Articles | Volume 13, issue 24
https://doi.org/10.5194/acp-13-12171-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-13-12171-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Physics of Stratocumulus Top (POST): turbulent mixing across capping inversion
S. P. Malinowski
Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Warsaw, Poland
H. Gerber
Gerber Scientific Inc., Reston, VA, USA
I. Jen-La Plante
Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
M. K. Kopec
Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
W. Kumala
Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
K. Nurowska
Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
P. Y. Chuang
Earth and Planetary Sciences, University of California, Santa Cruz, CA, USA
D. Khelif
Department of Mechanical and Aerospace Engineering, University of California, Irvine, CA, USA
K. E. Haman
Institute of Geophysics, Faculty of Physics, University of Warsaw, Warsaw, Poland
Related authors
Jakub L. Nowak, Marie Lothon, Donald H. Lenschow, and Szymon P. Malinowski
Atmos. Meas. Tech., 18, 93–114, https://doi.org/10.5194/amt-18-93-2025, https://doi.org/10.5194/amt-18-93-2025, 2025
Short summary
Short summary
According to classical theory, the ratio of turbulence statistics corresponding to transverse and longitudinal wind velocity components equals 4/3 in the inertial range of scales. We analyse a large number of measurements obtained with three research aircraft during four field experiments in different locations and show that the observed ratios are almost always significantly smaller. We discuss potential reasons for this disagreement, but the actual explanation remains to be determined.
Robert Grosz, Kamal Kant Chandrakar, Raymond A. Shaw, Jesse C. Anderson, Will Cantrell, and Szymon P. Malinowski
EGUsphere, https://doi.org/10.5194/egusphere-2024-2051, https://doi.org/10.5194/egusphere-2024-2051, 2024
Short summary
Short summary
Our objective was to enhance understanding of thermally-driven convection in terms of small-scale variations in the temperature scalar field. We conducted a small-scale study on the temperature field in the Π Chamber using three different temperature differences (10 K, 15 K, and 20 K). Measurements were carried out using a miniaturized UltraFast Thermometer operating at 2 kHz, allowing undisturbed vertical temperature profiling from 8 cm above the floor to 5 cm below the ceiling.
Katarzyna Nurowska, Moein Mohammadi, Szymon Malinowski, and Krzysztof Markowicz
Atmos. Meas. Tech., 16, 2415–2430, https://doi.org/10.5194/amt-16-2415-2023, https://doi.org/10.5194/amt-16-2415-2023, 2023
Short summary
Short summary
In this paper we evaluate the low-cost Alphasense OPC-N3 optical particle counter for measurements of fog microphysics. We compare OPC-N3 with the Oxford Lasers VisiSize D30. This work is significant because OPC-N3 can be used with drones for vertical profiles in fog.
Jakub L. Nowak, Robert Grosz, Wiebke Frey, Dennis Niedermeier, Jędrzej Mijas, Szymon P. Malinowski, Linda Ort, Silvio Schmalfuß, Frank Stratmann, Jens Voigtländer, and Tadeusz Stacewicz
Atmos. Meas. Tech., 15, 4075–4089, https://doi.org/10.5194/amt-15-4075-2022, https://doi.org/10.5194/amt-15-4075-2022, 2022
Short summary
Short summary
A high-resolution infrared hygrometer (FIRH) was adapted to measure humidity and its rapid fluctuations in turbulence inside a moist-air wind tunnel LACIS-T where two air streams of different temperature and humidity are mixed. The measurement was achieved from outside the tunnel through its glass windows and provided an agreement with a reference dew-point hygrometer placed inside. The characterization of humidity complements previous investigations of velocity and temperature fields.
Moein Mohammadi, Jakub L. Nowak, Guus Bertens, Jan Moláček, Wojciech Kumala, and Szymon P. Malinowski
Atmos. Meas. Tech., 15, 965–985, https://doi.org/10.5194/amt-15-965-2022, https://doi.org/10.5194/amt-15-965-2022, 2022
Short summary
Short summary
To compare two instruments, a VisiSize D30 shadowgraph system and a phase Doppler interferometer (PDI-FPDR), we performed a series of measurements of cloud droplet size and number concentration in orographic clouds. After applying essential modifications and filters to the data, the results from the two instruments showed better agreement in droplet sizing and velocimetry than droplet number concentration or liquid water content. Discrepancies were observed for droplets smaller than 13 µm.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Jakub L. Nowak, Holger Siebert, Kai-Erik Szodry, and Szymon P. Malinowski
Atmos. Chem. Phys., 21, 10965–10991, https://doi.org/10.5194/acp-21-10965-2021, https://doi.org/10.5194/acp-21-10965-2021, 2021
Short summary
Short summary
Turbulence properties in two cases of a marine stratocumulus-topped boundary layer have been compared using high-resolution helicopter-borne in situ measurements. In the coupled one, small-scale turbulence was close to isotropic and reasonably followed inertial range scaling according to Kolmogorov theory. In the decoupled one, turbulence was more anisotropic and the scaling deviated from theory. This was more pronounced in the cloud and subcloud layers in comparison to the surface mixed layer.
Jakub L. Nowak, Moein Mohammadi, and Szymon P. Malinowski
Atmos. Meas. Tech., 14, 2615–2633, https://doi.org/10.5194/amt-14-2615-2021, https://doi.org/10.5194/amt-14-2615-2021, 2021
Short summary
Short summary
A commercial instrument that characterizes sprays via shadowgraphy imaging was applied to measure the number concentration and size distribution of cloud droplets. Laboratory and field tests were performed to verify the resolution, detection reliability and sizing accuracy. We developed a correction to the data processing method which improves the estimation of cloud microphysical properties. The paper concludes with recommendations concerning the use of the instrument in cloud physics studies.
Katarzyna Karpińska, Jonathan F. E. Bodenschatz, Szymon P. Malinowski, Jakub L. Nowak, Steffen Risius, Tina Schmeissner, Raymond A. Shaw, Holger Siebert, Hengdong Xi, Haitao Xu, and Eberhard Bodenschatz
Atmos. Chem. Phys., 19, 4991–5003, https://doi.org/10.5194/acp-19-4991-2019, https://doi.org/10.5194/acp-19-4991-2019, 2019
Short summary
Short summary
Observations of clouds at a mountain-top laboratory revealed for the first time the presence of “voids”, i.e., elongated volumes inside a cloud that are devoid of droplets. Theoretical and numerical analyses suggest that these voids are a result of strong and long-lasting vortex presence in turbulent air. If this is confirmed in further investigation, the effect may become an important part of models describing cloud evolution and rain formation.
Marta Wacławczyk, Yong-Feng Ma, Jacek M. Kopeć, and Szymon P. Malinowski
Atmos. Meas. Tech., 10, 4573–4585, https://doi.org/10.5194/amt-10-4573-2017, https://doi.org/10.5194/amt-10-4573-2017, 2017
Short summary
Short summary
We propose two novel methods to estimate turbulent kinetic energy dissipation rate applicable to airborne measurements. In this way we increase robustness of the dissipation rate retrieval and extend its applicability to a wider range of data sets. The new approaches relate the predicted form of the dissipation spectrum to the mean of zero crossings of the measured velocity fluctuations. The methods are easy to implement numerically, and estimates remain unaffected by certain measurement errors.
Imai Jen-La Plante, Yongfeng Ma, Katarzyna Nurowska, Hermann Gerber, Djamal Khelif, Katarzyna Karpinska, Marta K. Kopec, Wojciech Kumala, and Szymon P. Malinowski
Atmos. Chem. Phys., 16, 9711–9725, https://doi.org/10.5194/acp-16-9711-2016, https://doi.org/10.5194/acp-16-9711-2016, 2016
Short summary
Short summary
Using airborne data from of Physics of Stratocumulus Top campaign we analysed turbulence at the interface between free troposphere and cloud top. We found turbulence in temperature inversion capping cloud as well as in adjacent cloud top layer very anisotropic. Eddies are elongated horizontally by wind shear and flattened by static stability. These properties of turbulence at the cloud top were overlooked so far, which explains problems with understanding of entrainment at stratocumulus top.
Jacek M. Kopeć, Kamil Kwiatkowski, Siebren de Haan, and Szymon P. Malinowski
Atmos. Meas. Tech., 9, 2253–2265, https://doi.org/10.5194/amt-9-2253-2016, https://doi.org/10.5194/amt-9-2253-2016, 2016
Short summary
Short summary
This paper is presenting a feasibility study focused on methods of estimating the turbulence intensity based on a class of navigational messages routinely broadcast by the commercial aircraft (known as ADS-B and Mode-S). Using this kind of information could have potentially significant impact on aviation safety. Three methods have been investigated.
H. Siebert, R. A. Shaw, J. Ditas, T. Schmeissner, S. P. Malinowski, E. Bodenschatz, and H. Xu
Atmos. Meas. Tech., 8, 3219–3228, https://doi.org/10.5194/amt-8-3219-2015, https://doi.org/10.5194/amt-8-3219-2015, 2015
Short summary
Short summary
We report results from simultaneous, high-resolution and collocated measurements of cloud microphysical and turbulence properties during several warm cloud events at the Umweltforschungsstation Schneefernerhaus (UFS) on Zugspitze in the German Alps. The data gathered were found to be representative of observations made with similar instrumentation in free clouds.
W. Kumala, K. E. Haman, M. K. Kopec, D. Khelif, and S. P. Malinowski
Atmos. Meas. Tech., 6, 2043–2054, https://doi.org/10.5194/amt-6-2043-2013, https://doi.org/10.5194/amt-6-2043-2013, 2013
Jakub L. Nowak, Marie Lothon, Donald H. Lenschow, and Szymon P. Malinowski
Atmos. Meas. Tech., 18, 93–114, https://doi.org/10.5194/amt-18-93-2025, https://doi.org/10.5194/amt-18-93-2025, 2025
Short summary
Short summary
According to classical theory, the ratio of turbulence statistics corresponding to transverse and longitudinal wind velocity components equals 4/3 in the inertial range of scales. We analyse a large number of measurements obtained with three research aircraft during four field experiments in different locations and show that the observed ratios are almost always significantly smaller. We discuss potential reasons for this disagreement, but the actual explanation remains to be determined.
Scarlet R. Passer, Mikael K. Witte, and Patrick Y. Chuang
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-177, https://doi.org/10.5194/amt-2024-177, 2024
Preprint under review for AMT
Short summary
Short summary
One important property of a cloud is the concentration of cloud drops. This property is relevant to how the cloud interacts with sunlight, and how easily the cloud forms precipitation. Measuring this property from satellite is one important source of data, but it does require making some assumptions. This study evaluates the accuracy of satellite-derived drop concentration by comparing to aircraft measurements.
Robert Grosz, Kamal Kant Chandrakar, Raymond A. Shaw, Jesse C. Anderson, Will Cantrell, and Szymon P. Malinowski
EGUsphere, https://doi.org/10.5194/egusphere-2024-2051, https://doi.org/10.5194/egusphere-2024-2051, 2024
Short summary
Short summary
Our objective was to enhance understanding of thermally-driven convection in terms of small-scale variations in the temperature scalar field. We conducted a small-scale study on the temperature field in the Π Chamber using three different temperature differences (10 K, 15 K, and 20 K). Measurements were carried out using a miniaturized UltraFast Thermometer operating at 2 kHz, allowing undisturbed vertical temperature profiling from 8 cm above the floor to 5 cm below the ceiling.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter G. Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankararaman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Johann Engelbrecht, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbigniew Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gomez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, and Xi Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-1617, https://doi.org/10.5194/egusphere-2024-1617, 2024
Short summary
Short summary
Aerosol particles are an important part of the Earth system, but their concentrations are spatially and temporally heterogeneous, as well as variable in size and composition. Here we present a new compilation of PM2.5 and PM10 aerosol observations, focusing on the spatial variability across different observational stations, including composition, and demonstrate a method for comparing the datasets to model output.
