Articles | Volume 9, issue 12
https://doi.org/10.5194/acp-9-4053-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/acp-9-4053-2009
© Author(s) 2009. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Process based inventory of isoprenoid emissions from European forests: model comparisons, current knowledge and uncertainties
T. Keenan
CREAF, Autonomous University of Barcelona (UAB), 08193 Barcelona, Spain
Ü. Niinemets
Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
S. Sabate
CREAF, Autonomous University of Barcelona (UAB), 08193 Barcelona, Spain
Department of Ecology, University of Barcelona (UB), 08007 Barcelona, Spain
C. Gracia
CREAF, Autonomous University of Barcelona (UAB), 08193 Barcelona, Spain
Department of Ecology, University of Barcelona (UB), 08007 Barcelona, Spain
J. Peñuelas
CREAF, Autonomous University of Barcelona (UAB), 08193 Barcelona, Spain
Global Ecology Unit CSIC-CEAB-CREAF, CREAF, Edifici C, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
Related subject area
Subject: Biosphere Interactions | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Temporal and spatial variations in atmospheric unintentional PCB emissions in Chinese mainland from 1960 to 2019
Biogenic isoprene emissions, dry deposition velocity, and surface ozone concentration during summer droughts, heatwaves, and normal conditions in southwestern Europe
Satellite-derived constraints on the effect of drought stress on biogenic isoprene emissions in the southeastern US
Interactive biogenic emissions and drought stress effects on atmospheric composition in NASA GISS ModelE
Plant gross primary production, plant respiration and carbonyl sulfide emissions over the globe inferred by atmospheric inverse modelling
Evaluation of interactive and prescribed agricultural ammonia emissions for simulating atmospheric composition in CAM-chem
Responses of surface ozone to future agricultural ammonia emissions and subsequent nitrogen deposition through terrestrial ecosystem changes
Modelling the influence of biotic plant stress on atmospheric aerosol particle processes throughout a growing season
Examining the competing effects of contemporary land management vs. land cover changes on global air quality
Improved gridded ammonia emission inventory in China
The impact of nitrogen and sulfur emissions from shipping on the exceedance of critical loads in the Baltic Sea region
Indirect contributions of global fires to surface ozone through ozone–vegetation feedback
Global and regional impacts of land cover changes on isoprene emissions derived from spaceborne data and the MEGAN model
A long-term estimation of biogenic volatile organic compound (BVOC) emission in China from 2001–2016: the roles of land cover change and climate variability
The regional European atmospheric transport inversion comparison, EUROCOM: first results on European-wide terrestrial carbon fluxes for the period 2006–2015
Quantifying the effects of environmental factors on wildfire burned area in the south central US using integrated machine learning techniques
Effects of fertilization and stand age on N2O and NO emissions from tea plantations: a site-scale study in a subtropical region using a modified biogeochemical model
Temperature response measurements from eucalypts give insight into the impact of Australian isoprene emissions on air quality in 2050
Data assimilation using an ensemble of models: a hierarchical approach
Fundamentals of data assimilation applied to biogeochemistry
On what scales can GOSAT flux inversions constrain anomalies in terrestrial ecosystems?
Historical (1700–2012) global multi-model estimates of the fire emissions from the Fire Modeling Intercomparison Project (FireMIP)
Contrasting effects of CO2 fertilization, land-use change and warming on seasonal amplitude of Northern Hemisphere CO2 exchange
The 2015–2016 carbon cycle as seen from OCO-2 and the global in situ network
Representing sub-grid scale variations in nitrogen deposition associated with land use in a global Earth system model: implications for present and future nitrogen deposition fluxes over North America
Global climate forcing driven by altered BVOC fluxes from 1990 to 2010 land cover change in maritime Southeast Asia
Coupling between surface ozone and leaf area index in a chemical transport model: strength of feedback and implications for ozone air quality and vegetation health
Contrasting interannual atmospheric CO2 variabilities and their terrestrial mechanisms for two types of El Niños
Vegetation greenness and land carbon-flux anomalies associated with climate variations: a focus on the year 2015
Biomass burning at Cape Grim: exploring photochemistry using multi-scale modelling
Wildfire air pollution hazard during the 21st century
Ozone and haze pollution weakens net primary productivity in China
How can mountaintop CO2 observations be used to constrain regional carbon fluxes?
Effects of ozone–vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks
Impact of Siberian observations on the optimization of surface CO2 flux
Modelling bidirectional fluxes of methanol and acetaldehyde with the FORCAsT canopy exchange model
The impact of historical land use change from 1850 to 2000 on secondary particulate matter and ozone
Global biogenic volatile organic compound emissions in the ORCHIDEE and MEGAN models and sensitivity to key parameters
Impacts of current and projected oil palm plantation expansion on air quality over Southeast Asia
Current estimates of biogenic emissions from eucalypts uncertain for southeast Australia
Air quality impacts of European wildfire emissions in a changing climate
Validation of the Swiss methane emission inventory by atmospheric observations and inverse modelling
Land cover change impacts on atmospheric chemistry: simulating projected large-scale tree mortality in the United States
High-resolution ammonia emissions inventories in China from 1980 to 2012
Delivery of anthropogenic bioavailable iron from mineral dust and combustion aerosols to the ocean
Impact of future land-cover changes on HNO3 and O3 surface dry deposition
Impact of climate and land cover changes on tropospheric ozone air quality and public health in East Asia between 1980 and 2010
Relationships between photosynthesis and formaldehyde as a probe of isoprene emission
A modified micrometeorological gradient method for estimating O3 dry depositions over a forest canopy
Biomass burning related ozone damage on vegetation over the Amazon forest: a model sensitivity study
Ye Li, Ye Huang, Yunshan Zhang, Wei Du, Shanshan Zhang, Tianhao He, Yan Li, Yan Chen, Fangfang Ding, Lin Huang, Haibin Xia, Wenjun Meng, Min Liu, and Shu Tao
Atmos. Chem. Phys., 23, 1091–1101, https://doi.org/10.5194/acp-23-1091-2023, https://doi.org/10.5194/acp-23-1091-2023, 2023
Short summary
Short summary
Polychlorinated biphenyls (PCBs) are typical persistent organic pollutants (POPs) listed among the 12 initial POPs that should be prohibited or limited under the Stockholm Convention. They are widely present in the environment and pose a threat to human health and ecosystems. Emission estimation for them is essential to understand and evaluate their environment fate and associated health effect. This work developed 12 dioxin-like UP-PCBs from 66 sources from 1960 to 2019 in China.
Antoine Guion, Solène Turquety, Arineh Cholakian, Jan Polcher, Antoine Ehret, and Juliette Lathière
Atmos. Chem. Phys., 23, 1043–1071, https://doi.org/10.5194/acp-23-1043-2023, https://doi.org/10.5194/acp-23-1043-2023, 2023
Short summary
Short summary
At high concentrations, tropospheric ozone (O3) deteriorates air quality. Weather conditions are key to understanding the variability in O3 concentration, especially during extremes. We suggest that identifying the presence of combined heatwaves is essential to the study of droughts in canopy–troposphere interactions and O3 concentration. Even so, they are associated, on average, with an increase in O3, partly explained by an increase in precursor emissions and a decrease in dry deposition.
Yuxuan Wang, Nan Lin, Wei Li, Alex Guenther, Joey C. Y. Lam, Amos P. K. Tai, Mark J. Potosnak, and Roger Seco
Atmos. Chem. Phys., 22, 14189–14208, https://doi.org/10.5194/acp-22-14189-2022, https://doi.org/10.5194/acp-22-14189-2022, 2022
Short summary
Short summary
Drought can cause large changes in biogenic isoprene emissions. In situ field observations of isoprene emissions during droughts are confined by spatial coverage and, thus, provide limited constraints. We derived a drought stress factor based on satellite HCHO data for MEGAN2.1 in the GEOS-Chem model using water stress and temperature. This factor reduces the overestimation of isoprene emissions during severe droughts and improves the simulated O3 and organic aerosol responses to droughts.
Elizabeth Klovenski, Yuxuan Wang, Susanne E. Bauer, Kostas Tsigaridis, Greg Faluvegi, Igor Aleinov, Nancy Y. Kiang, Alex Guenther, Xiaoyan Jiang, Wei Li, and Nan Lin
Atmos. Chem. Phys., 22, 13303–13323, https://doi.org/10.5194/acp-22-13303-2022, https://doi.org/10.5194/acp-22-13303-2022, 2022
Short summary
Short summary
Severe drought stresses vegetation and causes reduced emission of isoprene. We study the impact of including a new isoprene drought stress (yd) parameterization in NASA GISS ModelE called DroughtStress_ModelE, which is specifically tuned for ModelE. Inclusion of yd leads to better simulated isoprene emissions at the MOFLUX site during the severe drought of 2012, reduced overestimation of OMI satellite ΩHCHO (formaldehyde column), and improved simulated O3 (ozone) during drought.
Marine Remaud, Frédéric Chevallier, Fabienne Maignan, Sauveur Belviso, Antoine Berchet, Alexandra Parouffe, Camille Abadie, Cédric Bacour, Sinikka Lennartz, and Philippe Peylin
Atmos. Chem. Phys., 22, 2525–2552, https://doi.org/10.5194/acp-22-2525-2022, https://doi.org/10.5194/acp-22-2525-2022, 2022
Short summary
Short summary
Carbonyl sulfide (COS) has been recognized as a promising indicator of the plant gross primary production (GPP). Here, we assimilate both COS and CO2 measurements into an atmospheric transport model to obtain information on GPP, plant respiration and COS budget. A possible scenario for the period 2008–2019 leads to a global COS biospheric sink of 800 GgS yr−1 and higher oceanic emissions between 400 and 600 GgS yr−1.
Julius Vira, Peter Hess, Money Ossohou, and Corinne Galy-Lacaux
Atmos. Chem. Phys., 22, 1883–1904, https://doi.org/10.5194/acp-22-1883-2022, https://doi.org/10.5194/acp-22-1883-2022, 2022
Short summary
Short summary
Ammonia is one of the main components of nitrogen deposition. Here we use a new model to assess the ammonia emissions from agriculture, the largest anthropogenic source of ammonia. The model results are consistent with earlier estimates over industrialized regions in agreement with observations. However, the model predicts much higher emissions over sub-Saharan Africa compared to earlier estimates. Available observations from surface stations and satellites support these higher emissions.
Xueying Liu, Amos P. K. Tai, and Ka Ming Fung
Atmos. Chem. Phys., 21, 17743–17758, https://doi.org/10.5194/acp-21-17743-2021, https://doi.org/10.5194/acp-21-17743-2021, 2021
Short summary
Short summary
With the rising food need, more intense agricultural activities will cause substantial perturbations to the nitrogen cycle, aggravating surface air pollution and imposing stress on terrestrial ecosystems. We studied how these ecosystem changes may modify biosphere–atmosphere exchanges, and further exert secondary effects on air quality, and demonstrated a link between agricultural activities and ozone air quality via the modulation of vegetation and soil biogeochemistry by nitrogen deposition.
