26, 1299–1302, https://doi.org/10.1029/1999GL900232, 1999.
Korolev, A. V., Emery, E. F., Strapp, J. W., Cober, S. G., Isaac, G. A., Wasey, M., and Marcotte, D.: Small ice particles in tropospheric clouds: fact or artifact? B. Am. Meteorol. Soc., 92, 967–73, 2011.
Mace, G. G., Zhang, Y., Platnick, S. E., King, M. D., Minni, S. P., and Yang, P.: Evaluation of cirrus cloud properties derived from MODIS data using cloud properties derived from ground-based observations collected at the ARM SGP site, J. Appl. Met. Clim., 44, 221–240, 2005.
Macke, A., Mueller, J., and Raschke, E.: Single scattering properties of atmospheric ice crystals, J. Atmos. Sci., 53, 2813–25, 1996.
Magono, C. and Lee, C. W.: Meteorological Classification of Natural Snow Crystals, J. Fac. Sci., Hokkaido University, II, 321–35, 1966.
Natraj, V., Li, K. F., and Yung, Y. L.: Rayleigh scattering in planetary atmospheres: corrected tables through accurate computation of X and Y functions, Astrophys. J., 69, 1909–1920, 2009.
Nazaryan, H., McCormick, M. P., and Menzel, W. P.: Global characterization of cirrus clouds using CALIPSO data, J. Geophys. Res., 113, D16211, https://doi.org/10.1029/2007JD009481, 2008.
Neshyba, S. P., Lowen, B., Benning, M., Lawson, A., and Rowe, P. M.: Roughness metrics of prismatic facets of ice, J. Geophys. Res. Atmos., 118, 3309–3318, 2013.
Platt, C. M. R., Reynolds, D. W., and Abshire, N. L.: Satellite and Lidar observations of the albedo, emittance and optical depth of cirrus compared to model calculations, Mon. Weather Rev., 108, 195–204, 1980.
Schmitt, C. G. and Heymsfield, A. J.: On the occurrence of hollow bullet rosette and column shaped ice crystals in midlatitude cirrus, J. Atmos. Sci., 64, 4515–4520, 2007.
Shcherbakov, V., Gayet, J.-F., Baker, B., and Lawson, P.: Light scattering by single natural ice crystals, J. Atmos. Sci., 63, 1513–1525, 2006.
Stephens, G. L., Tsay, S. C., Stackhouse, Jr. P. W., and Flatau, P. J.: The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback, J. Atmos. Sci., 47, 1742–1754, 1990.
Ulanowski, Z., Hesse, E., Kaye, P. H., and Baran, A. J.: Light scattering by complex ice-analogue crystals, J. Quant. Spec. Rad. Trans., 100, 382–392, 2006.
Um, J. and McFarquhar, G. M.: Single-scattering properties of aggregates of bullet rosettes in cirrus, J. Appl. Meteorol. Clim., 46, 757–775, 2007.
van Diedenhoven, B., Cairns, B., Geogdzhayev, I. V., Fridlind, A. M., Ackerman, A. S., Yang, P., and Baum, B. A.: Remote sensing of ice crystal asymmetry parameter using multi-directional polarization measurements – Part 1: Methodology and evaluation with simulated measurements, Atmos. Meas. Tech., 5, 2361–2374, https://doi.org/10.5194/amt-5-2361-2012, 2012a.
van Diedenhoven, B., Fridlind, A. M., Ackerman, A. S., and Cairns, B.: Evaluation of hydrometeor phase and ice properties in cloud-resolving model simulations of Tropical deep convection using radiance and polarization measurements, J. Atmos. Sci., 69, 3290-3314, 2012b.
van Diedenhoven, B., Cairns, B., Fridlind, A. M., Ackerman, A. S., and Garrett, T. J.: Remote sensing of ice crystal asymmetry parameter using multi-directional polarization measurements – Part 2: Application to the Research Scanning Polarimeter, Atmos. Chem. Phys., 13, 3185–3203, https://doi.org/10.5194/acp-13-3185-2013, 2013.
Wendisch, M., Pilewskie, P., Pommier, J., Howard, S., Yang, P., Heymsfield, A. J., Schmitt, C. G., Baumgardner, D., and Mayer, B.: Impact of cirrus crystal shape on solar spectral irradiance: a case study for subtropical cirrus, J. Geophys. Res., 110, D03202, https://doi.org/10.1029/2004JD005294, 2005.
Wendisch, M., Yang, P., and Pilewskie, P.: Effects of ice crystal habit on the thermal infrared radiative properties and forcing of cirrus clouds, J. Geophys. Res., 112, D08201, https://doi.org/10.1029/2006JD007899, 2007.
Yang, P. and Liou, K. N.: Single-scattering properties of complex ice crystals in terrestrial atmosphere, Contr. Atmos. Phys., 71, 223–248, 1998.
Yang, P., Kattawar, G. W., Hong, G., Minnis, P., and Hu, Y. X.: Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds, Part I: Single scattering properties of ice crystals with surface roughness, IEEE T. Geosci. Remote, 46, 1940–7, 2008a.
Yang, P., Hong, G., Kattawar, G. W., Minnis, P., and Hu, Y. X.: Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds, Part II: Effect of particle surface roughness on retrieved cloud optical thickness and effective particle size, IEEE T. Geosci. Remote, 46, 1948–1957, 2008b.
Yang, P., Zhang, Z., Kattawar, G. W., Warren, S. G., Baum, B. A., Huang, H.-L., Hu, Y., Winker, D., and Iaquinta, J.: Effect of cavities on the optical properties of bullet rosettes: implications for active and passive remote sensing of ice cloud properties, J. Appl. Meteorol. Clim., 47, 2311–2330, 2008c.
Yang, P., Bi, L., Baum, B. A., Liou, K. N., Kattawar, G. W., and Mishchenko, M.: Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 μm to 100 μm, J. Atmos. Sci., 70, 330–347, 2013.
Yi, B., Yang, P., Baum, B. A., L'Ecuyer, T., Oreopoulos, L., Mlawaer, E. J., Heymsfield, A. J., and Liou, K. N.: Influence of ice particle surface roughening on the global cloud radiative effect, J. Atmos. Sci., 70, 2794–2807, 2013.
Yurkin, M. A. and Hoekstra, A. G.: The discrete-dipole-approximation code ADDA: capabilities and known limitations, J. Quant. Spectrosc. Ra., 112, 2234–2247, 2011.
Altmetrics
Final-revised paper
Preprint