Natalie M. Mahowald, Longlei Li, Julius Vira, Marje Prank, Douglas S. Hamilton, Hitoshi Matsui, Ron L. Miller, Louis Lu, Ezgi Akyuz, Daphne Meidan, Peter Hess, Heikki Lihavainen, Christine Wiedinmyer, Jenny Hand, Maria Grazia Alaimo, Célia Alves, Andres Alastuey, Paulo Artaxo, Africa Barreto, Francisco Barraza, Silvia Becagli, Giulia Calzolai, Shankarararman Chellam, Ying Chen, Patrick Chuang, David D. Cohen, Cristina Colombi, Evangelia Diapouli, Gaetano Dongarra, Konstantinos Eleftheriadis, Corinne Galy-Lacaux, Cassandra Gaston, Dario Gomez, Yenny González Ramos, Hannele Hakola, Roy M. Harrison, Chris Heyes, Barak Herut, Philip Hopke, Christoph Hüglin, Maria Kanakidou, Zsofia Kertesz, Zbiginiw Klimont, Katriina Kyllönen, Fabrice Lambert, Xiaohong Liu, Remi Losno, Franco Lucarelli, Willy Maenhaut, Beatrice Marticorena, Randall V. Martin, Nikolaos Mihalopoulos, Yasser Morera-Gomez, Adina Paytan, Joseph Prospero, Sergio Rodríguez, Patricia Smichowski, Daniela Varrica, Brenna Walsh, Crystal Weagle, and Xi Zhao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-1, https://doi.org/10.5194/essd-2024-1, 2024
Preprint withdrawn
Short summary
Short summary
Aerosol particles can interact with incoming solar radiation and outgoing long wave radiation, change cloud properties, affect photochemistry, impact surface air quality, and when deposited impact surface albedo of snow and ice, and modulate carbon dioxide uptake by the land and ocean. Here we present a new compilation of aerosol observations including composition, a methodology for comparing the datasets to model output, and show the implications of these results using one model.
Mampi Sarkar, Adriana Bailey, Peter Blossey, Simon P. de Szoeke, David Noone, Estefanía Quiñones Meléndez, Mason D. Leandro, and Patrick Y. Chuang
Atmos. Chem. Phys., 23, 12671–12690, https://doi.org/10.5194/acp-23-12671-2023, https://doi.org/10.5194/acp-23-12671-2023, 2023
Short summary
Short summary
We study rain evaporation characteristics below shallow cumulus clouds over the North Atlantic Ocean by pairing isotope observations with a microphysical model. The modeled fraction of rain mass that evaporates below the cloud strongly depends on the raindrop size and distribution width. Moreover, the higher the rain mass fraction evaporated, the greater the change in deuterium excess. In this way, rain evaporation could be studied independently using only isotope and microphysical observations.
Katarzyna Nurowska, Moein Mohammadi, Szymon Malinowski, and Krzysztof Markowicz
Atmos. Meas. Tech., 16, 2415–2430, https://doi.org/10.5194/amt-16-2415-2023, https://doi.org/10.5194/amt-16-2415-2023, 2023
Short summary
Short summary
In this paper we evaluate the low-cost Alphasense OPC-N3 optical particle counter for measurements of fog microphysics. We compare OPC-N3 with the Oxford Lasers VisiSize D30. This work is significant because OPC-N3 can be used with drones for vertical profiles in fog.
Jakub L. Nowak, Robert Grosz, Wiebke Frey, Dennis Niedermeier, Jędrzej Mijas, Szymon P. Malinowski, Linda Ort, Silvio Schmalfuß, Frank Stratmann, Jens Voigtländer, and Tadeusz Stacewicz
Atmos. Meas. Tech., 15, 4075–4089, https://doi.org/10.5194/amt-15-4075-2022, https://doi.org/10.5194/amt-15-4075-2022, 2022
Short summary
Short summary
A high-resolution infrared hygrometer (FIRH) was adapted to measure humidity and its rapid fluctuations in turbulence inside a moist-air wind tunnel LACIS-T where two air streams of different temperature and humidity are mixed. The measurement was achieved from outside the tunnel through its glass windows and provided an agreement with a reference dew-point hygrometer placed inside. The characterization of humidity complements previous investigations of velocity and temperature fields.
Christopher D. Wallis, Mason D. Leandro, Patrick Y. Chuang, and Anthony S. Wexler
Atmos. Meas. Tech., 15, 2547–2556, https://doi.org/10.5194/amt-15-2547-2022, https://doi.org/10.5194/amt-15-2547-2022, 2022
Short summary
Short summary
Measuring emissions from stacks requires techniques to address a broad range of conditions and measurement challenges. Here we describe an instrument package held by a crane above a stack to characterize both wet droplet and dried aerosol emissions from cooling tower spray drift in situ. The instrument package characterizes the velocity, size distribution, and concentration of the wet droplet emissions and the mass concentration and elemental composition of the dried PM2.5 and PM10 emissions.
Moein Mohammadi, Jakub L. Nowak, Guus Bertens, Jan Moláček, Wojciech Kumala, and Szymon P. Malinowski
Atmos. Meas. Tech., 15, 965–985, https://doi.org/10.5194/amt-15-965-2022, https://doi.org/10.5194/amt-15-965-2022, 2022
Short summary
Short summary
To compare two instruments, a VisiSize D30 shadowgraph system and a phase Doppler interferometer (PDI-FPDR), we performed a series of measurements of cloud droplet size and number concentration in orographic clouds. After applying essential modifications and filters to the data, the results from the two instruments showed better agreement in droplet sizing and velocimetry than droplet number concentration or liquid water content. Discrepancies were observed for droplets smaller than 13 µm.
Bjorn Stevens, Sandrine Bony, David Farrell, Felix Ament, Alan Blyth, Christopher Fairall, Johannes Karstensen, Patricia K. Quinn, Sabrina Speich, Claudia Acquistapace, Franziska Aemisegger, Anna Lea Albright, Hugo Bellenger, Eberhard Bodenschatz, Kathy-Ann Caesar, Rebecca Chewitt-Lucas, Gijs de Boer, Julien Delanoë, Leif Denby, Florian Ewald, Benjamin Fildier, Marvin Forde, Geet George, Silke Gross, Martin Hagen, Andrea Hausold, Karen J. Heywood, Lutz Hirsch, Marek Jacob, Friedhelm Jansen, Stefan Kinne, Daniel Klocke, Tobias Kölling, Heike Konow, Marie Lothon, Wiebke Mohr, Ann Kristin Naumann, Louise Nuijens, Léa Olivier, Robert Pincus, Mira Pöhlker, Gilles Reverdin, Gregory Roberts, Sabrina Schnitt, Hauke Schulz, A. Pier Siebesma, Claudia Christine Stephan, Peter Sullivan, Ludovic Touzé-Peiffer, Jessica Vial, Raphaela Vogel, Paquita Zuidema, Nicola Alexander, Lyndon Alves, Sophian Arixi, Hamish Asmath, Gholamhossein Bagheri, Katharina Baier, Adriana Bailey, Dariusz Baranowski, Alexandre Baron, Sébastien Barrau, Paul A. Barrett, Frédéric Batier, Andreas Behrendt, Arne Bendinger, Florent Beucher, Sebastien Bigorre, Edmund Blades, Peter Blossey, Olivier Bock, Steven Böing, Pierre Bosser, Denis Bourras, Pascale Bouruet-Aubertot, Keith Bower, Pierre Branellec, Hubert Branger, Michal Brennek, Alan Brewer, Pierre-Etienne Brilouet, Björn Brügmann, Stefan A. Buehler, Elmo Burke, Ralph Burton, Radiance Calmer, Jean-Christophe Canonici, Xavier Carton, Gregory Cato Jr., Jude Andre Charles, Patrick Chazette, Yanxu Chen, Michal T. Chilinski, Thomas Choularton, Patrick Chuang, Shamal Clarke, Hugh Coe, Céline Cornet, Pierre Coutris, Fleur Couvreux, Susanne Crewell, Timothy Cronin, Zhiqiang Cui, Yannis Cuypers, Alton Daley, Gillian M. Damerell, Thibaut Dauhut, Hartwig Deneke, Jean-Philippe Desbios, Steffen Dörner, Sebastian Donner, Vincent Douet, Kyla Drushka, Marina Dütsch, André Ehrlich, Kerry Emanuel, Alexandros Emmanouilidis, Jean-Claude Etienne, Sheryl Etienne-Leblanc, Ghislain Faure, Graham Feingold, Luca Ferrero, Andreas Fix, Cyrille Flamant, Piotr Jacek Flatau, Gregory R. Foltz, Linda Forster, Iulian Furtuna, Alan Gadian, Joseph Galewsky, Martin Gallagher, Peter Gallimore, Cassandra Gaston, Chelle Gentemann, Nicolas Geyskens, Andreas Giez, John Gollop, Isabelle Gouirand, Christophe Gourbeyre, Dörte de Graaf, Geiske E. de Groot, Robert Grosz, Johannes Güttler, Manuel Gutleben, Kashawn Hall, George Harris, Kevin C. Helfer, Dean Henze, Calvert Herbert, Bruna Holanda, Antonio Ibanez-Landeta, Janet Intrieri, Suneil Iyer, Fabrice Julien, Heike Kalesse, Jan Kazil, Alexander Kellman, Abiel T. Kidane, Ulrike Kirchner, Marcus Klingebiel, Mareike Körner, Leslie Ann Kremper, Jan Kretzschmar, Ovid Krüger, Wojciech Kumala, Armin Kurz, Pierre L'Hégaret, Matthieu Labaste, Tom Lachlan-Cope, Arlene Laing, Peter Landschützer, Theresa Lang, Diego Lange, Ingo Lange, Clément Laplace, Gauke Lavik, Rémi Laxenaire, Caroline Le Bihan, Mason Leandro, Nathalie Lefevre, Marius Lena, Donald Lenschow, Qiang Li, Gary Lloyd, Sebastian Los, Niccolò Losi, Oscar Lovell, Christopher Luneau, Przemyslaw Makuch, Szymon Malinowski, Gaston Manta, Eleni Marinou, Nicholas Marsden, Sebastien Masson, Nicolas Maury, Bernhard Mayer, Margarette Mayers-Als, Christophe Mazel, Wayne McGeary, James C. McWilliams, Mario Mech, Melina Mehlmann, Agostino Niyonkuru Meroni, Theresa Mieslinger, Andreas Minikin, Peter Minnett, Gregor Möller, Yanmichel Morfa Avalos, Caroline Muller, Ionela Musat, Anna Napoli, Almuth Neuberger, Christophe Noisel, David Noone, Freja Nordsiek, Jakub L. Nowak, Lothar Oswald, Douglas J. Parker, Carolyn Peck, Renaud Person, Miriam Philippi, Albert Plueddemann, Christopher Pöhlker, Veronika Pörtge, Ulrich Pöschl, Lawrence Pologne, Michał Posyniak, Marc Prange, Estefanía Quiñones Meléndez, Jule Radtke, Karim Ramage, Jens Reimann, Lionel Renault, Klaus Reus, Ashford Reyes, Joachim Ribbe, Maximilian Ringel, Markus Ritschel, Cesar B. Rocha, Nicolas Rochetin, Johannes Röttenbacher, Callum Rollo, Haley Royer, Pauline Sadoulet, Leo Saffin, Sanola Sandiford, Irina Sandu, Michael Schäfer, Vera Schemann, Imke Schirmacher, Oliver Schlenczek, Jerome Schmidt, Marcel Schröder, Alfons Schwarzenboeck, Andrea Sealy, Christoph J. Senff, Ilya Serikov, Samkeyat Shohan, Elizabeth Siddle, Alexander Smirnov, Florian Späth, Branden Spooner, M. Katharina Stolla, Wojciech Szkółka, Simon P. de Szoeke, Stéphane Tarot, Eleni Tetoni, Elizabeth Thompson, Jim Thomson, Lorenzo Tomassini, Julien Totems, Alma Anna Ubele, Leonie Villiger, Jan von Arx, Thomas Wagner, Andi Walther, Ben Webber, Manfred Wendisch, Shanice Whitehall, Anton Wiltshire, Allison A. Wing, Martin Wirth, Jonathan Wiskandt, Kevin Wolf, Ludwig Worbes, Ethan Wright, Volker Wulfmeyer, Shanea Young, Chidong Zhang, Dongxiao Zhang, Florian Ziemen, Tobias Zinner, and Martin Zöger
Earth Syst. Sci. Data, 13, 4067–4119, https://doi.org/10.5194/essd-13-4067-2021, https://doi.org/10.5194/essd-13-4067-2021, 2021
Short summary
Short summary
The EUREC4A field campaign, designed to test hypothesized mechanisms by which clouds respond to warming and benchmark next-generation Earth-system models, is presented. EUREC4A comprised roughly 5 weeks of measurements in the downstream winter trades of the North Atlantic – eastward and southeastward of Barbados. It was the first campaign that attempted to characterize the full range of processes and scales influencing trade wind clouds.