Ditte Taipale, Veli-Matti Kerminen, Mikael Ehn, Markku Kulmala, and Ülo Niinemets
Atmos. Chem. Phys., 21, 17389–17431, https://doi.org/10.5194/acp-21-17389-2021, https://doi.org/10.5194/acp-21-17389-2021, 2021
Short summary
Short summary
Larval feeding and fungal infections of leaves can greatly change the emission of volatile compounds from plants and thereby influence aerosol processes in the air. We developed a model that considers the dynamics of larvae and fungi and the dependency of the emission on the severity of stress. We show that the infections can be highly atmospherically relevant during long periods of time and at times more important to consider than the parameters that are currently used in emission models.
Anthony Y. H. Wong and Jeffrey A. Geddes
Atmos. Chem. Phys., 21, 16479–16497, https://doi.org/10.5194/acp-21-16479-2021, https://doi.org/10.5194/acp-21-16479-2021, 2021
Short summary
Short summary
Land cover change and land management are considered to have important and distinct impacts on air quality. Here we use remote sensing products and agricultural emission inventories to characterize contemporary global land cover and land management changes for chemical transport model simulations. We find that contemporary land system change has a significant impact on global air quality, with land management dominating the effects on PM and land cover change dominating the impacts on ozone.
Baojie Li, Lei Chen, Weishou Shen, Jianbing Jin, Teng Wang, Pinya Wang, Yang Yang, and Hong Liao
Atmos. Chem. Phys., 21, 15883–15900, https://doi.org/10.5194/acp-21-15883-2021, https://doi.org/10.5194/acp-21-15883-2021, 2021
Short summary
Short summary
This study focused on improving fertilizer-application-related NH3 emission inventories. We comprehensively evaluated the dates and times of fertilizer application to the major crops in China, improved the spatial allocation methods for NH3 emissions from croplands with different rice types, and established a NH3 emission inventory for mainland China in 2016. The inventory showed a higher level of accuracy than other inventories based on evaluation using the WRF-Chem and observation data.
Sara Jutterström, Filip Moldan, Jana Moldanová, Matthias Karl, Volker Matthias, and Maximilian Posch
Atmos. Chem. Phys., 21, 15827–15845, https://doi.org/10.5194/acp-21-15827-2021, https://doi.org/10.5194/acp-21-15827-2021, 2021
Short summary
Short summary
For the Baltic Sea countries, shipping emissions are an important source of air pollution. This study investigates the contribution of shipping emissions to the acidification and eutrophication of soils and freshwater within the airshed of the Baltic Sea in the years 2012 and 2040. The implementation of emission control areas and improving energy efficiency significantly reduces the negative impact on ecosystems expressed as a decrease in the exceedance of critical loads for sulfur and nitrogen.
Yadong Lei, Xu Yue, Hong Liao, Lin Zhang, Yang Yang, Hao Zhou, Chenguang Tian, Cheng Gong, Yimian Ma, Lan Gao, and Yang Cao
Atmos. Chem. Phys., 21, 11531–11543, https://doi.org/10.5194/acp-21-11531-2021, https://doi.org/10.5194/acp-21-11531-2021, 2021
Short summary
Short summary
We present the first estimate of ozone enhancement by fire emissions through ozone–vegetation interactions using a fully coupled chemistry–vegetation model (GC-YIBs). In fire-prone areas, fire-induced ozone causes a positive feedback to surface ozone mainly because of the inhibition effects on stomatal conductance.
Beata Opacka, Jean-François Müller, Trissevgeni Stavrakou, Maite Bauwens, Katerina Sindelarova, Jana Markova, and Alex B. Guenther
Atmos. Chem. Phys., 21, 8413–8436, https://doi.org/10.5194/acp-21-8413-2021, https://doi.org/10.5194/acp-21-8413-2021, 2021
Short summary
Short summary
Isoprene is mainly emitted from plants, and about 80 % of its global emissions occur in the tropics. Current isoprene inventories are usually based on modelled vegetation maps, but high pressure on land use over the last decades has led to severe losses, especially in tropical forests, that are not considered by models. We provide a study on the present-day impact of spaceborne land cover changes on isoprene emissions and the first inventory based on high-resolution Landsat tree cover dataset.
Hui Wang, Qizhong Wu, Alex B. Guenther, Xiaochun Yang, Lanning Wang, Tang Xiao, Jie Li, Jinming Feng, Qi Xu, and Huaqiong Cheng
Atmos. Chem. Phys., 21, 4825–4848, https://doi.org/10.5194/acp-21-4825-2021, https://doi.org/10.5194/acp-21-4825-2021, 2021
Short summary
Short summary
We assessed the influence of the greening trend on BVOC emission in China. The comparison among different scenarios showed that vegetation changes resulting from land cover management are the main driver of BVOC emission change in China. Climate variability contributed significantly to interannual variations but not much to the long-term trend during the study period.
Guillaume Monteil, Grégoire Broquet, Marko Scholze, Matthew Lang, Ute Karstens, Christoph Gerbig, Frank-Thomas Koch, Naomi E. Smith, Rona L. Thompson, Ingrid T. Luijkx, Emily White, Antoon Meesters, Philippe Ciais, Anita L. Ganesan, Alistair Manning, Michael Mischurow, Wouter Peters, Philippe Peylin, Jerôme Tarniewicz, Matt Rigby, Christian Rödenbeck, Alex Vermeulen, and Evie M. Walton
Atmos. Chem. Phys., 20, 12063–12091, https://doi.org/10.5194/acp-20-12063-2020, https://doi.org/10.5194/acp-20-12063-2020, 2020
Short summary
Short summary
The paper presents the first results from the EUROCOM project, a regional atmospheric inversion intercomparison exercise involving six European research groups. It aims to produce an estimate of the net carbon flux between the European terrestrial ecosystems and the atmosphere for the period 2006–2015, based on constraints provided by observed CO2 concentrations and using inverse modelling techniques. The use of six different models enables us to investigate the robustness of the results.
Sally S.-C. Wang and Yuxuan Wang
Atmos. Chem. Phys., 20, 11065–11087, https://doi.org/10.5194/acp-20-11065-2020, https://doi.org/10.5194/acp-20-11065-2020, 2020
Short summary
Short summary
A model consisting of multiple machine learning algorithms is developed to predict wildfire burned area over the south central US and explains key environmental drivers. The developed model alleviates the issue of unevenly distributed data and predicts burned grids and burned areas with good accuracy. The model reveals climate variability such as relative humidity anomalies and antecedent drought severity contributes the most to the total burned area for winter–spring and summer fire season.
Wei Zhang, Zhisheng Yao, Xunhua Zheng, Chunyan Liu, Rui Wang, Kai Wang, Siqi Li, Shenghui Han, Qiang Zuo, and Jianchu Shi
Atmos. Chem. Phys., 20, 6903–6919, https://doi.org/10.5194/acp-20-6903-2020, https://doi.org/10.5194/acp-20-6903-2020, 2020
Short summary
Short summary
The CNMM-DNDC model was modified by improving the scientific processes of soil pH reduction due to tea growth and performed well in simulating emissions of nitrous oxide and nitric oxide. Effects of manure fertilization and stand ages on emissions of both gases were well simulated. Simulated annual emission factors correlate positively with urea or manure doses. The overall inhibitory effects on the gases' emissions in the middle to late stages during a full tea plant lifetime were simulated.
Kathryn M. Emmerson, Malcolm Possell, Michael J. Aspinwall, Sebastian Pfautsch, and Mark G. Tjoelker
Atmos. Chem. Phys., 20, 6193–6206, https://doi.org/10.5194/acp-20-6193-2020, https://doi.org/10.5194/acp-20-6193-2020, 2020
Short summary
Short summary
Australian cities with a high biogenic influence will see higher pollution levels in a warmer climate. We show that four Eucalyptus species grown in future-climate conditions can emit isoprene at temperatures 9 K above the peak temperatures capping isoprene in biogenic-emission models. With these measurements, we predict up to 2 ppb increases in isoprene in 2050, causing up to 21 ppb of ozone and 0.4 µg m−3 of aerosol in Sydney. The ozone increase is one-fifth of the hourly air quality limit.
Peter Rayner
Atmos. Chem. Phys., 20, 3725–3737, https://doi.org/10.5194/acp-20-3725-2020, https://doi.org/10.5194/acp-20-3725-2020, 2020
Short summary
Short summary
This work extends previous calculations of carbon dioxide sources and sinks to take account of the varying quality of atmospheric models. It uses an extended version of Bayesian statistics which includes the model as one of the unknowns. I performed the work as an example of including the model in the description of the uncertainty.
Peter J. Rayner, Anna M. Michalak, and Frédéric Chevallier
Atmos. Chem. Phys., 19, 13911–13932, https://doi.org/10.5194/acp-19-13911-2019, https://doi.org/10.5194/acp-19-13911-2019, 2019
Short summary
Short summary
This paper describes the methods for combining models and data to understand how nutrients and pollutants move through natural systems. The methods are analogous to the process of weather forecasting in which previous information is combined with new observations and a model to improve our knowledge of the internal state of the physical system. The methods appear highly diverse but the paper shows that they are all examples of a single underlying formalism.
Brendan Byrne, Dylan B. A. Jones, Kimberly Strong, Saroja M. Polavarapu, Anna B. Harper, David F. Baker, and Shamil Maksyutov
Atmos. Chem. Phys., 19, 13017–13035, https://doi.org/10.5194/acp-19-13017-2019, https://doi.org/10.5194/acp-19-13017-2019, 2019
Short summary
Short summary
Interannual variations in net ecosystem exchange (NEE) estimated from the Greenhouse Gases Observing Satellite (GOSAT) XCO2 measurements are shown to be correlated (P < 0.05) with temperature and FLUXCOM NEE anomalies. Furthermore, the GOSAT-informed NEE anomalies are found to be better correlated with temperature and FLUXCOM anomalies than NEE estimates from most terrestrial biosphere models, suggesting that GOSAT CO2 measurements provide a useful constraint on NEE interannual variability.
Fang Li, Maria Val Martin, Meinrat O. Andreae, Almut Arneth, Stijn Hantson, Johannes W. Kaiser, Gitta Lasslop, Chao Yue, Dominique Bachelet, Matthew Forrest, Erik Kluzek, Xiaohong Liu, Stephane Mangeon, Joe R. Melton, Daniel S. Ward, Anton Darmenov, Thomas Hickler, Charles Ichoku, Brian I. Magi, Stephen Sitch, Guido R. van der Werf, Christine Wiedinmyer, and Sam S. Rabin
Atmos. Chem. Phys., 19, 12545–12567, https://doi.org/10.5194/acp-19-12545-2019, https://doi.org/10.5194/acp-19-12545-2019, 2019
Short summary
Short summary
Fire emissions are critical for atmospheric composition, climate, carbon cycle, and air quality. We provide the first global multi-model fire emission reconstructions for 1700–2012, including carbon and 33 species of trace gases and aerosols, based on the nine state-of-the-art global fire models that participated in FireMIP. We also provide information on the recent status and limitations of the model-based reconstructions and identify the main uncertainty sources in their long-term changes.
