Articles | Volume 12, issue 6
Atmos. Chem. Phys., 12, 2809–2822, 2012
https://doi.org/10.5194/acp-12-2809-2012
Atmos. Chem. Phys., 12, 2809–2822, 2012
https://doi.org/10.5194/acp-12-2809-2012

Research article 16 Mar 2012

Research article | 16 Mar 2012

Reactions of H+(pyridine)m(H2O)n and H+(NH3)1(pyridine)m(H2O)n with NH3: experiments and kinetic modelling

M. J. Ryding et al.

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Effects of liquid–liquid phase separation and relative humidity on the heterogeneous OH oxidation of inorganic–organic aerosols: insights from methylglutaric acid and ammonium sulfate particles
Hoi Ki Lam, Rongshuang Xu, Jack Choczynski, James F. Davies, Dongwan Ham, Mijung Song, Andreas Zuend, Wentao Li, Ying-Lung Steve Tse, and Man Nin Chan
Atmos. Chem. Phys., 21, 2053–2066, https://doi.org/10.5194/acp-21-2053-2021,https://doi.org/10.5194/acp-21-2053-2021, 2021
Short summary
Measurement report: Sulfuric acid nucleation and experimental conditions in a photolytic flow reactor
David R. Hanson, Seakh Menheer, Michael Wentzel, and Joan Kunz
Atmos. Chem. Phys., 21, 1987–2001, https://doi.org/10.5194/acp-21-1987-2021,https://doi.org/10.5194/acp-21-1987-2021, 2021
Short summary
Ozonolysis of fatty acid monolayers at the air–water interface: organic films may persist at the surface of atmospheric aerosols
Benjamin Woden, Maximilian W. A. Skoda, Adam Milsom, Curtis Gubb, Armando Maestro, James Tellam, and Christian Pfrang
Atmos. Chem. Phys., 21, 1325–1340, https://doi.org/10.5194/acp-21-1325-2021,https://doi.org/10.5194/acp-21-1325-2021, 2021
Short summary
Quantification of the role of stabilized Criegee intermediates in the formation of aerosols in limonene ozonolysis
Yiwei Gong and Zhongming Chen
Atmos. Chem. Phys., 21, 813–829, https://doi.org/10.5194/acp-21-813-2021,https://doi.org/10.5194/acp-21-813-2021, 2021
Short summary
Photochemical degradation of iron(III) citrate/citric acid aerosol quantified with the combination of three complementary experimental techniques and a kinetic process model
Jing Dou, Peter A. Alpert, Pablo Corral Arroyo, Beiping Luo, Frederic Schneider, Jacinta Xto, Thomas Huthwelker, Camelia N. Borca, Katja D. Henzler, Jörg Raabe, Benjamin Watts, Hartmut Herrmann, Thomas Peter, Markus Ammann, and Ulrich K. Krieger
Atmos. Chem. Phys., 21, 315–338, https://doi.org/10.5194/acp-21-315-2021,https://doi.org/10.5194/acp-21-315-2021, 2021
Short summary

Cited articles

Andersson, P. U., Ryding, M. J., Sekiguchi, O. and Uggerud, E.: Isotope exchange and structural rearrangements in reactions between size-selected ionic water clusters, H3O + (H2O)(n) and NH4+(H2O)(n), and D2O, Phys. Chem. Chem. Phys., 10, 6127–6134, 2008.
Arijs, E. and Brasseur, G.: Acetonitrile in the Stratosphere and Implications for Positive-Ion Composition, J. Geophys. Res. Atmos., 91, 4003–4016, 1986.
Atkinson, R., Tuazon, E. C., Wallington, T. J., Aschmann, S. M., Arey, J., Winer, A. M. and Pitts, J. N.: Atmospheric Chemistry of Aniline, N,N-Dimethylaniline, Pyridine, 1,3,5-Triazine, and Nitrobenzene, Environ. Sci. Technol., 21, 64–72, 1987.
Beig, G.: Global change induced trends in ion composition of the troposphere to the lower thermosphere, Ann. Geophys., 26, 1181–1187, 2008.
Beig, G. and Brasseur, G. P.: Model of tropospheric ion composition: A first attempt, J. Geophys. Res. Atmos., 105, 22671–22684, 2000.
Download
Altmetrics
Final-revised paper
Preprint