Jakub L. Nowak, Holger Siebert, Kai-Erik Szodry, and Szymon P. Malinowski
Atmos. Chem. Phys., 21, 10965–10991, https://doi.org/10.5194/acp-21-10965-2021, https://doi.org/10.5194/acp-21-10965-2021, 2021
Short summary
Short summary
Turbulence properties in two cases of a marine stratocumulus-topped boundary layer have been compared using high-resolution helicopter-borne in situ measurements. In the coupled one, small-scale turbulence was close to isotropic and reasonably followed inertial range scaling according to Kolmogorov theory. In the decoupled one, turbulence was more anisotropic and the scaling deviated from theory. This was more pronounced in the cloud and subcloud layers in comparison to the surface mixed layer.
Robert Pincus, Chris W. Fairall, Adriana Bailey, Haonan Chen, Patrick Y. Chuang, Gijs de Boer, Graham Feingold, Dean Henze, Quinn T. Kalen, Jan Kazil, Mason Leandro, Ashley Lundry, Ken Moran, Dana A. Naeher, David Noone, Akshar J. Patel, Sergio Pezoa, Ivan PopStefanija, Elizabeth J. Thompson, James Warnecke, and Paquita Zuidema
Earth Syst. Sci. Data, 13, 3281–3296, https://doi.org/10.5194/essd-13-3281-2021, https://doi.org/10.5194/essd-13-3281-2021, 2021
Short summary
Short summary
This paper describes observations taken from a research aircraft during a field experiment in the western Atlantic Ocean during January and February 2020. The plane made 11 flights, most 8-9 h long, and measured the properties of the atmosphere and ocean with a combination of direct measurements, sensors falling from the plane to profile the atmosphere and ocean, and remote sensing measurements of clouds and the ocean surface.
Jakub L. Nowak, Moein Mohammadi, and Szymon P. Malinowski
Atmos. Meas. Tech., 14, 2615–2633, https://doi.org/10.5194/amt-14-2615-2021, https://doi.org/10.5194/amt-14-2615-2021, 2021
Short summary
Short summary
A commercial instrument that characterizes sprays via shadowgraphy imaging was applied to measure the number concentration and size distribution of cloud droplets. Laboratory and field tests were performed to verify the resolution, detection reliability and sizing accuracy. We developed a correction to the data processing method which improves the estimation of cloud microphysical properties. The paper concludes with recommendations concerning the use of the instrument in cloud physics studies.
Katarzyna Karpińska, Jonathan F. E. Bodenschatz, Szymon P. Malinowski, Jakub L. Nowak, Steffen Risius, Tina Schmeissner, Raymond A. Shaw, Holger Siebert, Hengdong Xi, Haitao Xu, and Eberhard Bodenschatz
Atmos. Chem. Phys., 19, 4991–5003, https://doi.org/10.5194/acp-19-4991-2019, https://doi.org/10.5194/acp-19-4991-2019, 2019
Short summary
Short summary
Observations of clouds at a mountain-top laboratory revealed for the first time the presence of “voids”, i.e., elongated volumes inside a cloud that are devoid of droplets. Theoretical and numerical analyses suggest that these voids are a result of strong and long-lasting vortex presence in turbulent air. If this is confirmed in further investigation, the effect may become an important part of models describing cloud evolution and rain formation.
Hossein Dadashazar, Rachel A. Braun, Ewan Crosbie, Patrick Y. Chuang, Roy K. Woods, Haflidi H. Jonsson, and Armin Sorooshian
Atmos. Chem. Phys., 18, 1495–1506, https://doi.org/10.5194/acp-18-1495-2018, https://doi.org/10.5194/acp-18-1495-2018, 2018
Short summary
Short summary
This study shows with airborne data that in the thin layer above stratocumulus clouds, the entrainment interface layer (EIL), aerosol size distributions are influenced both by new particle formation and by pollutants above and below the EIL. These results are important with regard to understanding aerosol–cloud–climate interactions as the aerosol in this layer can influence the characteristics of stratocumulus clouds, which are the dominant cloud type by global area.
Marta Wacławczyk, Yong-Feng Ma, Jacek M. Kopeć, and Szymon P. Malinowski
Atmos. Meas. Tech., 10, 4573–4585, https://doi.org/10.5194/amt-10-4573-2017, https://doi.org/10.5194/amt-10-4573-2017, 2017
Short summary
Short summary
We propose two novel methods to estimate turbulent kinetic energy dissipation rate applicable to airborne measurements. In this way we increase robustness of the dissipation rate retrieval and extend its applicability to a wider range of data sets. The new approaches relate the predicted form of the dissipation spectrum to the mean of zero crossings of the measured velocity fluctuations. The methods are easy to implement numerically, and estimates remain unaffected by certain measurement errors.
Imai Jen-La Plante, Yongfeng Ma, Katarzyna Nurowska, Hermann Gerber, Djamal Khelif, Katarzyna Karpinska, Marta K. Kopec, Wojciech Kumala, and Szymon P. Malinowski
Atmos. Chem. Phys., 16, 9711–9725, https://doi.org/10.5194/acp-16-9711-2016, https://doi.org/10.5194/acp-16-9711-2016, 2016
Short summary
Short summary
Using airborne data from of Physics of Stratocumulus Top campaign we analysed turbulence at the interface between free troposphere and cloud top. We found turbulence in temperature inversion capping cloud as well as in adjacent cloud top layer very anisotropic. Eddies are elongated horizontally by wind shear and flattened by static stability. These properties of turbulence at the cloud top were overlooked so far, which explains problems with understanding of entrainment at stratocumulus top.
Eunsil Jung, Bruce A. Albrecht, Graham Feingold, Haflidi H. Jonsson, Patrick Chuang, and Shaunna L. Donaher
Atmos. Chem. Phys., 16, 8643–8666, https://doi.org/10.5194/acp-16-8643-2016, https://doi.org/10.5194/acp-16-8643-2016, 2016
Short summary
Short summary
This study discusses the properties and variations of aerosol, cloud, and precipitation associated with shallow marine cumulus clouds observed in the North-Atlantic trades during a field campaign (aircraft measurements), which included the most intense African dust event of 2010 at Barbados. The results provide characteristics of Saharan dust as well as marine shallow cumulus clouds from radar measurements, which can provide a basis for the numerical study.
Jacek M. Kopeć, Kamil Kwiatkowski, Siebren de Haan, and Szymon P. Malinowski
Atmos. Meas. Tech., 9, 2253–2265, https://doi.org/10.5194/amt-9-2253-2016, https://doi.org/10.5194/amt-9-2253-2016, 2016
Short summary
Short summary
This paper is presenting a feasibility study focused on methods of estimating the turbulence intensity based on a class of navigational messages routinely broadcast by the commercial aircraft (known as ADS-B and Mode-S). Using this kind of information could have potentially significant impact on aviation safety. Three methods have been investigated.
M. S. Norgren, J. D. Small, H. H. Jonsson, and P. Y. Chuang
Atmos. Chem. Phys., 16, 21–33, https://doi.org/10.5194/acp-16-21-2016, https://doi.org/10.5194/acp-16-21-2016, 2016
Short summary
Short summary
Clouds transport air from near the surface to higher altitudes. However, the amount of air transported in this way is poorly understood. In this study, measurements from aircraft of small clouds over Texas show that the amount is limited to the volume of the visible cloud and not more. This means that these clouds are not very effective at transporting pollution and moisture to upper reaches of the atmosphere, which in turn affects their redistribution and wider impact.
H. Siebert, R. A. Shaw, J. Ditas, T. Schmeissner, S. P. Malinowski, E. Bodenschatz, and H. Xu
Atmos. Meas. Tech., 8, 3219–3228, https://doi.org/10.5194/amt-8-3219-2015, https://doi.org/10.5194/amt-8-3219-2015, 2015
Short summary
Short summary
We report results from simultaneous, high-resolution and collocated measurements of cloud microphysical and turbulence properties during several warm cloud events at the Umweltforschungsstation Schneefernerhaus (UFS) on Zugspitze in the German Alps. The data gathered were found to be representative of observations made with similar instrumentation in free clouds.
M. K. Witte, P. Y. Chuang, and G. Feingold
Atmos. Chem. Phys., 14, 6729–6738, https://doi.org/10.5194/acp-14-6729-2014, https://doi.org/10.5194/acp-14-6729-2014, 2014
W. Kumala, K. E. Haman, M. K. Kopec, D. Khelif, and S. P. Malinowski
Atmos. Meas. Tech., 6, 2043–2054, https://doi.org/10.5194/amt-6-2043-2013, https://doi.org/10.5194/amt-6-2043-2013, 2013
J. L. Petters, H. Jiang, G. Feingold, D. L. Rossiter, D. Khelif, L. C. Sloan, and P. Y. Chuang
Atmos. Chem. Phys., 13, 2507–2529, https://doi.org/10.5194/acp-13-2507-2013, https://doi.org/10.5194/acp-13-2507-2013, 2013
Related subject area
Subject: Clouds and Precipitation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Investigating the role of typhoon-induced waves and stratospheric hydration in the formation of tropopause cirrus clouds observed during the 2017 Asian monsoon
How does riming influence the observed spatial variability of ice water in mixed-phase clouds?