Ana Bastos, Philippe Ciais, Frédéric Chevallier, Christian Rödenbeck, Ashley P. Ballantyne, Fabienne Maignan, Yi Yin, Marcos Fernández-Martínez, Pierre Friedlingstein, Josep Peñuelas, Shilong L. Piao, Stephen Sitch, William K. Smith, Xuhui Wang, Zaichun Zhu, Vanessa Haverd, Etsushi Kato, Atul K. Jain, Sebastian Lienert, Danica Lombardozzi, Julia E. M. S. Nabel, Philippe Peylin, Benjamin Poulter, and Dan Zhu
Atmos. Chem. Phys., 19, 12361–12375, https://doi.org/10.5194/acp-19-12361-2019, https://doi.org/10.5194/acp-19-12361-2019, 2019
Short summary
Short summary
Here we show that land-surface models improved their ability to simulate the increase in the amplitude of seasonal CO2-cycle exchange (SCANBP) by ecosystems compared to estimates by two atmospheric inversions. We find a dominant role of vegetation growth over boreal Eurasia to the observed increase in SCANBP, strongly driven by CO2 fertilization, and an overall negative effect of temperature on SCANBP. Biases can be explained by the sensitivity of simulated microbial respiration to temperature.
Sean Crowell, David Baker, Andrew Schuh, Sourish Basu, Andrew R. Jacobson, Frederic Chevallier, Junjie Liu, Feng Deng, Liang Feng, Kathryn McKain, Abhishek Chatterjee, John B. Miller, Britton B. Stephens, Annmarie Eldering, David Crisp, David Schimel, Ray Nassar, Christopher W. O'Dell, Tomohiro Oda, Colm Sweeney, Paul I. Palmer, and Dylan B. A. Jones
Atmos. Chem. Phys., 19, 9797–9831, https://doi.org/10.5194/acp-19-9797-2019, https://doi.org/10.5194/acp-19-9797-2019, 2019
Short summary
Short summary
Space-based retrievals of carbon dioxide offer the potential to provide dense data in regions that are sparsely observed by the surface network. We find that flux estimates that are informed by the Orbiting Carbon Observatory-2 (OCO-2) show different character from that inferred using surface measurements in tropical land regions, particularly in Africa, with a much larger total emission and larger amplitude seasonal cycle.
Fabien Paulot, Sergey Malyshev, Tran Nguyen, John D. Crounse, Elena Shevliakova, and Larry W. Horowitz
Atmos. Chem. Phys., 18, 17963–17978, https://doi.org/10.5194/acp-18-17963-2018, https://doi.org/10.5194/acp-18-17963-2018, 2018
Kandice L. Harper and Nadine Unger
Atmos. Chem. Phys., 18, 16931–16952, https://doi.org/10.5194/acp-18-16931-2018, https://doi.org/10.5194/acp-18-16931-2018, 2018
Short summary
Short summary
Chemistry–climate modeling finds that the induced global-mean ozone forcing for 1990–2010 maritime Southeast Asian land cover change, including expansion of high-isoprene-emitting oil palm plantations, is +9.2 mW m−2. Regional land cover change drove stronger global-mean ozone enhancements in the upper troposphere than in the lower troposphere. The results indicate that this mechanism of ozone forcing may increase in importance in future years if regional oil palm expansion continues unabated.
Shan S. Zhou, Amos P. K. Tai, Shihan Sun, Mehliyar Sadiq, Colette L. Heald, and Jeffrey A. Geddes
Atmos. Chem. Phys., 18, 14133–14148, https://doi.org/10.5194/acp-18-14133-2018, https://doi.org/10.5194/acp-18-14133-2018, 2018
Short summary
Short summary
Surface ozone pollution harms vegetation. As plants play key roles shaping air quality, the plant damage may further worsen air pollution. We use various computer models to examine such feedback effects, and find that ozone-induced decline in leaf density can lead to much higher ozone levels in forested regions, mostly due to the reduced ability of leaves to absorb pollutants. This study highlights the importance of considering the two-way interactions between plants and air pollution.
Jun Wang, Ning Zeng, Meirong Wang, Fei Jiang, Jingming Chen, Pierre Friedlingstein, Atul K. Jain, Ziqiang Jiang, Weimin Ju, Sebastian Lienert, Julia Nabel, Stephen Sitch, Nicolas Viovy, Hengmao Wang, and Andrew J. Wiltshire
Atmos. Chem. Phys., 18, 10333–10345, https://doi.org/10.5194/acp-18-10333-2018, https://doi.org/10.5194/acp-18-10333-2018, 2018
Short summary
Short summary
Based on the Mauna Loa CO2 records and TRENDY multi-model historical simulations, we investigate the different impacts of EP and CP El Niños on interannual carbon cycle variability. Composite analysis indicates that the evolutions of CO2 growth rate anomalies have three clear differences in terms of precursors (negative and neutral), amplitudes (strong and weak), and durations of peak (Dec–Apr and Oct–Jan) during EP and CP El Niños, respectively. We further discuss their terrestrial mechanisms.
Chao Yue, Philippe Ciais, Ana Bastos, Frederic Chevallier, Yi Yin, Christian Rödenbeck, and Taejin Park
Atmos. Chem. Phys., 17, 13903–13919, https://doi.org/10.5194/acp-17-13903-2017, https://doi.org/10.5194/acp-17-13903-2017, 2017
Short summary
Short summary
The year 2015 appeared as a paradox regarding how global carbon cycle has responded to climate variation: it is the greenest year since 2000 according to satellite observation, but the atmospheric CO2 growth rate is also the highest since 1959. We found that this is due to a only moderate land carbon sink, because high growing-season sink in northern lands has been partly offset by autumn and winter release and the late-year El Niño has led to an abrupt transition to land source in the tropics.
Sarah J. Lawson, Martin Cope, Sunhee Lee, Ian E. Galbally, Zoran Ristovski, and Melita D. Keywood
Atmos. Chem. Phys., 17, 11707–11726, https://doi.org/10.5194/acp-17-11707-2017, https://doi.org/10.5194/acp-17-11707-2017, 2017
Short summary
Short summary
A high-resolution chemical transport model was used to reproduce observed smoke plumes. The model output was highly sensitive to fire emission factors and meteorology, particularly for secondary pollutant ozone. Aged urban air (age = 2 days) was the major source of ozone observed, with minor contributions from the fire. This work highlights the importance of assessing model sensitivity and the use of modelling to determine the contribution from different sources to atmospheric composition.
Wolfgang Knorr, Frank Dentener, Jean-François Lamarque, Leiwen Jiang, and Almut Arneth
Atmos. Chem. Phys., 17, 9223–9236, https://doi.org/10.5194/acp-17-9223-2017, https://doi.org/10.5194/acp-17-9223-2017, 2017
Short summary
Short summary
Wildfires cause considerable air pollution, and climate change is usually expected to increase both wildfire activity and air pollution from those fires. This study takes a closer look at the problem by examining the role of demographic changes in addition to climate change. It finds that demographics will be the main driver of changes in wildfire activity in many parts of the developing world. Air pollution from wildfires will remain significant, with major implications for air quality policy.
Xu Yue, Nadine Unger, Kandice Harper, Xiangao Xia, Hong Liao, Tong Zhu, Jingfeng Xiao, Zhaozhong Feng, and Jing Li
Atmos. Chem. Phys., 17, 6073–6089, https://doi.org/10.5194/acp-17-6073-2017, https://doi.org/10.5194/acp-17-6073-2017, 2017
Short summary
Short summary
While it is widely recognized that air pollutants adversely affect human health and climate change, their impacts on the regional carbon balance are less well understood. We apply an Earth system model to quantify the combined effects of ozone and aerosol particles on net primary production in China. Ozone vegetation damage dominates over the aerosol effects, leading to a substantial net suppression of land carbon uptake in the present and future worlds.
John C. Lin, Derek V. Mallia, Dien Wu, and Britton B. Stephens
Atmos. Chem. Phys., 17, 5561–5581, https://doi.org/10.5194/acp-17-5561-2017, https://doi.org/10.5194/acp-17-5561-2017, 2017
Short summary
Short summary
Mountainous areas can potentially serve as regions where the key greenhouse gas, carbon dioxide (CO2), can be absorbed from the atmosphere by vegetation, through photosynthesis. Variations in atmospheric CO2 can be used to understand the amount of biospheric fluxes in general. However, CO2 measured in mountains can be difficult to interpret due to the impact from complex atmospheric flows. We show how mountaintop CO2 data can be interpreted by carrying out a series of atmospheric simulations.
Mehliyar Sadiq, Amos P. K. Tai, Danica Lombardozzi, and Maria Val Martin
Atmos. Chem. Phys., 17, 3055–3066, https://doi.org/10.5194/acp-17-3055-2017, https://doi.org/10.5194/acp-17-3055-2017, 2017
Short summary
Short summary
Surface ozone harms vegetation, which can influence not only climate but also ozone air quality itself. We implement a scheme for ozone damage on vegetation into an Earth system model, so that for the first time simulated vegetation and ozone can coevolve in a fully coupled simulation. With ozone–vegetation coupling, simulated ozone is found to be significantly higher by up to 6 ppbv. Reduced dry deposition and enhanced isoprene emission contribute to most of these increases.
Jinwoong Kim, Hyun Mee Kim, Chun-Ho Cho, Kyung-On Boo, Andrew R. Jacobson, Motoki Sasakawa, Toshinobu Machida, Mikhail Arshinov, and Nikolay Fedoseev
Atmos. Chem. Phys., 17, 2881–2899, https://doi.org/10.5194/acp-17-2881-2017, https://doi.org/10.5194/acp-17-2881-2017, 2017
Short summary
Short summary
To investigate the effect of CO2 observations in Siberia on the surface CO2 flux analyses, two experiments using observation data sets with and without Siberian measurements were performed. While the magnitude of the optimized surface CO2 flux uptake in Siberia decreased, that in the other regions of the Northern Hemisphere increased for the experiment with Siberian observations. It is expected that the Siberian observations play an important role in estimating surface CO2 flux in the future.
Kirsti Ashworth, Serena H. Chung, Karena A. McKinney, Ying Liu, J. William Munger, Scot T. Martin, and Allison L. Steiner
Atmos. Chem. Phys., 16, 15461–15484, https://doi.org/10.5194/acp-16-15461-2016, https://doi.org/10.5194/acp-16-15461-2016, 2016
Colette L. Heald and Jeffrey A. Geddes
Atmos. Chem. Phys., 16, 14997–15010, https://doi.org/10.5194/acp-16-14997-2016, https://doi.org/10.5194/acp-16-14997-2016, 2016
Short summary
Short summary
Humans have altered the surface of the Earth since preindustrial times. These changes (largely expansion of croplands and pasturelands) have modified biosphere–atmosphere fluxes. In this study we use a global model to assess the impact of these changes on the formation of secondary particulate matter and troposphere ozone. We find that there are significant air quality and climate impacts associated with these changes.
