Articles | Volume 11, issue 14
Atmos. Chem. Phys., 11, 6881–6893, 2011
https://doi.org/10.5194/acp-11-6881-2011
Atmos. Chem. Phys., 11, 6881–6893, 2011
https://doi.org/10.5194/acp-11-6881-2011

Research article 18 Jul 2011

Research article | 18 Jul 2011

Artifacts in measuring aerosol uptake kinetics: the roles of time, concentration and adsorption

L. H. Renbaum and G. D. Smith

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Effects of liquid–liquid phase separation and relative humidity on the heterogeneous OH oxidation of inorganic–organic aerosols: insights from methylglutaric acid and ammonium sulfate particles
Hoi Ki Lam, Rongshuang Xu, Jack Choczynski, James F. Davies, Dongwan Ham, Mijung Song, Andreas Zuend, Wentao Li, Ying-Lung Steve Tse, and Man Nin Chan
Atmos. Chem. Phys., 21, 2053–2066, https://doi.org/10.5194/acp-21-2053-2021,https://doi.org/10.5194/acp-21-2053-2021, 2021
Short summary
Measurement report: Sulfuric acid nucleation and experimental conditions in a photolytic flow reactor
David R. Hanson, Seakh Menheer, Michael Wentzel, and Joan Kunz
Atmos. Chem. Phys., 21, 1987–2001, https://doi.org/10.5194/acp-21-1987-2021,https://doi.org/10.5194/acp-21-1987-2021, 2021
Short summary
Ozonolysis of fatty acid monolayers at the air–water interface: organic films may persist at the surface of atmospheric aerosols
Benjamin Woden, Maximilian W. A. Skoda, Adam Milsom, Curtis Gubb, Armando Maestro, James Tellam, and Christian Pfrang
Atmos. Chem. Phys., 21, 1325–1340, https://doi.org/10.5194/acp-21-1325-2021,https://doi.org/10.5194/acp-21-1325-2021, 2021
Short summary
Quantification of the role of stabilized Criegee intermediates in the formation of aerosols in limonene ozonolysis
Yiwei Gong and Zhongming Chen
Atmos. Chem. Phys., 21, 813–829, https://doi.org/10.5194/acp-21-813-2021,https://doi.org/10.5194/acp-21-813-2021, 2021
Short summary
Photochemical degradation of iron(III) citrate/citric acid aerosol quantified with the combination of three complementary experimental techniques and a kinetic process model
Jing Dou, Peter A. Alpert, Pablo Corral Arroyo, Beiping Luo, Frederic Schneider, Jacinta Xto, Thomas Huthwelker, Camelia N. Borca, Katja D. Henzler, Jörg Raabe, Benjamin Watts, Hartmut Herrmann, Thomas Peter, Markus Ammann, and Ulrich K. Krieger
Atmos. Chem. Phys., 21, 315–338, https://doi.org/10.5194/acp-21-315-2021,https://doi.org/10.5194/acp-21-315-2021, 2021
Short summary

Cited articles

Andreae, M. O. and Crutzen, P. J.: Atmospheric aerosols: biogeochemical sources and role in atmospheric chemistry, Science, 276, 1052–1058, 1997.
Atkinson, R., Aschmann, S. M., Carter, W. P. L., and Pitts, J. N.: Rate Constants for the gas-phase reaction of OH radicals with a series of ketones at 299 +/−2 K, Int. J. Chem. Kinet., 14, 839–847, 1982.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006.
Avol, E. L., Jones, M. P., Bailey, R. M., Chang, N. M. N., Kleinman, M. T., Linn, W. S., Bell, K. A., and Hackney, J. D.: Controlled exposures of human volunteers to sulfate aerosols - Health-effects and aerosol characterization, Am. Rev. Respir. Dis., 120, 319–327, 1979.
Bagot, P. A. J., Waring, C., Costen, M. L., and McKendrick, K. G.: Dynamics of inelastic scattering of OH Radicals from reactive and inert liquid surfaces, J. Phys. Chem. C, 112, 10868–10877, 2008.
Download
Altmetrics
Final-revised paper
Preprint