Microphysical view of the development and ice production of mid-latitude stratiform clouds with embedded convection during an extratropical cyclone
Clouds and precipitation in the initial phase of marine cold-air outbreaks as observed by airborne remote sensing
Estimating the snow density using collocated Parsivel and Micro-Rain Radar measurements: a preliminary study from ICE-POP 2017/2018
Technical note: On the ice microphysics of isolated thunderstorms and non-thunderstorms in southern China – a radar polarimetric perspective
Distinctive aerosol–cloud–precipitation interactions in marine boundary layer clouds from the ACE-ENA and SOCRATES aircraft field campaigns
Theoretical Framework for Measuring Cloud Effective Supersaturation Fluctuations with an Advanced Optical System
Drivers of droplet formation in east Mediterranean orographic clouds
Objectively identified mesoscale surface air pressure waves in the context of winter storm environments and radar reflectivity features: a 3+ year analysis
Observability of moisture transport divergence in Arctic atmospheric rivers by dropsondes
Elucidating the boundary layer turbulence dissipation rate using high-resolution measurements from a radar wind profiler network over the Tibetan Plateau
Environmental controls on isolated convection during the Amazonian wet season
Isotopic composition of convective rainfall in the inland tropics of Brazil
Measurement report: Cloud and environmental properties associated with aggregated shallow marine cumulus and cumulus congestus
Lifecycle of updrafts and mass flux in isolated deep convection over the Amazon rainforest: insights from cell tracking
Thermodynamic and cloud evolution in a cold-air outbreak during HALO-(AC)3: quasi-Lagrangian observations compared to the ERA5 and CARRA reanalyses
Powering aircraft with 100 % sustainable aviation fuel reduces ice crystals in contrails
Supercooled liquid water clouds observed over Dome C, Antarctica: temperature sensitivity and cloud radiative forcing
Role of thermodynamic and turbulence processes on the fog life cycle during SOFOG3D experiment
Characterizing the near-global cloud vertical structures over land using high-resolution radiosonde measurements
Differences in microphysical properties of cirrus at high and mid-latitudes
Sub-cloud rain evaporation in the North Atlantic winter trade winds derived by pairing isotopic data with a bin-resolved microphysical model
Overview and statistical analysis of boundary layer clouds and precipitation over the western North Atlantic Ocean
A set of methods to evaluate the below-cloud evaporation effect on local precipitation isotopic composition: a case study for Xi'an, China
Earth-system-model evaluation of cloud and precipitation occurrence for supercooled and warm clouds over the Southern Ocean's Macquarie Island
Pollution slightly enhances atmospheric cooling by low-level clouds in tropical West Africa
Investigating an indirect aviation effect on mid-latitude cirrus clouds – linking lidar-derived optical properties to in situ measurements
Investigating the vertical extent and short-wave radiative effects of the ice phase in Arctic summertime low-level clouds
Microphysical and thermodynamic phase analyses of Arctic low-level clouds measured above the sea ice and the open ocean in spring and summer
Aircraft observations of gravity wave activity and turbulence in the tropical tropopause layer: prevalence, influence on cirrus clouds, and comparison with global storm-resolving models
Influence of air mass origin on microphysical properties of low-level clouds in a subarctic environment
Sensitivity of convectively driven tropical tropopause cirrus properties to ice habits in high-resolution simulations
Upper-tropospheric slightly ice-subsaturated regions: frequency of occurrence and statistical evidence for the appearance of contrail cirrus
Examination of aerosol indirect effects during cirrus cloud evolution
In situ microphysics observations of intense pyroconvection from a large wildfire
Conditions favorable for secondary ice production in Arctic mixed-phase clouds
Interaction between cloud–radiation, atmospheric dynamics and thermodynamics based on observational data from GoAmazon 2014/15 and a cloud-resolving model
Snowfall in Northern Finland derives mostly from ice clouds
Observation of secondary ice production in clouds at low temperatures
In situ and satellite-based estimates of cloud properties and aerosol–cloud interactions over the southeast Atlantic Ocean
Ice fog observed at cirrus temperatures at Dome C, Antarctic Plateau
Life cycle of stratocumulus clouds over 1 year at the coast of the Atacama Desert
Experimental study on the evolution of droplet size distribution during the fog life cycle
Significant continental source of ice-nucleating particles at the tip of Chile's southernmost Patagonia region
Retrieving ice-nucleating particle concentration and ice multiplication factors using active remote sensing validated by in situ observations
Temporal and vertical distributions of the occurrence of cirrus clouds over a coastal station in the Indian monsoon region
Continental thunderstorm ground enhancement observed at an exceptionally low altitude
Ice-nucleating particles from multiple aerosol sources in the urban environment of Beijing under mixed-phase cloud conditions
In situ observation of riming in mixed-phase clouds using the PHIPS probe
Amit Kumar Pandit, Jean-Paul Vernier, Thomas Duncan Fairlie, Kristopher M. Bedka, Melody A. Avery, Harish Gadhavi, Madineni Venkat Ratnam, Sanjeev Dwivedi, Kasimahanthi Amar Jyothi, Frank G. Wienhold, Holger Vömel, Hongyu Liu, Bo Zhang, Buduru Suneel Kumar, Tra Dinh, and Achuthan Jayaraman
Atmos. Chem. Phys., 24, 14209–14238, https://doi.org/10.5194/acp-24-14209-2024, https://doi.org/10.5194/acp-24-14209-2024, 2024
Short summary
Short summary
This study investigates the formation mechanism of a tropopause cirrus cloud layer observed at extremely cold temperatures over Hyderabad in India during the 2017 Asian summer monsoon using balloon-borne sensors. Ice crystals smaller than 50 µm were found in this optically thin cirrus cloud layer. Combined analysis of back trajectories, satellite, and model data revealed that the formation of this layer was influenced by waves and stratospheric hydration induced by typhoon Hato.
Nina Maherndl, Manuel Moser, Imke Schirmacher, Aaron Bansemer, Johannes Lucke, Christiane Voigt, and Maximilian Maahn
Atmos. Chem. Phys., 24, 13935–13960, https://doi.org/10.5194/acp-24-13935-2024, https://doi.org/10.5194/acp-24-13935-2024, 2024
Short summary
Short summary
It is not clear why ice crystals in clouds occur in clusters. Here, airborne measurements of clouds in mid-latitudes and high latitudes are used to study the spatial variability of ice. Further, we investigate the influence of riming, which occurs when liquid droplets freeze onto ice crystals. We find that riming enhances the occurrence of ice clusters. In the Arctic, riming leads to ice clustering at spatial scales of 3–5 km. This is due to updrafts and not higher amounts of liquid water.
Yuanmou Du, Dantong Liu, Delong Zhao, Mengyu Huang, Ping Tian, Dian Wen, Wei Xiao, Wei Zhou, Hui He, Baiwan Pan, Dongfei Zuo, Xiange Liu, Yingying Jing, Rong Zhang, Jiujiang Sheng, Fei Wang, Yu Huang, Yunbo Chen, and Deping Ding
Atmos. Chem. Phys., 24, 13429–13444, https://doi.org/10.5194/acp-24-13429-2024, https://doi.org/10.5194/acp-24-13429-2024, 2024
Short summary
Short summary
By conducting in situ measurements, we investigated ice production processes in stratiform clouds with embedded convection over the North China Plain. The results show that the ice number concentration is strongly related to the distance to the cloud top, and the level with a larger distance to the cloud top has more graupel falling from upper levels, which promotes collision and coalescence between graupel and droplets and enhances secondary ice production.
Imke Schirmacher, Sabrina Schnitt, Marcus Klingebiel, Nina Maherndl, Benjamin Kirbus, André Ehrlich, Mario Mech, and Susanne Crewell
Atmos. Chem. Phys., 24, 12823–12842, https://doi.org/10.5194/acp-24-12823-2024, https://doi.org/10.5194/acp-24-12823-2024, 2024
Short summary
Short summary
During Arctic marine cold-air outbreaks, cold air flows from sea ice over open water. Roll circulations evolve, forming cloud streets. We investigate the initial circulation and cloud development using high-resolution airborne measurements. We compute the distance an air mass traveled over water (fetch) from back trajectories. Cloud streets form at 15 km fetch, cloud cover strongly increases at around 20 km, and precipitation forms at around 30 km.
Wei-Yu Chang, Yung-Chuan Yang, Chen-Yu Hung, Kwonil Kim, Gyuwon Lee, and Ali Tokay
Atmos. Chem. Phys., 24, 11955–11979, https://doi.org/10.5194/acp-24-11955-2024, https://doi.org/10.5194/acp-24-11955-2024, 2024
Short summary
Short summary
Snow density is derived by collocated Micro-Rain Radar (MRR) and Parsivel (ICE-POP 2017/2018). We apply the particle size distribution from Parsivel to a T-matrix backscattering simulation and compare with ZHH from MRR. Bulk density and bulk water fractions are derived from comparing simulated and calculated ZHH. Retrieved bulk density is validated by comparing snowfall rate measurements from Pluvio and the Precipitation Imaging Package. Snowfall rate consistency confirms the algorithm.
Chuanhong Zhao, Yijun Zhang, Dong Zheng, Haoran Li, Sai Du, Xueyan Peng, Xiantong Liu, Pengguo Zhao, Jiafeng Zheng, and Juan Shi
Atmos. Chem. Phys., 24, 11637–11651, https://doi.org/10.5194/acp-24-11637-2024, https://doi.org/10.5194/acp-24-11637-2024, 2024
Short summary
Short summary
Understanding lightning activity is important for meteorology and atmospheric chemistry. However, the occurrence of lightning activity in clouds is uncertain. In this study, we quantified the difference between isolated thunderstorms and non-thunderstorms. We showed that lightning activity was more likely to occur with more graupel volume and/or riming. A deeper ZDR column was associated with lightning occurrence. This information can aid in a deeper understanding of lighting physics.
Xiaojian Zheng, Xiquan Dong, Baike Xi, Timothy Logan, and Yuan Wang
Atmos. Chem. Phys., 24, 10323–10347, https://doi.org/10.5194/acp-24-10323-2024, https://doi.org/10.5194/acp-24-10323-2024, 2024
Short summary
Short summary
The marine boundary layer aerosol–cloud interactions (ACIs) are examined using in situ measurements from two aircraft campaigns over the eastern North Atlantic (ACE-ENA) and Southern Ocean (SOCRATES). The SOCRATES clouds have more and smaller cloud droplets. The ACE-ENA clouds exhibit stronger drizzle formation and growth. Results found distinctive aerosol–cloud interactions for two campaigns. The drizzle processes significantly alter sub-cloud aerosol budgets and impact the ACI assessments.
Ye Kuang, Jiangchuan Tao, Hanbin Xu, Li Liu, Pengfei Liu, Wanyun Xu, Weiqi Xu, Yele Sun, and Chunsheng Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2698, https://doi.org/10.5194/egusphere-2024-2698, 2024
Short summary
Short summary
This study presents a novel optical framework to measure supersaturation, a fundamental parameter in cloud physics, by observing the scattering properties of particles that have or have not grown into cloud droplets. The technique offers high-resolution measurements, capturing essential fluctuations in supersaturation necessary for understanding cloud physics.