Palmira Messina, Juliette Lathière, Katerina Sindelarova, Nicolas Vuichard, Claire Granier, Josefine Ghattas, Anne Cozic, and Didier A. Hauglustaine
Atmos. Chem. Phys., 16, 14169–14202, https://doi.org/10.5194/acp-16-14169-2016, https://doi.org/10.5194/acp-16-14169-2016, 2016
Short summary
Short summary
We provide BVOC emissions for the present scenario, employing the updated ORCHIDEE emission module and the MEGAN model. The modelling community still faces the problem of emission model evaluation because of the absence of adequate observations. The accurate analysis performed, employing the two models, allowed the various processes modelled to be investigated, in order to fully understand the origin of the mismatch between the model estimates and to quantify the emission uncertainties.
Sam J. Silva, Colette L. Heald, Jeffrey A. Geddes, Kemen G. Austin, Prasad S. Kasibhatla, and Miriam E. Marlier
Atmos. Chem. Phys., 16, 10621–10635, https://doi.org/10.5194/acp-16-10621-2016, https://doi.org/10.5194/acp-16-10621-2016, 2016
Short summary
Short summary
We investigate the impacts of current (2010) and future (2020) oil palm plantations across Southeast Asia on surface–atmosphere exchange and air quality using satellite data, land maps, and a chemical transport model. These changes lead to increases in surface ozone and particulate matter. Oil palm plantations are likely to continue to degrade regional air quality in the coming decade and hinder efforts to achieve air quality regulations in major urban areas such as Kuala Lumpur and Singapore.
Kathryn M. Emmerson, Ian E. Galbally, Alex B. Guenther, Clare Paton-Walsh, Elise-Andree Guerette, Martin E. Cope, Melita D. Keywood, Sarah J. Lawson, Suzie B. Molloy, Erin Dunne, Marcus Thatcher, Thomas Karl, and Simin D. Maleknia
Atmos. Chem. Phys., 16, 6997–7011, https://doi.org/10.5194/acp-16-6997-2016, https://doi.org/10.5194/acp-16-6997-2016, 2016
Short summary
Short summary
We have tested how a model using a global inventory of plant-based emissions compares with four sets of measurements made in southeast Australia. This region is known for its eucalypt species, which dominate the summertime global inventory. The Australian part of the inventory has been produced using measurements made on eucalypt saplings. The model could not match the measurements, and the inventory needs to be improved by taking measurements of a wider range of Australian plant types and ages.
Wolfgang Knorr, Frank Dentener, Stijn Hantson, Leiwen Jiang, Zbigniew Klimont, and Almut Arneth
Atmos. Chem. Phys., 16, 5685–5703, https://doi.org/10.5194/acp-16-5685-2016, https://doi.org/10.5194/acp-16-5685-2016, 2016
Short summary
Short summary
Wildfires are generally expected to increase in frequency and severity due to climate change. For Europe this could mean increased air pollution levels during the summer. Until 2050, predicted changes are moderate, but under a scenario of strong climate change, these may increase considerably during the later part of the current century. In Portugal and several parts of the Mediterranean, emissions may become relevant for meeting WHO concentration targets.
Stephan Henne, Dominik Brunner, Brian Oney, Markus Leuenberger, Werner Eugster, Ines Bamberger, Frank Meinhardt, Martin Steinbacher, and Lukas Emmenegger
Atmos. Chem. Phys., 16, 3683–3710, https://doi.org/10.5194/acp-16-3683-2016, https://doi.org/10.5194/acp-16-3683-2016, 2016
Short summary
Short summary
Greenhouse gas emissions can be assessed by "top-down" methods that combine atmospheric observations, a transport model and a mathematical optimisation framework. Here, we apply such a top-down method to the methane emissions of Switzerland, utilising observations from the recently installed CarboCount-CH network. Our Swiss total emissions largely agree with those of the national "bottom-up" inventory, whereas regional differences suggest lower than reported emissions from manure handling.
Jeffrey A. Geddes, Colette L. Heald, Sam J. Silva, and Randall V. Martin
Atmos. Chem. Phys., 16, 2323–2340, https://doi.org/10.5194/acp-16-2323-2016, https://doi.org/10.5194/acp-16-2323-2016, 2016
Short summary
Short summary
Land use and land cover changes driven by anthropogenic activities or natural causes (e.g., forestry management, agriculture, wildfires) can impact climate and air quality in many complex ways. Using a state-of-the-art chemistry model, we investigate how tree mortality in the US due to insect infestation and disease outbreak may impact atmospheric composition. We find that the surface concentrations of ozone and aerosol can be altered due to changing background emissions and loss processes.
Yaning Kang, Mingxu Liu, Yu Song, Xin Huang, Huan Yao, Xuhui Cai, Hongsheng Zhang, Ling Kang, Xuejun Liu, Xiaoyuan Yan, Hong He, Qiang Zhang, Min Shao, and Tong Zhu
Atmos. Chem. Phys., 16, 2043–2058, https://doi.org/10.5194/acp-16-2043-2016, https://doi.org/10.5194/acp-16-2043-2016, 2016
Short summary
Short summary
The multi-year (1980–2012) comprehensive ammonia emissions inventories were compiled for China on 1 km × 1 km grid.
Various realistic parameters (ambient temperature, wind speed, soil acidity, synthetic fertilizer types, etc.) were considered in these inventories to synthetically refine the emission factors of ammonia volatilization according to local agricultural practice.
This paper shows the interannual trend and spatial distribution of ammonia emissions in details over recent decades.
A. Ito and Z. Shi
Atmos. Chem. Phys., 16, 85–99, https://doi.org/10.5194/acp-16-85-2016, https://doi.org/10.5194/acp-16-85-2016, 2016
Short summary
Short summary
A new Fe dissolution scheme is developed and is applied to an atmospheric chemistry transport model to estimate anthropogenic soluble Fe deposition. Our improved model successfully captured an inverse relationship of Fe solubility and total Fe loading. Our model estimated the low end of Fe solubility compared to the previous studies. Our model results suggest that human activities contribute to about half of bioavailable Fe supply to significant portions of the oceans in the Northern Hemisphere.
T. Verbeke, J. Lathière, S. Szopa, and N. de Noblet-Ducoudré
Atmos. Chem. Phys., 15, 13555–13568, https://doi.org/10.5194/acp-15-13555-2015, https://doi.org/10.5194/acp-15-13555-2015, 2015
Short summary
Short summary
Dry deposition is a key component of surface-atmosphere exchange of compounds, acting as a sink for several chemical species and strongly driven by meteorological factors, chemical properties of the trace gas considered and land surface properties. The objective of our study is to investigate the impact of vegetation distribution change, which is still not very well quantified, on the dry deposition of key atmospheric species: ozone and nitric acid vapor.
Y. Fu and A. P. K. Tai
Atmos. Chem. Phys., 15, 10093–10106, https://doi.org/10.5194/acp-15-10093-2015, https://doi.org/10.5194/acp-15-10093-2015, 2015
Short summary
Short summary
Historical land cover and land use change alone between 1980 and 2010 could lead to reduced summertime surface ozone by up to 4ppbv in East Asia. Climate change alone could lead to an increase in summertime ozone by 2-10ppbv in most of East Asia. Land cover change could offset part of the climate effect and lead to a previously unknown public health benefit. The sensitivity of surface ozone to land cover change is more dependent on dry deposition than isoprene emission in most of East Asia.
Y. Zheng, N. Unger, M. P. Barkley, and X. Yue
Atmos. Chem. Phys., 15, 8559–8576, https://doi.org/10.5194/acp-15-8559-2015, https://doi.org/10.5194/acp-15-8559-2015, 2015
Short summary
Short summary
We apply two global observational data sets, gross primary productivity (GPP) and tropospheric formaldehyde column variability (HCHOv), to probe isoprene emission variability on large spatiotemporal scales. GPP and HCHOv are decoupled or weakly anticorrelated in regions and seasons when isoprene emission is high. Isoprene emission models that include soil moisture dependence demonstrate greater skill in reproducing observed seasonal GPP-HCHOv correlations in the southeast US and the Amazon.
Z. Y. Wu, L. Zhang, X. M. Wang, and J. W. Munger
Atmos. Chem. Phys., 15, 7487–7496, https://doi.org/10.5194/acp-15-7487-2015, https://doi.org/10.5194/acp-15-7487-2015, 2015
Short summary
Short summary
In this study, we have developed a modified micrometeorological gradient method (MGM), although based on existing micrometeorological theory, to estimate O3 dry deposition fluxes over a forest canopy using concentration gradients between a level above and a level below the canopy top. The new method provides an alternative approach in monitoring/estimating long-term deposition fluxes of similar pollutants over tall canopies and is expected to be useful for the scientific community.
F. Pacifico, G. A. Folberth, S. Sitch, J. M. Haywood, L. V. Rizzo, F. F. Malavelle, and P. Artaxo
Atmos. Chem. Phys., 15, 2791–2804, https://doi.org/10.5194/acp-15-2791-2015, https://doi.org/10.5194/acp-15-2791-2015, 2015
Cited articles
Adams, J. M., Constable, J. V. H., Guenther, A. B., and Zimmerman, P.: An estimate of natural volatile organic compound emissions from vegetation since the last glacial maximum, Chemosphere, 3, 73–91, 2001.
Andrews, T. J. and Kane, H. J.: Pyruvate as a by-product of catalysis by ribulosebisphosphate carboxylase/oxygenase, J. Biol. Chem., 266, 9447–9452, 1991.
Arey, J., Winer, A., Atkinson, R., Aschmann, S. M., Long, W. D., and Morrison, C. L.: The emission of (Z)-3-hexen-1-ol, (Z)-3-hexenylacetate and other oxygenated hydrocarbons from agricultural plant species, Atmos. Environ., 25A, 1063–1075, 1991a.
Arey, J., Winer, A. M., Atkinson, R., Aschmann, S. M., Long, W. D., Morrison, C. L., and Olszyk, D. M.: Terpenes emitted from agricultural species found in California's Central Valley, J. Geophys. Res.-Atmos., 96, 9329–9336, 1991b.
Arneth, A., Niinemets, Ü., Pressley, S., Bäck, J., Hari, P., Karl, T., Noe, S., Prentice, I. C., Serça, D., Hickler, T., Wolf, A., and Smith, B.: Process-based estimates of terrestrial ecosystem isoprene emissions: incorporating the effects of a direct CO2-isoprene interaction, Atmos. Chem. Phys., 7, 31–53, 2007.
Arneth, A., Schurgers, G., Hickler, T., and Miller, P. A.: Effects of species composition, land surface cover, CO2 concentration and climate on isoprene emissions from European forests, Plant Biology, 10, 150–162, 2008a.