Romanos Foskinis, Ghislain Motos, Maria I. Gini, Olga Zografou, Kunfeng Gao, Stergios Vratolis, Konstantinos Granakis, Ville Vakkari, Kalliopi Violaki, Andreas Aktypis, Christos Kaltsonoudis, Zongbo Shi, Mika Komppula, Spyros N. Pandis, Konstantinos Eleftheriadis, Alexandros Papayannis, and Athanasios Nenes
Atmos. Chem. Phys., 24, 9827–9842, https://doi.org/10.5194/acp-24-9827-2024, https://doi.org/10.5194/acp-24-9827-2024, 2024
Short summary
Short summary
Analysis of modeling, in situ, and remote sensing measurements reveals the microphysical state of orographic clouds and their response to aerosol from the boundary layer and free troposphere. We show that cloud response to aerosol is robust, as predicted supersaturation and cloud droplet number levels agree with those determined from in-cloud measurements. The ability to determine if clouds are velocity- or aerosol-limited allows for novel model constraints and remote sensing products.
Luke R. Allen, Sandra E. Yuter, Matthew A. Miller, and Laura M. Tomkins
EGUsphere, https://doi.org/10.5194/egusphere-2024-2160, https://doi.org/10.5194/egusphere-2024-2160, 2024
Short summary
Short summary
Atmospheric gravity waves are air oscillations in which buoyancy is the restoring force, which can enhance precipitation production. We used 3+ seasons of pressure data to identify gravity waves with wavelengths ≤ 170 km in the Toronto and New York metropolitan areas in the context of snow storms. Of 79 snow events, only 6 had detectable gravity wave events, suggesting that gravity waves on the scales of typical radar reflectivity features are uncommon in those two locations during snow storms.
Henning Dorff, Heike Konow, Vera Schemann, and Felix Ament
Atmos. Chem. Phys., 24, 8771–8795, https://doi.org/10.5194/acp-24-8771-2024, https://doi.org/10.5194/acp-24-8771-2024, 2024
Short summary
Short summary
Using synthetic dropsondes, we assess how discrete spatial sampling and temporal evolution during flight affect the accuracy of real sonde-based moisture transport divergence in Arctic atmospheric rivers (ARs). Non-instantaneous sampling during temporal AR evolution deteriorates the divergence values more than spatial undersampling. Moisture advection is the dominating factor but most sensitive to the sampling method. We suggest a minimum of seven sondes to resolve the AR divergence components.
Deli Meng, Jianping Guo, Xiaoran Guo, Yinjun Wang, Ning Li, Yuping Sun, Zhen Zhang, Na Tang, Haoran Li, Fan Zhang, Bing Tong, Hui Xu, and Tianmeng Chen
Atmos. Chem. Phys., 24, 8703–8720, https://doi.org/10.5194/acp-24-8703-2024, https://doi.org/10.5194/acp-24-8703-2024, 2024
Short summary
Short summary
The turbulence in the planetary boundary layer (PBL) over the Tibetan Plateau (TP) remains unclear. Here we elucidate the vertical profile of and temporal variation in the turbulence dissipation rate in the PBL over the TP based on a radar wind profiler (RWP) network. To the best of our knowledge, this is the first time that the turbulence profile over the whole TP has been revealed. Furthermore, the possible mechanisms of clouds acting on the PBL turbulence structure are investigated.
Leandro Alex Moreira Viscardi, Giuseppe Torri, David K. Adams, and Henrique de Melo Jorge Barbosa
Atmos. Chem. Phys., 24, 8529–8548, https://doi.org/10.5194/acp-24-8529-2024, https://doi.org/10.5194/acp-24-8529-2024, 2024
Short summary
Short summary
We evaluate the environmental conditions that control how clouds grow from fair weather cumulus into severe thunderstorms during the Amazonian wet season. Days with rain clouds begin with more moisture in the air and have strong convergence in the afternoon, while precipitation intensity increases with large-scale vertical velocity, moisture, and low-level wind. These results contribute to understanding how clouds form over the rainforest.
Vinicius dos Santos, Didier Gastmans, Ana María Durán-Quesada, Ricardo Sánchez-Murillo, Kazimierz Rozanski, Oliver Kracht, and Demilson de Assis Quintão
Atmos. Chem. Phys., 24, 6663–6680, https://doi.org/10.5194/acp-24-6663-2024, https://doi.org/10.5194/acp-24-6663-2024, 2024
Short summary
Short summary
We present novel findings on convective rainfall, summer rain in the late afternoon, by coupling water stable isotopes, micro rain radar, and satellite data. We found the tallest clouds in the afternoon and much smaller clouds at night, resulting in differences in day–night ratios in water stable isotopes. We sampled rain and meteorological variables every 5–10 min, allowing us to evaluate the development of convective rainfall, contributing to knowledge of rainfall related to extreme events.
Ewan Crosbie, Luke D. Ziemba, Michael A. Shook, Taylor Shingler, Johnathan W. Hair, Armin Sorooshian, Richard A. Ferrare, Brian Cairns, Yonghoon Choi, Joshua DiGangi, Glenn S. Diskin, Chris Hostetler, Simon Kirschler, Richard H. Moore, David Painemal, Claire Robinson, Shane T. Seaman, K. Lee Thornhill, Christiane Voigt, and Edward Winstead
Atmos. Chem. Phys., 24, 6123–6152, https://doi.org/10.5194/acp-24-6123-2024, https://doi.org/10.5194/acp-24-6123-2024, 2024
Short summary
Short summary
Marine clouds are found to clump together in regions or lines, readily discernible from satellite images of the ocean. While clustering is also a feature of deep storm clouds, we focus on smaller cloud systems associated with fair weather and brief localized showers. Two aircraft sampled the region around these shallow systems: one incorporated measurements taken within, adjacent to, and below the clouds, while the other provided a survey from above using remote sensing techniques.
Siddhant Gupta, Dié Wang, Scott E. Giangrande, Thiago S. Biscaro, and Michael P. Jensen
Atmos. Chem. Phys., 24, 4487–4510, https://doi.org/10.5194/acp-24-4487-2024, https://doi.org/10.5194/acp-24-4487-2024, 2024
Short summary
Short summary
We examine the lifecycle of isolated deep convective clouds (DCCs) in the Amazon rainforest. Weather radar echoes from the DCCs are tracked to evaluate their lifecycle. The DCC size and intensity increase, reach a peak, and then decrease over the DCC lifetime. Vertical profiles of air motion and mass transport from different seasons are examined to understand the transport of energy and momentum within DCC cores and to address the deficiencies in simulating DCCs using weather and climate models.
Benjamin Kirbus, Imke Schirmacher, Marcus Klingebiel, Michael Schäfer, André Ehrlich, Nils Slättberg, Johannes Lucke, Manuel Moser, Hanno Müller, and Manfred Wendisch
Atmos. Chem. Phys., 24, 3883–3904, https://doi.org/10.5194/acp-24-3883-2024, https://doi.org/10.5194/acp-24-3883-2024, 2024
Short summary
Short summary
A research aircraft is used to track the changes in air temperature, moisture, and cloud properties for air that moves from cold Arctic sea ice onto warmer oceanic waters. The measurements are compared to two reanalysis models named ERA5 and CARRA. The biggest differences are found for air temperature over the sea ice and moisture over the ocean. CARRA data are more accurate than ERA5 because they better simulate the sea ice, the transition from sea ice to open ocean, and the forming clouds.
Raphael Satoru Märkl, Christiane Voigt, Daniel Sauer, Rebecca Katharina Dischl, Stefan Kaufmann, Theresa Harlaß, Valerian Hahn, Anke Roiger, Cornelius Weiß-Rehm, Ulrike Burkhardt, Ulrich Schumann, Andreas Marsing, Monika Scheibe, Andreas Dörnbrack, Charles Renard, Maxime Gauthier, Peter Swann, Paul Madden, Darren Luff, Reetu Sallinen, Tobias Schripp, and Patrick Le Clercq
Atmos. Chem. Phys., 24, 3813–3837, https://doi.org/10.5194/acp-24-3813-2024, https://doi.org/10.5194/acp-24-3813-2024, 2024
Short summary
Short summary
In situ measurements of contrails from a large passenger aircraft burning 100 % sustainable aviation fuel (SAF) show a 56 % reduction in contrail ice crystal numbers compared to conventional Jet A-1. Results from a climate model initialized with the observations suggest a significant decrease in radiative forcing from contrails. Our study confirms that future increased use of low aromatic SAF can reduce the climate impact from aviation.
Philippe Ricaud, Massimo Del Guasta, Angelo Lupi, Romain Roehrig, Eric Bazile, Pierre Durand, Jean-Luc Attié, Alessia Nicosia, and Paolo Grigioni
Atmos. Chem. Phys., 24, 613–630, https://doi.org/10.5194/acp-24-613-2024, https://doi.org/10.5194/acp-24-613-2024, 2024
Short summary
Short summary
Clouds affect the Earth's climate in ways that depend on the type of cloud (solid/liquid water). From observations at Concordia (Antarctica), we show that in supercooled liquid water (liquid water for temperatures below 0°C) clouds (SLWCs), temperature and SLWC radiative forcing increase with liquid water (up to 70 W m−2). We extrapolated that the maximum SLWC radiative forcing can reach 40 W m−2 over the Antarctic Peninsula, highlighting the importance of SLWCs for global climate prediction.
Cheikh Dione, Martial Haeffelin, Frédéric Burnet, Christine Lac, Guylaine Canut, Julien Delanoë, Jean-Charles Dupont, Susana Jorquera, Pauline Martinet, Jean-François Ribaud, and Felipe Toledo
Atmos. Chem. Phys., 23, 15711–15731, https://doi.org/10.5194/acp-23-15711-2023, https://doi.org/10.5194/acp-23-15711-2023, 2023
Short summary
Short summary
This paper documents the role of thermodynamics and turbulence in the fog life cycle over southwestern France. It is based on a unique dataset collected during the SOFOG3D field campaign in autumn and winter 2019–2020. The paper gives a threshold for turbulence driving the different phases of the fog life cycle and the role of advection in the night-time dissipation of fog. The results can be operationalised to nowcast fog and improve short-range forecasts in numerical weather prediction models.
Hui Xu, Jianping Guo, Bing Tong, Jinqiang Zhang, Tianmeng Chen, Xiaoran Guo, Jian Zhang, and Wenqing Chen
Atmos. Chem. Phys., 23, 15011–15038, https://doi.org/10.5194/acp-23-15011-2023, https://doi.org/10.5194/acp-23-15011-2023, 2023
Short summary
Short summary
The radiative effect of cloud remains one of the largest uncertain factors in climate change, largely due to the lack of cloud vertical structure (CVS) observations. The study presents the first near-global CVS climatology using high-vertical-resolution soundings. Single-layer cloud mainly occurs over arid regions. As the number of cloud layers increases, clouds tend to have lower bases and thinner layer thicknesses. The occurrence frequency of cloud exhibits a pronounced seasonal diurnal cycle.
Elena De La Torre Castro, Tina Jurkat-Witschas, Armin Afchine, Volker Grewe, Valerian Hahn, Simon Kirschler, Martina Krämer, Johannes Lucke, Nicole Spelten, Heini Wernli, Martin Zöger, and Christiane Voigt
Atmos. Chem. Phys., 23, 13167–13189, https://doi.org/10.5194/acp-23-13167-2023, https://doi.org/10.5194/acp-23-13167-2023, 2023
Short summary
Short summary
In this study, we show the differences in the microphysical properties between high-latitude (HL) cirrus and mid-latitude (ML) cirrus over the Arctic, North Atlantic, and central Europe during summer. The in situ measurements are combined with backward trajectories to investigate the influence of the region on cloud formation. We show that HL cirrus are characterized by a lower concentration of larger ice crystals when compared to ML cirrus.
Mampi Sarkar, Adriana Bailey, Peter Blossey, Simon P. de Szoeke, David Noone, Estefanía Quiñones Meléndez, Mason D. Leandro, and Patrick Y. Chuang
Atmos. Chem. Phys., 23, 12671–12690, https://doi.org/10.5194/acp-23-12671-2023, https://doi.org/10.5194/acp-23-12671-2023, 2023
Short summary
Short summary
We study rain evaporation characteristics below shallow cumulus clouds over the North Atlantic Ocean by pairing isotope observations with a microphysical model. The modeled fraction of rain mass that evaporates below the cloud strongly depends on the raindrop size and distribution width. Moreover, the higher the rain mass fraction evaporated, the greater the change in deuterium excess. In this way, rain evaporation could be studied independently using only isotope and microphysical observations.
Simon Kirschler, Christiane Voigt, Bruce E. Anderson, Gao Chen, Ewan C. Crosbie, Richard A. Ferrare, Valerian Hahn, Johnathan W. Hair, Stefan Kaufmann, Richard H. Moore, David Painemal, Claire E. Robinson, Kevin J. Sanchez, Amy J. Scarino, Taylor J. Shingler, Michael A. Shook, Kenneth L. Thornhill, Edward L. Winstead, Luke D. Ziemba, and Armin Sorooshian
Atmos. Chem. Phys., 23, 10731–10750, https://doi.org/10.5194/acp-23-10731-2023, https://doi.org/10.5194/acp-23-10731-2023, 2023
Short summary
Short summary
In this study we present an overview of liquid and mixed-phase clouds and precipitation in the marine boundary layer over the western North Atlantic Ocean. We compare microphysical properties of pure liquid clouds to mixed-phase clouds and show that the initiation of the ice phase in mixed-phase clouds promotes precipitation. The observational data presented in this study are well suited for investigating the processes that give rise to liquid and mixed-phase clouds, ice, and precipitation.
Meng Xing, Weiguo Liu, Jing Hu, and Zheng Wang
Atmos. Chem. Phys., 23, 9123–9136, https://doi.org/10.5194/acp-23-9123-2023, https://doi.org/10.5194/acp-23-9123-2023, 2023
Short summary
Short summary
The below-cloud evaporation effect (BCE) on precipitation largely impacts the final isotopic composition. However, determining the BCE effect remains poorly constrained. Our work used a ΔdΔδ diagram to differentiate the below-cloud processes. Moreover, by comparing two different computing methods, we considered that both methods are suitable for evaluation the BCE, except for snowfall events. Overall, our work compiled a set of effective methods to evaluate the BCE effect.
McKenna W. Stanford, Ann M. Fridlind, Israel Silber, Andrew S. Ackerman, Greg Cesana, Johannes Mülmenstädt, Alain Protat, Simon Alexander, and Adrian McDonald
Atmos. Chem. Phys., 23, 9037–9069, https://doi.org/10.5194/acp-23-9037-2023, https://doi.org/10.5194/acp-23-9037-2023, 2023
Short summary
Short summary
Clouds play an important role in the Earth’s climate system as they modulate the amount of radiation that either reaches the surface or is reflected back to space. This study demonstrates an approach to robustly evaluate surface-based observations against a large-scale model. We find that the large-scale model precipitates too infrequently relative to observations, contrary to literature documentation suggesting otherwise based on satellite measurements.
Valerian Hahn, Ralf Meerkötter, Christiane Voigt, Sonja Gisinger, Daniel Sauer, Valéry Catoire, Volker Dreiling, Hugh Coe, Cyrille Flamant, Stefan Kaufmann, Jonas Kleine, Peter Knippertz, Manuel Moser, Philip Rosenberg, Hans Schlager, Alfons Schwarzenboeck, and Jonathan Taylor
Atmos. Chem. Phys., 23, 8515–8530, https://doi.org/10.5194/acp-23-8515-2023, https://doi.org/10.5194/acp-23-8515-2023, 2023
Short summary
Short summary
During the DACCIWA campaign in West Africa, we found a 35 % increase in the cloud droplet concentration that formed in a polluted compared with a less polluted environment and a decrease of 17 % in effective droplet diameter. Radiative transfer simulations, based on the measured cloud properties, reveal that these low-level polluted clouds radiate only 2.6 % more energy back to space, compared with a less polluted cloud. The corresponding additional decrease in temperature is rather small.
Silke Groß, Tina Jurkat-Witschas, Qiang Li, Martin Wirth, Benedikt Urbanek, Martina Krämer, Ralf Weigel, and Christiane Voigt
Atmos. Chem. Phys., 23, 8369–8381, https://doi.org/10.5194/acp-23-8369-2023, https://doi.org/10.5194/acp-23-8369-2023, 2023
Short summary
Short summary
Aviation-emitted aerosol can have an impact on cirrus clouds. We present optical and microphysical properties of mid-latitude cirrus clouds which were formed under the influence of aviation-emitted aerosol or which were formed under rather pristine conditions. We find that cirrus clouds affected by aviation-emitted aerosol show larger values of the particle linear depolarization ratio, larger mean effective ice particle diameters and decreased ice particle number concentrations.
Emma Järvinen, Franziska Nehlert, Guanglang Xu, Fritz Waitz, Guillaume Mioche, Regis Dupuy, Olivier Jourdan, and Martin Schnaiter
Atmos. Chem. Phys., 23, 7611–7633, https://doi.org/10.5194/acp-23-7611-2023, https://doi.org/10.5194/acp-23-7611-2023, 2023
Short summary
Short summary
The Arctic is warming faster than other regions. Arctic low-level mixed-phase clouds, where ice crystals and liquid droplets co-exist, are thought to have an important role in Arctic warming. Here we show airborne measurements of vertical distribution of liquid and ice particles and their relative abundance. Ice particles are found in relative warm clouds, which can be explained by multiplication of existing ice crystals. However, the role of ice particles in redistributing sun light is minimal.
Manuel Moser, Christiane Voigt, Tina Jurkat-Witschas, Valerian Hahn, Guillaume Mioche, Olivier Jourdan, Régis Dupuy, Christophe Gourbeyre, Alfons Schwarzenboeck, Johannes Lucke, Yvonne Boose, Mario Mech, Stephan Borrmann, André Ehrlich, Andreas Herber, Christof Lüpkes, and Manfred Wendisch
Atmos. Chem. Phys., 23, 7257–7280, https://doi.org/10.5194/acp-23-7257-2023, https://doi.org/10.5194/acp-23-7257-2023, 2023
Short summary
Short summary
This study provides a comprehensive microphysical and thermodynamic phase analysis of low-level clouds in the northern Fram Strait, above the sea ice and the open ocean, during spring and summer. Using airborne in situ cloud data, we show that the properties of Arctic low-level clouds vary significantly with seasonal meteorological situations and surface conditions. The observations presented in this study can help one to assess the role of clouds in the Arctic climate system.
Rachel Atlas and Christopher S. Bretherton
Atmos. Chem. Phys., 23, 4009–4030, https://doi.org/10.5194/acp-23-4009-2023, https://doi.org/10.5194/acp-23-4009-2023, 2023
Short summary
Short summary
The tropical tropopause layer exists between the troposphere and the stratosphere in the tropics. Very thin cirrus clouds cool Earth's surface by scrubbing water vapor (a greenhouse gas) out of air parcels as they ascend through the tropical tropopause layer on their way to the stratosphere. We show observational evidence from aircraft that small-scale (< 100 km) gravity waves and turbulence increase the amount of ice in these clouds and may allow them to remove more water vapor from the air.
Konstantinos Matthaios Doulgeris, Ville Vakkari, Ewan J. O'Connor, Veli-Matti Kerminen, Heikki Lihavainen, and David Brus
Atmos. Chem. Phys., 23, 2483–2498, https://doi.org/10.5194/acp-23-2483-2023, https://doi.org/10.5194/acp-23-2483-2023, 2023
Short summary
Short summary
We investigated how different long-range-transported air masses can affect the microphysical properties of low-level clouds in a clean subarctic environment. A connection was revealed. Higher values of cloud droplet number concentrations were related to continental air masses, whereas the lowest values of number concentrations were related to marine air masses. These were characterized by larger cloud droplets. Clouds in all regions were sensitive to increases in cloud number concentration.
Fayçal Lamraoui, Martina Krämer, Armin Afchine, Adam B. Sokol, Sergey Khaykin, Apoorva Pandey, and Zhiming Kuang
Atmos. Chem. Phys., 23, 2393–2419, https://doi.org/10.5194/acp-23-2393-2023, https://doi.org/10.5194/acp-23-2393-2023, 2023
Short summary
Short summary
Cirrus in the tropical tropopause layer (TTL) can play a key role in vertical transport. We investigate the role of different cloud regimes and the associated ice habits in regulating the properties of the TTL. We use high-resolution numerical experiments at the scales of large-eddy simulations (LESs) and aircraft measurements. We found that LES-scale parameterizations that predict ice shape are crucial for an accurate representation of TTL cirrus and thus the associated (de)hydration process.
Yun Li, Christoph Mahnke, Susanne Rohs, Ulrich Bundke, Nicole Spelten, Georgios Dekoutsidis, Silke Groß, Christiane Voigt, Ulrich Schumann, Andreas Petzold, and Martina Krämer
Atmos. Chem. Phys., 23, 2251–2271, https://doi.org/10.5194/acp-23-2251-2023, https://doi.org/10.5194/acp-23-2251-2023, 2023
Short summary
Short summary
The radiative effect of aviation-induced cirrus is closely related to ambient conditions and its microphysical properties. Our study investigated the occurrence of contrail and natural cirrus measured above central Europe in spring 2014. It finds that contrail cirrus appears frequently in the pressure range 200 to 245 hPa and occurs more often in slightly ice-subsaturated environments than expected. Avoiding slightly ice-subsaturated regions by aviation might help mitigate contrail cirrus.
Flor Vanessa Maciel, Minghui Diao, and Ryan Patnaude
Atmos. Chem. Phys., 23, 1103–1129, https://doi.org/10.5194/acp-23-1103-2023, https://doi.org/10.5194/acp-23-1103-2023, 2023
Short summary
Short summary
Aerosol indirect effects on cirrus clouds are investigated during cirrus evolution, using global-scale in situ observations and climate model simulations. As cirrus evolves, the mechanisms to form ice crystals also change with time. Both small and large aerosols are found to affect cirrus properties. Southern Hemisphere cirrus appears to be more sensitive to additional aerosols. The climate model underestimates ice crystal mass, likely due to biases of relative humidity and vertical velocity.