Arneth, A., Monson, R. K., Schurgers, G., Niinemets, Ü., and Palmer, P. I.: Why are estimates of global terrestrial isoprene emissions so similar (and why is this not so for monoterpenes)? Atmos. Chem. Phys., 8, 4605–4620, 2008b.
Affek H. P. and Yakir D.: Protection by isoprene against singlet oxygen in leaves, Plant Physiol., 129, 269–277, 2002.
Bäck, J., Hari, P., Hakola, H., Juurola, E., and Kulmala, M.: Dynamics of monoterpene emissions in Pinus sylvestris during early spring, Boreal Environ. Res., 10, 409–424, 2005.
Bai, J., Baker, B., Liang, B., Greenberg, J., and Guenther A.: Isoprene and monoterpene emissions from an Inner Mongolia grassland, Atmos. Environ., 40, 5753–5758, 2006.
Baldocchi, D. D., Fuentes, J. D., Bowling, D. R., Turnipseed, A. A., and Monson, R. K.: Scaling isoprene fluxes from leaves to canopies: test cases over a boreal aspen and a mixed species temperate forest, J. Appl. Meteorol., 38, 885–898, 1999.
Ball, J. T., Woodrow, I. E., and Berry, J. A.: A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions, in: Progress in photosynthesis research. Proc. VII Int. Photosynthesis congress, edited by: Biggens, J., Martinus Nijhoff Publishers, Dordrecht, 221–224, 1987.
Bell, M. and Ellis, J. E.: Sensitivity analysis of tropospheric ozone to modified biogenic emissions for the Mid-Atlantic region, Atmos. Environ., 38, 1879–1889, 2004.
Benjamin, M. T., Sudol, M., Bloch, L., and Winer, A. M.: Low-emitting urban forests: a taxonomic methodology for assigning isoprene and monoterpene emission rates, Atmos. Environ., 30, 1437–1452, 1996.
Benjamin, M. T. and Winer, A. M.: Estimating the ozone-forming potential of urban trees and shrubs, Atmos. Environ., 32, 53–68, 1998.
Bertin, N. and Staudt, M.: Effect of water stress on monoterpene emissions from young potted holm oak (Quercus ilex L.) trees, Oecologia, 107, 456–462, 1996.
Bertin, N., Staudt, M., Hansen, U., Seufert, G., Ciccioli, P., Foster, P., Fugit, J. L., and Torres, L.: Diurnal and seasonal course of monoterpene emissions from Quercus ilex (L.) under natural conditions - applications of light and temperature algorithms, Atmos. Environ., 31, 135–144, 1997.
Brilli, F., Barta, C., Fortunati, A., Lerdau, M., Loreto, F., and Centritto, M.: Response of isoprene emission and carbon metabolism to drought in white poplar (Populus alba) saplings, New Phytol., 175, 244–254, 2007.
Broecking, C. D. and Salom, S. M.: Volatile emissions of eastern hemlock, Tsuga canadensis, and the influence of hemlock woolly adelgid, Phytochemistry, 62, 175–180, 2003.
Brüggemann, N. and Schnitzler, J.-P.: Comparison of isoprene emission, intercellular isoprene concentration and photosynthetic performance in water-limited oak (Quercus pubescens Willd. and Quercus robur L.) saplings, Plant Biology, 4, 456–463, 2002.
Businger, J. A. and Oncley, S. P.: Flux Measurement with Conditional Sampling, J. Ocean. Atmos. Tech., 7, 349-352, 1990.
Campbell, G. S.: Extinction coefficients for radiation in plant canopies calculated using an ellipsoidal inclination angle distribution, Agric. Forest Meteorol., 36, 317–321, 1986.
Campbell, G. S.: Derivation of an angle density function for canopies with ellipsoidal leaf angle distribution, Agric. Forest Meteorol., 49, 173–176, 1990.
Ciccioli, P., Brancaleoni, E., Frattoni, M., Marta, S., Brachetti, A., Vitullo, M., Tirone, G., and Valentini, R.: Relaxed eddy accumulation, a new technique for measuring emission and deposition fluxes of volatile organic compounds by capillary gas chromatography and mass spectrometry, J. Chromatogr. A., 985, 283–296, 2003.
Ciccioli, P., Fabozzi, C., Brancaleoni, E., Cecinato, A., Frattoni, M., Loreto, F., Kesselmeier, J., Schäfer, L., Bode, K., Torres, L., and Fugit, J.-L.: Use of the isoprene algorithm for predicting the monoterpene emission from the Mediterranean holm oak Quercus ilex L.: performance and limits of this approach, J. Geophys. Res., 102, 23319–23328, 1997.
Collins, W., Derwent, R. G., Johnson, C. E., and Stevenson, D. S.: The oxidation of organic compounds in the troposphere and their global warming potentials, Climatic Change, 52, 453–479, 2004.
Copolovici, L., Filella, I., Llusia, J., Niinemets, Ü., and Peñuelas, J.: The capacity for thermal protection of photosynthetic electron transport varies for different monoterpenes in Quercus ilex, Plant Physiol., 139, 485–496, 2005.
Corchnoy, S. B., Arey, J., and Atkinson, R.: Hydrocarbon emissions from twelve urban shade trees of Los Angeles, California, air basin, Atmos. Environ., 26, 339–348, 1992.
Curtis, P. S., Vogel, C. S., Gough, C. M., Schmid, H. P., Su, H. B., and Bovard, B. D.: Respiratory carbon losses and the carbon use efficiency of a northern hardwood forest, 1999–2003, New Phytol., 167, 437–456, 2005.
Csiky, O. and Seufert, G.: Terpenoid emissions of Mediterranean oaks and their relation to taxonomy, Ecol. Appl., 9, 1138–1146, 1999.
Dai, Y. J., Dickinson, R. E., and Wang, Y. P.: A two-big-leaf model for canopy temperature, photosynthesis, and stomatal conductance, J. Clim., 17, 2281–2299, 2004.
Dindorf, T., Kuhn, U., Ganzeveld, L., Schebeske, G., Ciccioli, P., Holzke, C., Köble, R., Seufert, G., and Kesselmeier, J.: Significant light and temperature dependent monoterpene emissions from European beech (Fagus sylvatica L.) and their potential impact on the European volatile organic compound budget, J. Geophys. Res.-Atmos., 111, D16305, https://doi.org/16310.11029/12005JD006751, 2006.
Drewitt, G. B., Curren, K., Steyn, D. G., Gillesspie, T. J., and Niki, H.: Measurement of biogenic hydrocarbon emissions from vegetation in the lower Fraser Valley, British Columbia, Atmos. Environ., 32, 3457–3466, 1998.
Dutaur, L.: Caractérisation des sources biogéniques descomposés organiques volatils contribuant à la pollution photochimique dans le bassin méditerranéen. PhD Thesis, Institut National Polytechnique Toulouse, France, Toulouse, 1996.
Duyzer, J.: Measurements of the emissions of monoterpenes from Douglas fir forest, Tech. Rep. IMW-R 93/312, TNO Inst. Environ. Energy Technol., Delft, 1993.
Evans, R. C., Tingey, D. T., Gumpertz, M. L., and Burns, W. F.: Estimates of isoprene and monoterpene emission rates in plants, Botanical Gazette, 143, 304–310, 1982.
Fall, R. and Wildermuth, M. C.: Isoprene synthase: from biochemical mechanism to emission algorithm, J. Geophys. Res., 103, 25599–25609, 1998.
Fares, S., Barta, C., Brilli, F., Centritto, M., Ederli, L., Ferranti, F., Pasqualini, S., Reale, L., Tricoli, D., and Loreto, F.: Impact of high ozone on isoprene emission, photosynthesis and histology of developing Populus alba leaves directly or indirectly exposed to the pollutant, Physiol. Plantarum, 128, 456–465, 2006.
Farquhar, G. D., von Caemmerer, S., and Berry, J. A.: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149, 78–90, 1980.
Fehsenfeld, F., Calvert, J., Fall, R., Goldan, P., Guenther, A., Hewitt, C. N., Lamb, B., Liu, S., Trainer, M., Westberg, H., and Zimmerman, P.: Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry, Global Biogeochem. Cy., 6, 389–430, 1992.
Flyckt, D. L.: Seasonal variation in the volatile hydrocarbon emissions from ponderosa pine and red oak, MSc Thesis, Washington State University, Pullman, Washington, USA, 1979.
Flyckt, D. L., Westberg, H. H., and Holdren, M. W.: Natural organic emissions and their impact on air quality. Presentation to 73rd annual meeting of the Air Pollution Control Association, Montreal, Canada, Washington State University, Pullman, 1980.
Fuentes, J. D., Lerdau, M., Atkinson, R., Baldocchi, D., Bottenheim, J. W., Ciccioli, P., Lamb, B., Geron, C., Gu, L., Guenther, A., Sharkey, T. D., and Stockwell, W.: Biogenic hydrocarbons in the atmosphere boundary layer: a review, B. Am. Meteorol. Soc., 81, 1537–1575, 2000.
Fuentes, J. D. and Wang, D.: On the seasonality of isoprene emissions from a mixed temperate forest, Ecol. Appl., 9, 1118–1131, 1999.
Funk, J. L., Giardina, C. P., Knohl, A., and Lerdau, M. T.: Influence of nutrient availability, stand age, and canopy structure on isoprene flux in a Eucalyptus saligna experimental forest, J. Geophys. Res.-Biogeosci., 111, G02012, https://doi.org/10.1029/2005JG000085, 2006.
Gelencsçer, A., May, B., Simpson, D., Sçanchez-Ochoa, A., Kasper-Giebl, A., Puxbaum, H., Caseiro, A., Pio, C., and Legrand, M.: Source apportionment of PM2.5 organic aerosol over Europe: Primary/secondary, natural/anthropogenic, and fossil/biogenic origin, J. Geophys. Res., 112, D23S04, https://doi.org/10.1029/2006JD008094, 2007.
Geron, C., Guenther, A., Greenberg, J., Loescher, H. W., Clark, D., and Baker, B.: Biogenic volatile organic compound emissions from a lowland tropical wet forest in Costa Rica, Atmos. Environ., 36, 3793–3802, 2002.
Geron, C. D., Guenther, A. B., and Pierce, T. E.: An improved model for estimating emissions of volatile organic compounds from forests in the eastern United States, J. Geophys. Res., 99, 12773–12791, 1994.
Geron, C., Guenther, A., Sharkey, T. D., and Arnts, R. R.: Temporal variability in basal isoprene emission factor, Tree Physiol., 20, 799–805, 2000.
Goldstein, A. H., Goulden, M. L., Munger, J. W., Wofsy, S. C., and Geron, C. D.: Seasonal course of isoprene emissions from a midlatitude deciduous forest, J. Geophys. Res., 103, 31045–31056, 1998.
Geron, C., Harley, P., and Guenther, A.: Isoprene emission capacity for US tree species, Atmos. Environ., 35, 3341–3352, 2001.
Grabmer, W., Kreuzwieser, J., Wisthaler, A., Cojocariu, C., Graus, M., Rennenberg, H., Steigner, D., Steinbrecher, R., and Hansel, A.: VOC emissions from Norway spruce (Picea abies L. Karst) twigs in the field – results of a dynamic enclosure study, Atmos. Environ., 40, S128–S137, 2006.
Guenther, A.: Seasonal and spatial variations in natural volatile organic compound emissions, Ecol. Appl., 7, 34–45, 1997.
Guenther, A., Geron, C., Pierce, T., Lamb, B., Harley, P., and Fall, R.: Natural emissions of non-methane volatile organic compounds, carbon monoxide, and oxides of nitrogen from North America, Atmos. Environ., 34, 2205–2230, 2000.
Guenther, A., Hewitt, C. N., Erickson, D., Fall, R., Geron, C., Graedel, T., Harley, P., Klinger, L., Lerdau, M., McKay, W. A., Pierce, T., Scholes, B., Steinbrecher, R., Tallamraju, R., Taylor, J., and Zimmerman, P.: A global model of natural volatile organic compound emissions, J. Geophys. Res., 100, 8873–8892, 1995.
Guenther, A. and Hills, A.: Eddy covariance measurement of isoprene fluxes, J. Geophys. Res.-Atmos., 103(D11), 13145-13152, 1998.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, 2006.
Guenther, A. B., Monson, R. K., and Fall, R.: Isoprene and monoterpene emission rate variability: observations with Eucalyptus and emission rate algorithm development, J. Geophys. Res., 96, 10799–10808, 1991.
Guenther, A., Zimmerman, P., Harley, P., Monson, R., and Fall, R.: Isoprene and monoterpene emission rate variability: model evaluations and sensitivity analysis, J. Geophys. Res., 98, 12609–12617, 1993.
Guenther, A., Zimmerman, P., Klinger, L., Greenberg, J., Ennis, C., Davis, K., Pollock, M., Westberg, H., Allwine, G., and Geron, C.: Estimates of regional natural volatile organic compound fluxes from enclosure and ambient measurements, J. Geophys. Res., 101, 1345–1359, 1996.
Guenther, A., Zimmerman, P. R., and Wildermuth, M.: Natural volatile organic compound emission rates for U.S. woodland landscapes, Atmos. Environ., 28, 1197–1210, 1994.
Gracia, C., Tello, E., Sabate, S., and Bellot, J.: GOTILWA: An integrated model of water dynamics and forest growth, in: Ecology of Mediterranean Evergreen Oak Forests, edited by: Roda, F., Gracia, C., Retana, J., Bellot, J., Springer-Verlag, Heidelberg, 163–180, 1999.
Grote, R.: Sensitivity of volatile monoterpene emission to changes in canopy structure – a model based exercise with a process-based emission model, New Phytol., 173, 550–561, 2006.
Grote, R. and Niinemets, Ü.: Modeling volatile isoprenoid emissions – a story with split ends, Plant Biology, 10, 8–28, 2008.
Hakola, H., Laurila, T., Lindfors, V., Hellen, H., Gaman, A., and Rinne, J.: Variation of the VOC emission rates of birch species during the growing season, Boreal Environ. Res., 6, 237–249, 2001.
Hakola, H., Rinne, J., and Laurila, T.: The hydrocarbon emission rates of tea-leafed willow (Salix phylicifolia), silver birch (Betula pendula) and European aspen (Populus tremula), Atmos. Environ., 32, 1825–1833, 1998.
Hakola, H., Rinne, J., and Laurila, T.: The VOC emission rates of boreal deciduous trees, in: Biogenic VOC emissions and photochemistry in the boreal regions of Europe – Biphorep, edited by: Laurila, T. and Lindfors, V., European Commission, Brussels, 21–28, 1999.
Hakola, H., Tarviainen, V., Laurila, T., Hiltunen, V., Hellén, H., and Keronen, P.: Seasonal variation of VOC concentrations above a boreal coniferous forest, Atmos. Environ., 37, 1623–1634, 2003.
Hansen, U., and Seufert, G.: The terpenoid emission pattern of Quercus coccifera L. coincides with the emission pattern found with Quercus ilex L., in: The proceedings of EUROTRAC symposium 1996, edited by: Borrell, P. M., Borrell, P., Cvitas, T., Kelly, K., and Seile, W., Computational Mechanics Publications, Southampton, 235–239, 1996.
Hanson, D. T. and Sharkey, T. D.: Rate of acclimation of the capacity for isoprene emission in response to light and temperature, Plant Cell Environ., 24, 937–946, 2001.
Hansen, U., van Eijk, J., Bertin, N., Staudt, M., Kotzias, D., Seufert, G., Fugit, J. L., Torres, L., Cecinato, A., Brancaleoni, E., Ciccioli, P., and Bomboi, T.: Biogenic emissions and CO2 gas exchange investigated on four Mediterranean shrubs, Atmos. Environ., 31, 157–166, 1997.
Harley, P., Deem, G., Flint, S., and Caldwell, M.: Effects of growth under elevated UV-B on photosynthesis and isoprene emission in Quercus gambelii and Mucuna pruriens, Glob. Change Biol., 2, 149–154, 1996.
Harley, P., Vasconcellos, P., Vierling, L., Pinheiro, C., Greenberg, J., Guenther, A., Klinger, L., De Almeida, S. S., Neill, D., Baker, T., Phillips, O., and Malhi, Y.: Variation in potential for isoprene emissions among Neotropical forest sites, Glob. Change Biol., 10, 630–650, 2004.
Harrison, D., Hunter, M. C., Lewis, A. C., Seakins, P. W., Nunes, T. V., and Pio, C. A.: Isoprene and monoterpene emission from the coniferous species Abies borisii-regis – implications for regional air chemistry in Greece, Atmos. Environ., 35, 4687–4698, 2001.
Hills, A. J. and Zimmerman, P. R.: Isoprene measurement by ozone-induced chemiluminescence, Anal. Chem., 62, 1055–1060, 1990.
He, C., Murray, F., and Lyons, T.: Monoterpene and isoprene emissions from 15 Eucalyptus species in Australia, Atmos. Environ., 34, 645–655, 2000.
Helmig, D., Ortega, J., Guenther, A., Herrick, J. D., and Geron, C.: Sesquiterpene emissions from loblolly pine and their potential contribution to biogenic aerosol formation in the Southeastern US, Atmos. Environ., 40, 4150–4157, 2006.
Hewitt, C. N. and Street, R. A.: A qualitative assessment of the emission of non-methane hydrocarbon compounds from the biosphere to the atmosphere in the UK: present knowledge and uncertainties, Atmos. Environ., 26A, 3069–3077, 1992.
Isebrands, J. G., Guenther, A. B., Harley, P., Helmig, D., Klinger, L., Vierling, L., Zimmerman, P., and Geron, C.: Volatile organic compound emission rates from mixed deciduous and coniferous forests in Northern Wisconsin, USA, Atmos. Environ., 33, 2527–2536, 1999.
Isidorov, V. A.: Non-methane hydrocarbons in the atmosphere of boreal forests: composition, emission rates, estimation of regional emission and photocatalytic transformation, Ecol. Bull., 42, 71–76, 1992.
Isidorov, V. A., Zenkevich, I. G., and Ioffe, B. V.: Volatile organic compounds in the atmosphere of forests, Atmos. Environ., 19, 1–8, 1985.
Janson, R. W.: Monoterpene emissions from Scots pine and Norwegian spruce, J. Geophys. Res., 98, 2839–2850, 1993.
Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E., Stephanou, E. G., and Wilson, J.: Organic aerosol and global climate modelling: a review, Atmos. Chem. Phys., 5, 1053–1123, 2005.
Kaplan, J. O., Folberth, G., and Hauglustaine, D. A.: Role of methane and biogenic volatile organic compound sources in late glacial and Holocene fluctuations of atmospheric methane concentrations, Global Biogeochem. Cy., 20, GB2016, https://doi.org/10.1929/2005GB002590, 2006.
Karl, T. G., Spirig, C., Prevost, P., Stroud, C., Rinne, J., Greenberg, J., Fall, R., and Guenther, A.: Virtual disjunct eddy covariance measurements of organic compounds fluxes from a subalpine forest using proton transfer reaction mass spectrometry, Atmos. Chem. Phys., 2, 279-291, 2002,
Karlik, J. F. and Winer, A. M.: Measured isoprene emission rates of plants in California landscapes: comparison to estimates from taxonomic relationships, Atmos. Environ., 35, 1123–1131, 2001.
Keenan, T., Sabate, S., and Gracia, C.: Forest ecophysiological models and carbon sequestration, in: Managing Forest Ecosystems – The Challenge of Climate Change, edited by: Bravo, F., LeMay, V., Jandl, R., Gadow, K. v., Springer, Berlin, ISBN:978-1-4020-8342-6, 83–102, 2008.
Keenan, T., Garc\'{i}a, R., Friend, A. D., Zaehle, S., Gracia, C., and Sabate, S.: Improved understanding of drought controls on seasonal variation in Mediterranean forest canopy CO2 and water fluxes through combined in situ measurements and ecosystem modelling, Biogeosciences Discuss., 6, 2285–2329, 2009.
Kempf, K., Allwine, E., Westberg, H., Claiborn, C., and Lamb, B.: Hydrocarbon emissions from spruce species using environmental chamber and branch enclosure methods, Atmos. Environ., 30, 1381–1389, 1996.
Kesselmeier, J., Bode, K., Hofmann, U., Müller, H., Schäfer, L., Wolf, A., Ciccioli, P., Brancaleoni, E., Cecinato, A., Frattoni, M., Foster, P., Ferrari, C., Jacob, V., Fugit, J. L., Dutaur, L., Simon, V., and Torres, L.: Emission of short chained organic acids, aldehydes and monoterpenes from Quercus ilex L. and Pinus pinea L. in relation to physiological activities, carbon budget and emission algorithms, Atmos. Environ., 31, 119–133, 1997.
Kesselmeier, J., Bode, K., Schäfer, L., Schebeske, G., Wolf, A., Brancaleoni, E., Cecinato, A., Ciccioli, P., Frattoni, M., Dutaur, L., Fugit, J. L., Simon, V., and Torres, L.: Simultaneous field measurements of terpene and isoprene emissions from two dominant Mediterranean oak species in relation to a north American species, Atmos. Environ., 32, 1947–1953, 1998.
Kesselmeier, J. and Staudt, M.: Biogenic volatile organic compounds (VOC): an overview on emission, physiology and ecology, J. Atmos. Chem., 33, 23–88, 1999.
Klinger, L. F., Li, Q.-J., Guenther, A. B., Greenberg, J. P., Baker, B., and Bai, J.-H.: Assessment of volatile organic compound emissions from ecosystems of China, J. Geophys. Res.-Atmos., 107, 4603, https://doi.org/10.1029/2001JD001076. , 2002.
Knöppel, H., Versino, B., Peil, A., Schauenburg, H., and Vissers, H.: Quantitative determination of terpenes emitted by conifers, in: Proceedings of the 2nd European symposium on physico-chemical behaviour of atmospheric pollutants, Varese, Italy, September 29 October 2001, Joint Research Center, Ispra, 89–98, 1981.