David E. Kingsmill, Jeffrey R. French, and Neil P. Lareau
Atmos. Chem. Phys., 23, 1–21, https://doi.org/10.5194/acp-23-1-2023, https://doi.org/10.5194/acp-23-1-2023, 2023
Short summary
Short summary
This study uses in situ aircraft measurements to characterize the size and shape distributions of 10 µm to 6 mm diameter particles observed during six penetrations of wildfire-induced pyroconvection. Particles sampled in one penetration of a smoke plume are most likely pyrometeors composed of ash. The other penetrations are through pyrocumulus clouds where particle composition is most likely a combination of hydrometeors (ice particles) and pyrometeors (ash).
Julie Thérèse Pasquier, Jan Henneberger, Fabiola Ramelli, Annika Lauber, Robert Oscar David, Jörg Wieder, Tim Carlsen, Rosa Gierens, Marion Maturilli, and Ulrike Lohmann
Atmos. Chem. Phys., 22, 15579–15601, https://doi.org/10.5194/acp-22-15579-2022, https://doi.org/10.5194/acp-22-15579-2022, 2022
Short summary
Short summary
It is important to understand how ice crystals and cloud droplets form in clouds, as their concentrations and sizes determine the exact radiative properties of the clouds. Normally, ice crystals form from aerosols, but we found evidence for the formation of additional ice crystals from the original ones over a large temperature range within Arctic clouds. In particular, additional ice crystals were formed during collisions of several ice crystals or during the freezing of large cloud droplets.
Layrson J. M. Gonçalves, Simone M. S. C. Coelho, Paulo Y. Kubota, and Dayana C. Souza
Atmos. Chem. Phys., 22, 15509–15526, https://doi.org/10.5194/acp-22-15509-2022, https://doi.org/10.5194/acp-22-15509-2022, 2022
Short summary
Short summary
This research aims to study the environmental conditions that are favorable and not favorable to cloud formation, in this case specifically for the Amazon region. The results found in this research will be used to improve the representation of clouds in numerical models that are used in weather and climate prediction. In general, it is expected that with better knowledge regarding the cloud–radiation interaction, it is possible to make a better forecast of weather and climate.
Claudia Mignani, Lukas Zimmermann, Rigel Kivi, Alexis Berne, and Franz Conen
Atmos. Chem. Phys., 22, 13551–13568, https://doi.org/10.5194/acp-22-13551-2022, https://doi.org/10.5194/acp-22-13551-2022, 2022
Short summary
Short summary
We determined over the course of 8 winter months the phase of clouds associated with snowfall in Northern Finland using radiosondes and observations of ice particle habits at ground level. We found that precipitating clouds were extending from near ground to at least 2.7 km altitude and approximately three-quarters of them were likely glaciated. Possible moisture sources and ice formation processes are discussed.
Alexei Korolev, Paul J. DeMott, Ivan Heckman, Mengistu Wolde, Earle Williams, David J. Smalley, and Michael F. Donovan
Atmos. Chem. Phys., 22, 13103–13113, https://doi.org/10.5194/acp-22-13103-2022, https://doi.org/10.5194/acp-22-13103-2022, 2022
Short summary
Short summary
The present study provides the first explicit in situ observation of secondary ice production at temperatures as low as −27 °C, which is well outside the range of the Hallett–Mossop process (−3 to −8 °C). This observation expands our knowledge of the temperature range of initiation of secondary ice in clouds. The obtained results are intended to stimulate laboratory and theoretical studies to develop physically based parameterizations for weather prediction and climate models.
Siddhant Gupta, Greg M. McFarquhar, Joseph R. O'Brien, Michael R. Poellot, David J. Delene, Ian Chang, Lan Gao, Feng Xu, and Jens Redemann
Atmos. Chem. Phys., 22, 12923–12943, https://doi.org/10.5194/acp-22-12923-2022, https://doi.org/10.5194/acp-22-12923-2022, 2022
Short summary
Short summary
The ability of NASA’s Terra and Aqua satellites to retrieve cloud properties and estimate the changes in cloud properties due to aerosol–cloud interactions (ACI) was examined. There was good agreement between satellite retrievals and in situ measurements over the southeast Atlantic Ocean. This suggests that, combined with information on aerosol properties, satellite retrievals of cloud properties can be used to study ACI over larger domains and longer timescales in the absence of in situ data.
Étienne Vignon, Lea Raillard, Christophe Genthon, Massimo Del Guasta, Andrew J. Heymsfield, Jean-Baptiste Madeleine, and Alexis Berne
Atmos. Chem. Phys., 22, 12857–12872, https://doi.org/10.5194/acp-22-12857-2022, https://doi.org/10.5194/acp-22-12857-2022, 2022
Short summary
Short summary
The near-surface atmosphere over the Antarctic Plateau is cold and pristine and resembles to a certain extent the high troposphere where cirrus clouds form. In this study, we use innovative humidity measurements at Concordia Station to study the formation of ice fogs at temperatures <−40°C. We provide observational evidence that ice fogs can form through the homogeneous freezing of solution aerosols, a common nucleation pathway for cirrus clouds.
Jan H. Schween, Camilo del Rio, Juan-Luis García, Pablo Osses, Sarah Westbrook, and Ulrich Löhnert
Atmos. Chem. Phys., 22, 12241–12267, https://doi.org/10.5194/acp-22-12241-2022, https://doi.org/10.5194/acp-22-12241-2022, 2022
Short summary
Short summary
Marine stratocumulus clouds of the eastern Pacific play an essential role in the Earth's climate. These clouds form the major source of water to parts of the extreme dry Atacama Desert at the northern coast of Chile. For the first time these clouds are observed over a whole year with three remote sensing instruments. It is shown how these clouds are influenced by the land–sea wind system and the distribution of ocean temperatures.
Marie Mazoyer, Frédéric Burnet, and Cyrielle Denjean
Atmos. Chem. Phys., 22, 11305–11321, https://doi.org/10.5194/acp-22-11305-2022, https://doi.org/10.5194/acp-22-11305-2022, 2022
Short summary
Short summary
The evolution of the droplet size distribution during the fog life cycle remains poorly understood and progress is required to reduce the uncertainty of fog forecasts. To gain insights into the physical processes driving the microphysics, intensive field campaigns were conducted during three winters at the SIRTA site in the south of Paris. This study analyzed the variations in fog microphysical properties and their potential interactions at the different evolutionary stages of the fog events.
Xianda Gong, Martin Radenz, Heike Wex, Patric Seifert, Farnoush Ataei, Silvia Henning, Holger Baars, Boris Barja, Albert Ansmann, and Frank Stratmann
Atmos. Chem. Phys., 22, 10505–10525, https://doi.org/10.5194/acp-22-10505-2022, https://doi.org/10.5194/acp-22-10505-2022, 2022
Short summary
Short summary
The sources of ice-nucleating particles (INPs) are poorly understood in the Southern Hemisphere (SH). We studied INPs in the boundary layer in the southern Patagonia region. No seasonal cycle of INP concentrations was observed. The majority of INPs are biogenic particles, likely from local continental sources. The INP concentrations are higher when strong precipitation occurs. While previous studies focused on marine INP sources in SH, we point out the importance of continental sources of INPs.
Jörg Wieder, Nikola Ihn, Claudia Mignani, Moritz Haarig, Johannes Bühl, Patric Seifert, Ronny Engelmann, Fabiola Ramelli, Zamin A. Kanji, Ulrike Lohmann, and Jan Henneberger
Atmos. Chem. Phys., 22, 9767–9797, https://doi.org/10.5194/acp-22-9767-2022, https://doi.org/10.5194/acp-22-9767-2022, 2022
Short summary
Short summary
Ice formation and its evolution in mixed-phase clouds are still uncertain. We evaluate the lidar retrieval of ice-nucleating particle concentration in dust-dominated and continental air masses over the Swiss Alps with in situ observations. A calibration factor to improve the retrieval from continental air masses is proposed. Ice multiplication factors are obtained with a new method utilizing remote sensing. Our results indicate that secondary ice production occurs at temperatures down to −30 °C.
Saleem Ali, Sanjay Kumar Mehta, Aravindhavel Ananthavel, and Tondapu Venkata Ramesh Reddy
Atmos. Chem. Phys., 22, 8321–8342, https://doi.org/10.5194/acp-22-8321-2022, https://doi.org/10.5194/acp-22-8321-2022, 2022
Short summary
Short summary
Multiple cirrus clouds frequently occur over regions of deep convection in the tropics. Tropical convection has a strong diurnal pattern, with peaks in the afternoon to early evening, over the continents. Continuous micropulse lidar observations over a coastal station in the Indian monsoon region enable us, for the first time, to demonstrate a robust diurnal pattern of single and multiple cirrus occurrences, with peaks during the late afternoon and early morning hours, respectively.
Ivana Kolmašová, Ondřej Santolík, Jakub Šlegl, Jana Popová, Zbyněk Sokol, Petr Zacharov, Ondřej Ploc, Gerhard Diendorfer, Ronald Langer, Radek Lán, and Igor Strhárský
Atmos. Chem. Phys., 22, 7959–7973, https://doi.org/10.5194/acp-22-7959-2022, https://doi.org/10.5194/acp-22-7959-2022, 2022
Short summary
Short summary
Gamma ray radiation related to thunderstorms was previously observed at the high-altitude mountain observatories or on the western coast of Japan, usually being terminated by lightning discharges. We show unusual observations of gamma rays at an altitude below 1000 m, coinciding with peculiar rapid variations in the vertical electric field, which are linked to inverted intracloud lightning discharges. This indicates that a strong, lower positive-charge region was present inside the thundercloud.
Cuiqi Zhang, Zhijun Wu, Jingchuan Chen, Jie Chen, Lizi Tang, Wenfei Zhu, Xiangyu Pei, Shiyi Chen, Ping Tian, Song Guo, Limin Zeng, Min Hu, and Zamin A. Kanji
Atmos. Chem. Phys., 22, 7539–7556, https://doi.org/10.5194/acp-22-7539-2022, https://doi.org/10.5194/acp-22-7539-2022, 2022
Short summary
Short summary
The immersion ice nucleation effectiveness of aerosols from multiple sources in the urban environment remains elusive. In this study, we demonstrate that the immersion ice-nucleating particle (INP) concentration increased dramatically during a dust event in an urban atmosphere. Pollutant aerosols, including inorganic salts formed through secondary transformation (SIA) and black carbon (BC), might not act as effective INPs under mixed-phase cloud conditions.
Fritz Waitz, Martin Schnaiter, Thomas Leisner, and Emma Järvinen
Atmos. Chem. Phys., 22, 7087–7103, https://doi.org/10.5194/acp-22-7087-2022, https://doi.org/10.5194/acp-22-7087-2022, 2022
Short summary
Short summary
Riming, i.e., the accretion of small droplets on the surface of ice particles via collision, is one of the major uncertainties in model prediction of mixed-phase clouds. We discuss the occurrence (up to 50% of particles) and aging of rimed ice particles and show correlations of the occurrence and the degree of riming with ambient meteorological parameters using data gathered by the Particle Habit Imaging and Polar Scattering (PHIPS) probe during three airborne in situ field campaigns.
Cited articles
Albrecht, B. A., Randall, D. A., and Nicholls, S.: Observations of marine stratocumulus clouds during FIRE, B. Am. Meteorol. Soc., 69, 618–626, https://doi.org/10.1175/1520-0477(1988)069<0618:OOMSCD>2.0.CO;2, 1988.