Komenda, M. and Koppmann, R.: Monoterpene emissions from Scots pine (Pinus sylvestris): field studies of emission rate variabilities, J. Geophys. Res., 107, 4161, https://doi.org/10.1029/2001JD000691, 2002.
König, G., Brunda, M., Puxbaum, H., Hewitt, C. N., Duckham, S. C., and Rudolph, J.: Relative contribution of oxygenated hydrocarbons to the total biogenic VOC emissions of selected Mid-European agricultural and natural plant species, Atmos. Environ., 29, 861–874, 1995.
Kuhn, U., Rottenberger, S., Biesenthal, T., Wolf, A., Schebeske, G., Ciccioli, P., and Kesselmeier, J.: Strong correlation between isoprene emission and gross photosynthetic capacity during leaf phenology of the tropical tree species Hymenaea courbaril with fundamental changes in volatile organic compounds emission composition during early leaf development, Plant Cell Environ., 27, 1067–1485, 2004.
Kulmala, M., Suni, T., Lehtinen, K. E. J., Dal Maso, M., Boy, M., Reissell, A., Rannik, U., Aalto, P., Keronen, P., Hakola, H., Bäck, J., Hoffmann, T., Vesala, T., and Hari, P.: A new feedback mechanism linking forests, aerosols, and climate, Atmos. Chem. Phys., 4, 557–562, 2004.
Leinonen, I.: Dependence of dormancy release on temperature in different origins of Pinus sylvestris and Betula pendula seedlings, Scand. J. For. Res. 11, 122-128, 1996.
Lamb, B., Gay, D., Westberg, H., and Pierce, T.: A biogenic hydrocarbon emission inventory for the U.S. using a simple forest canopy model, Part A, Atmos. Environ., 27, 1673–1690, 1993.
Lamb, B., Westberg, H., Quarles, T., and Flyckt, D.: Natural hydrocarbon emission rate measurements from vegetation in Pennsylvania and Washington, Report PB84-124981, US. Environmental Protection Agency, Nat. Tech. Inf. Serv., Springfield, Virginia, USA, 1983.
Lavoir, A. V., Staudt, M., Schnitzler, J. P., Landais, D., Massol, F., Rocheteau, A., Rodriguez, R., Zimmer, I., and Rambal, S.: Drought reduced monoterpene emissions from Quercus ilex trees: results from a throughfall displacement experiment within a forest ecosystem, Biogeosciences Discuss., 6, 863–893, 2009
Lathière, J., Hauglustaine, D. A., Friend, A. D., De Noblet-Ducoudré, N., Viovy, N., and Folberth, G. A.: Impact of climate variability and land use changes on global biogenic volatile organic compound emissions, Atmos. Chem. Phys., 6, 2129–2146, 2006.
Lehning, A., Zimmer, I., Steinbrecher, R., Brüggemann, N., and Schnitzler, J. P.: Isoprene synthase activity and its relation to isoprene emission in Quercus robur L. leaves, Plant Cell Environ., 22, 495–504, 1999.
Lenz, R., Selige, T., and Seufert, G.: Scaling up the biogenic emissions from test sites at Castelporziano, Atmos. Environ., 31, 239–250, 1997.
Lenz, R., Köble, R., and Seufert, G.: Species-based mapping of biogenic emissions in Europe – case study Italy, in: A changing atmosphere: 8th European symposium on the physico-chemical behaviour of atmospheric pollutants, 17–20 September 2001, Lingotto Conference Centre, Torino (Italy), edited by: Hjorth, J., Raes, F., and Angeletti, G., Joint Research Center, Ispra, 2001.
Le Quere, C.: The unknown and the uncertain in earth system modeling, EOS Transactions, American Geophysical Union, 87, 496–496, 2006.
Leuning, R., Kelliher, F. M., de Pury, D. G. G., and Schulze, E-.D.: Leaf nitrogen, photosynthesis, conductance and transpiration: scaling from leaves to canopies, Plant Cell Environ., 18, 1183–1200, 1995.
Levis, S., Foley, J. A., and Pollard, D.: Potential high-latitude vegetation feedbacks on CO2-induced climate change, Geophys. Res. Lett., 26, 747–750, 1999.
Lindskog, A. and Potter, A.: Terpene emission and ozone stress, Chemosphere, 30, 1171–1181, 1995.
Litvak, M. E., Madronich, S., and Monson, R. K.: Herbivore-induced monoterpene emissions from coniferous forests: potential impact on local tropospheric chemistry, Ecol. Appl., 9, 1147–1159, 1999.
Llusià, J. and Peñuelas, J.: Seasonal patterns of terpene content and emission from seven Mediterranean woody species in field conditions, Am. J. Bot., 87, 133–140, 2000.
Llusia, J. and Peñuelas, J.: Changes in terpene content and emission in potted Mediterranean woody plants under severe drought, Can. J. Botany, 76, 1366–1373, 1998.
Loreto, F., Mannozzi, M., Maris, C., Nascetti, P., Ferranti, F., and Pasqualini, S.: Ozone quenching properties of isoprene and its antioxidant role in leaves, Plant Physiol., 126, 993–1000, 2001.
Loreto, F. and Velikova, V.: Isoprene production by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes, Plant Physiol., 127, 1781–1787, 2001.
Loreto, F. and Sharkey, T. D.: A gas-exchange study of photosynthesis and isoprene emission in Quercus rubra L., Planta, 182, 523–531, 1990.
Loreto, F. and Sharkey, T. D.: On the relationship between isoprene emission and photosynthetic metabolites under different environmental conditions, Planta, 189, 420–424, 1993.
Luchetta, L.: Les composés organiques volatils biogéniques et anthropiques dans la basse atmosphère: caractérisation et sources. Institut National Polytechnique Toulouse, France, Toulouse, 1999.
McGuire, A. D., Sitch, S., Clein, J. S., Dargaville, R., Esser, G., Foley, J., Heimann, M., Joos, F., Kaplan, J., Kicklighter, D. W., Meier, R. A., Melillo, J. M., Moore, B., Prentice, I. C., Ramankutty, N., Reichenau, T., Schloss, A., Tian, H., Williams, L. J., and Wittenberg, U.: Carbon balance of the terrestrial biosphere in the twentieth century: analyses of CO2, climate and land use effects with four process-based ecosystem models, Global Biogeochem. Cy., 15, 183–206, 2001.
Magel, E., Mayrhofer, S., Müller, A., Zimmer, I., Hampp, R. and Schnitzler, J P.: Photosynthesis and substrate supply for isoprene biosynthesis in poplar leaves, Atmos. Environ., 40, 138–151, 2006.
Martin, M. J., Stirling, C. M., Humphries, S. W., and Long, S. P.: A process-based model to predict the effects of climatic change on leaf isoprene emission rates, Ecol. Model., 131, 161–174, 2000.
Miller, B., Madilao, L. L., Ralph, S., and Bohlmann, J.: Insect induced conifer defense. White pine weevil and methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, and accumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce, Plant Physiol., 137, 369–382, 2005.
Monson, R. K. and Fall, R.: Isoprene emission from aspen leaves. The influence of environment and relation to photosynthesis and photorespiration, Plant Physiol., 90, 267–274, 1989.
Monson, R. K., Harley, P. C., Litvak, M. E., Wildermuth, M., Guenther, A. B., Zimmerman, P. R., and Fall, R.: Environmental and developmental controls over the seasonal pattern of isoprene emission from aspen leaves, Oecologia, 99, 260–270, 1994.
Monson, R. K. and Holland, E.: Biospheric trace gas fluxes and their control over tropospheric chemistry, Annu. Rev. Ecol. Syst., 32, 547–576, 2001.
Monson, R. K., Trahan, N., Rosenstiel, T. N., Veres, P., Moore, D., Wilkinson, M., Norby, R. I., Volder, A., Tjoelker, M. G., Briske, D. D., Karnosky, D. F., and Fall, R.: Isoprene emission from terrestrial ecosystems in response to global change: minding the gap between models and observations, Philos. T. R. Soc. A., 365, 1677–1695, 2008.
Monson, R. K., Jaeger, C. H., Adams, W. W. I., Driggers, E. M., Silver, G. M., and Fall, R.: Relationship among isoprene emission rate, photosynthesis, and isoprene synthase activity as influenced by temperature, Plant Physiol., 98, 1175–1180, 1992.
Moukhtar, S., Bessagnet, B., Rouil, L., and Simon, V.: Monoterpene emissions from beech (Fagus sylvatica) in a French forest and impact on secondary pollutants formation at regional scale, Atmos. Environ., 39, 3535–3547, 2005.
Naik, V., Delire, C., and Wuebbles, D. J.: Sensitivity of global biogenic isoprenoid emissions to climate variability and atmospheric CO2, J. Geophys. Res.-Atmos., 109, D06301, https://doi.org/06310.01029/02003JD004236, 2004.
New, M., Hulme, M., and Jones, P. D.: Representing twentieth century space-time climate variability. Part 1: Development of a 1961–1990 mean monthly terrestrial climatology, J. Clim., 12, 829–856, 1999.
Niinemets, Ü.: Research review. Components of leaf dry mass per area – thickness and density – alter leaf photosynthetic capacity in reverse directions in woody plants, New Phytol., 144, 35–47, 1999.
Niinemets, Ü.: Costs of production and physiology of emission of volatile leaf isoprenoids, in: Advances in Plant Physiol, edited by: Hemantaranjan, A., Scientific Publishers, Jodhpur, 241–278, 2004.
Niinemets, Ü., Hauff, K., Bertin, N., Tenhunen, J. D., Steinbrecher, R., and Seufert, G.: Monoterpene emissions in relation to foliar photosynthetic and structural variables in Mediterranean evergreen Quercus species, New Phytol., 153, 243–256, 2002a.
Niinemets, Ü. and Reichstein, M.: Controls on the emission of plant volatiles through stomata: sensitivity or insensitivity of the emission rates to stomatal closure explained, J. Geophys. Res.-Atmos., 108, 4208, https://doi.org/4210.1029/2002JD002620, 2003.
Niinemets, Ü., Seufert, G., Steinbrecher, R., and Tenhunen, J. D.: A model coupling foliar monoterpene emissions to leaf photosynthetic characteristics in Mediterranean evergreen Quercus species, New Phytol., 153, 257–276, 2002b.
Niinemets, Ü., Tenhunen, J. D., Harley, P. C., and Steinbrecher, R.: A model of isoprene emission based on energetic requirements for isoprene synthesis and leaf photosynthetic properties for Liquidambar and Quercus, Plant Cell Environ., 22, 1319–1335, 1999.
Noe, S. M., Peñuelas, J., and Niinemets, Ü.: Monoterpene emissions from ornamental trees in urban areas: a case study of Barcelona, Spain, Plant Biology, 10, 163–169, 2008.