Andrejczuk, M., Grabowski, W. W., Malinowski, S. P., and Smolarkiewicz, P. K.: Numerical simulation of cloud-clear air interfacial mixing: homogeneous versus inhomogeneous mixing, J. Atmos. Sci., 66, 2493–2500, https://doi.org/10.1175/2009JAS2956.1, 2009.
Bretherton, C. S., Uttal, T., Fairall, C. W., Yuter, S. E., Weller, R. A., Baumgardner, D., Comstock, K., Wood, R., and Raga, G. B.: The epic 2001 stratocumulus study, B. Am. Meteorol. Soc., 85, 967–977, https://doi.org/10.1175/BAMS-85-7-967, 2004.
Carman, J. K., Rossiter, D. L., Khelif, D., Jonsson, H. H., Faloona, I. C., and Chuang, P. Y.: Observational constraints on entrainment and the entrainment interface layer in stratocumulus, Atmos. Chem. Phys., 12, 11135–11152, https://doi.org/10.5194/acp-12-11135-2012, 2012.
Caughey, S. J., Crease, B. A., and Roach, W. T.: A field study of nocturnal stratocumulus: 2. Turbulence structure and entrainment, Q. J. Roy. Meteor. Soc., 108, 125–144, https://doi.org/10.1002/qj.49710845508, 1982.
Chuang, P. Y., Saw, E. W., Small, J. D., Shaw, R. A., Sipperley, C. M., Payne, G. A., and Bachalo, W. D.: Airborne phase Doppler interferometry for cloud microphysical measurements, Aerosol Sci. Tech., 42, 685–703, https://doi.org/10.1080/02786820802232956, 2008.
De Roode, S. R. and Wang, Q.: Do stratocumulus clouds detrain? FIRE I data revisited, Bound.-Lay. Meteorol., 122, 479–491, https://doi.org/10.1007/s10546-006-9113-1, 2007.
Faloona, I., Lenschow, D. H, Campos, T., Stevens, B., and van Zanten, M.: Observations of entrainment in Eastern Pacific marine stratocumulus using three conserved scalars, J. Atmos. Sci., 62, 3268–3285, https://doi.org/10.1175/JAS3541.1, 2005.
Galperin, B., Sukoriansky, S., and Anderson, P. S.: On the critical Richardson number in stably stratified turbulence, Atmos. Sci. Lett., 8, 65–69, https://doi.org/10.1002/asl.153, 2007.
Gerber, H., Arends, B. G., and Ackerman, A. S.: A new microphysics sensor for aircraft use, Atmos. Res., 31, 235–252, https://doi.org/10.1016/0169-8095(94)90001-9, 1994.
Gerber, H., Frick, G., Malinowski, S. P., Brenguier, J.-L., and Burnet, F.: Holes and entrainment in stratocumulus, J. Atmos. Sci., 62, 443–459, https://doi.org/10.1175/JAS-3399.1, 2005.
Gerber, H., Frick, G., Malinowski, S. P., Kumala, W., and Krueger, S.: POST – A New Look at Stratocumulus, 13th Conference on Cloud Physics, Portland, OR, 2010, American Meteorological Society, available at: http://ams.confex.com/ams/pdfpapers/170431.pdf (last access: 31 July 2013), 2010.
Gerber, H., Frick, G., Malinowski, S. P., Jonsson, H., Khelif, D., and Krueger, S. K.: Entrainment rates and microphysics in POST stratocumulus, J. Geophys. Res.-Atmos., 118, 12094–12109, https://doi.org/10.1002/jgrd.50878, 2013.
Grachev, A. A., Andreas, E. L., Fairall, C. W., Guest, P. S., and Persson, O. G.: The critical Richardson number and limits of applicability of local similarity theory in the stable boundary layer, Bound.-Lay. Meteorol., 47, 51–83, https://doi.org/10.1007/s10546-012-9771-0, 2013.
Haman, K. E., Malinowski, S. P., Kurowski, M. J., Gerber, H., and Brenguier, J-L.: Small scale mixing processes at the top of a marine stratocumulus – a case study, Q. J. Roy. Meteorol. Soc., 133, 213–226, https://doi.org/10.1002/qj.5, 2007.
Katzwinkel, J., Siebert, H., and Shaw, R. A.: Observation of a self-limiting, shear-induced turbulent inversion layer above marine stratocumulus, Bound.-Lay. Meteorol., 145, 131–143, https://doi.org/10.1007/s10546-011-9683-4, 2012.
Kumala, W., Haman, K. E., Kopec, M. K., Khelif, D., and Malinowski, S. P.: Modified ultrafast thermometer UFT-M and temperature measurements during Physics of Stratocumulus Top (POST), Atmos. Meas. Tech., 6, 2043–2054, https://doi.org/10.5194/amt-6-2043-2013, 2013.
Kurowski, M. J., Malinowski, S. P. and Grabowski, W. W.: A numerical investigation of entrainment and transport within a stratocumulus-topped boundary layer, Q. J. Roy. Meteorol. Soc., 135, 77–92, https://doi.org/10.1002/qj.354, 2009.
Lenschow, D. H., Paluch, I. R., Brandy, A. R, Pearson, R., Kawa, S. R, Weaver, C. J., Kay, J. G, Thornton, D. C., and Driedger, A. R.: Dynamics and Chemistry of Marine Stratocumulus (DYCOMS) experiment, B. Am. Meteorol. Soc., 69, 1058–1067, https://doi.org/10.1175/1520-0477(1988)069<1058:DACOMS>2.0.CO;2, 1988.
Lenschow, D. L., Zhou, M., Zeng, X., Chen, L., and Xu, X.: Measurements of fine-scale structure at the top of marine stratocumulus, Bound.-Lay. Meteorol., 97, 331–357, https://doi.org/10.1023/A:1002780019748, 2000.
Lilly, D. K.: Validation of a mixed-layer closure. II: Observational tests, Q. J. Roy. Meteorol. Soc., 134, 57–67, https://doi.org/10.1002/qj.183, 2008.
Lilly, D. K. and Stevens, B.: Validation of a mixed-layer closure. I: Theoretical tests, Q. J. Roy. Meteorol. Soc., 134, 47–55, https://doi.org/10.1002/qj.184, 2008. \bibitem [Malinowski et al.(2011)]Malinowski2011 Malinowski, S. P., Haman, K. E., Kopec, M. K., Kumala, W., and Gerber, H.: Small-scale turbulent mixing at stratocumulus top observed by means of high resolution airborne temperature and LWC measurements, J. Phys. Conf. Ser., 318, 072013, https://doi.org/10.1088/1742-6596/318/7/072013, 2011. \bibitem [Mellado(2010)]Mellado2010 Mellado, J. P.: The evaporatively driven cloud-top mixing layer. J. Fluid Mech., 660, 5–36, https://doi.org/10.1017/S0022112010002831, 2010. \bibitem [Mellado et al.(2009)]Mellado2009 Mellado, J. P., Stevens, B., Schmidt, H., and Peters, N.: Buoyancy reversal in cloud-top mixing layers, Q. J. Roy. Meteorol. Soc., 135, 963–978, https://doi.org/10.1002/qj.417, 2009.
Moeng, C.-H., Stevens, B., and Sullivan, P. P.: Where is the interface of the stratocumulus-topped PBL?, J. Atmos. Sci., 62, 2626–2631, https://doi.org/10.1175/JAS3470.1, 2005.
Nicholls, S.: The structure of radiatively driven convection in stratocumulus, Q. J. Roy. Meteorol. Soc., 115, 487–511, https://doi.org/10.1002/qj.49711548704, 1989.
Nicholls, S. and Turton, J. D.: An observational study of the structure of stratiform cloud sheets: Part 2: Entrainment, Q. J. Roy. Meteorol. Soc., 112, 461–480, https://doi.org/10.1002/qj.49711247210, 1986.
Pawlowska, H., Brenguier, J.-L., and Burnet, F.: Microphysical properties of stratocumulus clouds, Atmos. Res., 55, 15–23, https://doi.org/10.1016/S0169-8095(00)00054-5, 2000.
Peltier, W. R. and Caulfield, C. P.: Mixing Efficiency in stratified shear flows, Annu. Rev. Fluid. Mech., 35, 135–167, https://doi.org/10.1146/annurev.fluid.35.101101.161144, 2003.
Pham, H. T. and Sarkar, S.: Transport and mixing of density in a continuously stratified shear layer, J. Turbul., 11, 1–23, https://doi.org/10.1080/14685248.2010.493560, 2010.
Siebert, H., Lehmann, K., Wendisch, M., Franke, H., Maser, R., Schell, D., Saw, E.-W., and Shaw, R. A.: Probing Finescale Dynamics and Microphysics of Clouds with Helicopter-Borne Measurements, B. Am. Meteorol. Soc., 87, 1727–1738, https://doi.org/10.1175/BAMS-87-12-1727, 2006.
Smyth, W. D. and Moum, J. N.: Length scales of turbulence in stably stratified mixing layers, Phys. Fluids, 12, 1327–1342, https://doi.org/10.1063/1.870385, 2000.
Stevens, B.: Entrainment in stratocumulus-topped mixed layers, Q. J. Roy. Meteorol. Soc., 128, 2663–2690, https://doi.org/10.1256/qj.01.202, 2002.
Stevens, B.: Atmopsheric moist convection, Annu. Rev. Earth. Pl. Sc., 33, 605–643, https://doi.org/10.1146/annurev.earth.33.092203.122658, 2005.
Stevens, B., Lenschow, D. H., Vali, G., Gerber, H., Bandy, A., Blomquist, B., Brenguier, J-L., Bretherton, C. S., Burnet, F., Campos, T., Chai, S., Faloona, I., Friesen, D., Haimov, S., Laursen, K., Lilly, D. K., Loehrer, S. M., Malinowski, S. P., Morley, B., Petters, M. D., Rogers, D. C., Russell, L., Savic-Jovcic, V., Snider, J. R., Straub, D., Szumowski, M. J., Takagi, H., Thornton, D. C., Tschudi, M., Twohy, C., Wetzel, M., and van Zanten, M. C.: Dynamics and chemistry of marine stratocumulus – Dycoms II, B. Am. Meteorol. Soc., 84, 579–593, https://doi.org/10.1175/BAMS-84-5-579, 2003.
Turner, J. S.: Turbulent entrainment: the development of the entrainment assumption, and its application to geophysical flows, J. Fluid. Mech., 173, 431–471, https://doi.org/10.1017/S0022112086001222, 1986.
Wang, S., Golaz, J.-C., and Wang, Q.: Effect of intense wind shear across the inversion on stratocumulus clouds, Geophys. Res. Lett., 35, L15814, https://doi.org/10.1029/2008GL033865, 2008.
Wang, S., Zheng, X., and Jiang, Q.: Strongly sheared stratocumulus convection: an observationally based large-eddy simulation study, Atmos. Chem. Phys., 12, 5223–5235, https://doi.org/10.5194/acp-12-5223-2012, 2012.
Wood, R.: Stratocumulus clouds, Mon. Weather Rev., 140, 2373–2423, https://doi.org/10.1175/MWR-D-11-00121.1, 2012.
Yamaguchi, T. and Randall, D. A.: Large-Eddy simulation of evaporatively driven entrainment in cloud-topped mixed layers, J. Atmos. Sci., 65, 1481–1504, https://doi.org/10.1175/2007JAS2438.1, 2008.
Altmetrics
Final-revised paper
Preprint