Ormeño, E., Fernandez, C., Bousquet-Mélou, A., Greff, S., Morin, E., Robles, C., Vila, B., and Bonin, G.: Monoterpene and sesquiterpene emissions of three Mediterranean species through calcareous and siliceous soils in natural conditions, Atmos. Environ., 41, 629–639, 2007.
Otter, L. B., Guenther, A., and Greenberg, J.: Seasonal and spatial variations in biogenic hydrocarbon emissions from southern African savannas and woodlands, Atmos. Environ., 36, 4265–4275, 2002.
Otter, L., Guenther, A., Wiedinmyer, C., Fleming, G., Harley, P., and Greenberg, J.: Spatial and temporal variations in biogenic volatile organic compound emissions for Africa south of the equator, J. Geophys. Res.-Atmos., 108, 8505, https://doi.org/10.1029/2002JD002609, 2003.
Owen, S.: Emissions of isoprene and monoterpenes from native Mediterranean vegetation. PhD Thesis, Lancaster University, Lancaster, 1998.
Owen, S., Boissard, C., Street, R. A., Duckham, S. C., Csiky, O., and Hewitt, C. N.: Screening of 18 Mediterranean plant species for volatile organic compound emissions, Atmos. Environ., 31, 101–117, 1997.
Owen, S. M., Boissard, C., Hagenlochera, B., and Hewitt, C. N.: Field studies of isoprene emissions from vegetation in the Northwest Mediterranean region, J. Geophys. Res.-Atmos., 103, 25499–25511, 1998.
Owen, S. M., Boissard, C., and Hewitt, C. N.: Volatile organic compounds (VOCs) emitted from 40 Mediterranean plant species: VOC speciation and extrapolation to habitat scale, Atmos. Environ., 35, 5393–5409, 2001.
Owen, S. M., Harley, P., Guenther, A., and Hewitt, C. N.: Light dependency of VOC emissions from selected Mediterranean plant species, Atmos. Environ., 36, 3147–3159, 2002.
Owen, S. M. and Hewitt, C. N.: Extrapolating branch enclosure measurements to estimates of regional scale biogenic VOC fluxes in the northwestern Mediterranean basin, J. Geophys. Res.–Atmos., 105, 11573–11583, 2000.
Owen, S. M., MacKenzie, A. R., Stewart, H., Donovan, R., and Hewitt, C. N.: Biogenic volatile organic compound (VOC) emission estimates from an urban tree canopy, Ecol. Appl., 13, 927–938, 2003.
Owen, S. and Peñuelas, J.: Opportunistic emissions of volatile isoprenoids, Trends Plant Sci., 10, 420–427, 2005.
Parra, R., Gassó, S., and Baldasano, J. M.: Estimating the biogenic emissions of non-methane volatile organic compounds from the North Western Mediterranean vegetation of Catalonia, Spain, Sci. Total Environ., 329, 241–259, 2004.
Pegoraro, E., Rey, A., Bobich, E. G., Barron-Gafford, G. A., Grieve, K. A., Mahli, Y., and Murthy, R.: Effect of elevated CO2 concentration and vapour pressure deficit on isoprene emission from leaves of Populus deltoides during drought, Funct. Plant Biol., 31, 1137–1147, 2004a.
Pegoraro, E., Rey, A., Greenberg, J., Harley, P., Grace, J., Mahli, Y., and Guenther, A.: Effect of drought on isoprene emission rates from leaves of Quercus virginiana, Mill. Atmos. Environ., 38, 6149–6156, 2004b.
Pegoraro, E., Potosnak, M. J., Monson, R. K., Rey, A., Barron-Gafford, G., Osmond, C. B.: The effect of elevated CO2, soil and atmospheric water deficit and seasonal phenology on leaf and ecosystem isoprene emission. Funct. Plant Biol., 34, 774–84, 2007.
Peñuelas, J. and Llusià, J.: The complexity of factors driving volatile organic compound emissions by plants, Biol. Plantarum, 44, 481–487, 2001.
Peñuelas, J. and Llusià, J.: BVOCs: Plant defense against climate warming? Trends Plant Sci., 8, 105–109, 2003.
Peñuelas, J. and Llusià, J.: Plant VOC emissions: Making use of the unavoidable, Trends Ecol. Evol., 8, 402–404, 2004.
Peñuelas, J., Llusià, J., Asensio, D., and Munné-Bosch, S.: Linking isoprene with plant thermotolerance, antioxidants and monoterpene emissions, Plant Cell Environ., 28, 278–286, 2005.
Petron, G., Harley, P., Greenberg, J., and Guenther, A.: Seasonal temperature variations influence isoprene emissions, Geophys. Res. Lett., 28, 1707–1710, 2001.
Pelkonen, P. and Hari, P.: The dependence of the springtime recovery of CO2 uptake in Scots pine on temperature and internal factors, Flora, 169, 398–404, 1980.
Pio, C. A., Nuñes, T. V., and Brito, S.: Volatile hydrocarbon emissions from common and native species of vegetation in Portugal, in: Proceedings of the joint Workshop of CEC/BIATEX of EUROTRAC. General Assessment of Biogenic Emissions and Deposition of Nitrogen Compounds, Sulfur compounds and oxidants in Europe, edited by: Slanina, J., Angeletti, G., and Beilke, S., EC, Directorate-General for Science, Research and Development, Aveiro, Portugal, 291–298, 1993.
Pio, C. A., Nunes, T. V., and Valente, A. R.: Biogenic hydrocarbon emissions from vegetation in a southern European environment, in: The proceedings of EUROTRAC symposium 1996, edited by: Borrell, P. M., Borrell, P., Cvitas, T., Kelly, K., and Seile, W., Computational Mechanics Publications, Southampton, 35–43, 1996.
Pio, C. A., Silva, P. A., Cerqueira, M. A., and Nuñes, T. V.: Diurnal and seasonal emissions of volatile organic compounds from cork oak (Quercus suber) trees, Atmos. Environ., 39, 1817–1827, 2005.
Poisson, N., Kanakidou, M., and Crutzen, P. J.: Impact of non-methane hydrocarbons on tropospheric chemistry and the oxidizing power of the global troposphere: 3-dimensional modeling results, J. Atmos. Chem., 36, 157–230, 2000.
Possell, M., Heath, J., Hewitt, C. N., Ayres, E., and Kerstiens, G.: Interactive effects of elevated CO2 and soil fertility on isoprene emissions from Quercus robur, Glob. Change Biol., 10, 1835–1843, 2004.
Pressley, S., Lamb, B., Westberg, H., Flaherty, J., Chen, J., and Vogel, C.: Long-term isoprene flux measurements above a northern hardwood forest, J. Geophys. Res., 110, D07301, https://doi.org/10.1029/2004JD005523, 2005.
Pressley, S., Lamb, B., Westberg, H., and Vogel, C.: Relationships among canopy scale energy fluxes and isoprene flux derived from long-term, seasonal eddy covariance measurements over a hardwood forest, Agr. Forest Meteorol., 136, 188–202, 2006
Projections, U.E.T.F.o.E.I.a. Group 11: Other sources and sinks, in EMEP/CORINAIR emission inventory guidebook – 2007, EEA (European Environment Agency), Copenhagen, Denmark, 2007.
Puxbaum, H.: Biogenic emissions of alcohols, esters, ether and other aldehydes, in: Biogenic volatile organic compounds in the atmosphere, edited by: Helas, G., Slanina, S., and Steinbecher, R., SPB Academic Publishing, Amsterdam, 79–99, 1997.
Rabong, R. and Steinbrecher, R.: VOC emissions from selected oak trees and from pseudo-steppe vegetation types, VOCs and peroxides above an oak/pine forest at Castelporziano, Rome, EUR Report 16293 EN, Office for official publications of the European Communities, Luxembourg, 151–172, 1995.
Rapparini, F., Baraldi, R., Miglietta, F., and Loreto, F.: Isoprenoid emission in trees of Quercus pubescens and Quercus ilex with lifetime exposure to naturally high CO2 environment, Plant Cell Environ., 27, 381–391, 2004.
Rasmussen, R. A.: Isoprene plant species list. Special report of Air Pollution Research Section. Washington State University, Pullman, 1978.
Rinne, H. J. I., Delany, A. C., Greenberg, J. P., and Guenther, A. B.: A true eddy accumulation system for trace gas fluxes using disjunct eddy sampling method, J. Geophys. Res.-Atmos., 105, 24791-24798, 2000.
Roelofs, G. J. and Lelieveld, J.: Tropospheric ozone simulation with a chemistry-general circulation model: influence of higher hydrocarbon chemistry, J. Geophys. Res., 105(22), 697–22712, 2000.
Rosenstiel, T. N., Fisher, A. J., Fall, R., and Monson, R. K.: Differential accumulation of dimethylallyl diphosphate in leaves and needles of isoprene- and methylbutenol-emitting and nonemitting species. Plant Physiol., 129, 1276–1284, 2002.
Sabillón, D. and Cremades, L. V.: Diurnal and seasonal variation of monoterpene emission rates for typical Mediterranean species (Pinus pinea and Quercus ilex) from field measurements - relationship with temperature and PAR, Atmos. Environ., 35, 4419–4431, 2001.
Schaab, G., Steinbrecher, R., and Lacaze, B.: Influence of seasonality, canopy light extinction, and terrain on potential isoprenoid emission from a Mediterranean-type ecosystem in France, J. Geophys. Res.-Atmos., 108, 1–14, 2003.
Schroter, D., Cramer, W., Leemans, R., Prentice, C., Araujo, M., Arnell, N., Bondeau, A., Bugmann, H., Carter, T., Gracia, C., de la Vega-Leinert, A., Erhard, M., Ewert, F., Glendining, M., House, J., Kankaanpaa, S., Klein, R., Lavorel, S., Lindner, M., Metzger, M., Meyer, J., Mitchell, T., Reginster, I., Rounsevell, M., Sabaté, S., Sitch, S., Smith, B., Smith, J., Smith, P., Sykes, M., Thonicke, K., Thuiller, W., Tuck, G., Zaehle, S., and Zierl, B.: Ecosystem service supply and vulnerability to Global Change in Europe, Science, 310, 1333–1337, 2005.
Schuh, G., Heiden, A. C., Hoffmann, T., Kahl, J., Rockel, P., Rudolph, J., and Wildt, J.: Emissions of volatile organic compounds from sunflower and beech: dependence on temperature and light intensity, J. Atmos. Chem., 27, 291–318, 1997.
Schürmann, W.: Emission von Monoterpenen aus Nadeln von Picea abies (L.) Karst. sowie deren Verhalten in der Atmosphäre, Dr. Rer. Nat. Thesis, Fakultät für Chemie, Biologie und Geowissenchaften der Technischen Universität München, Munich, Germany, 1993.
Seufert, G., Bartzis, J., Bombol, T., Ciccioli, P., Cieslik, S., Dlugi, R., Foster, P., Hewitt, C. N., Kesselmeier, J., Kotzias, D., Lenz, R., Manes, F., Perez Pastor, P., Steinbrecher, R., Torres, L., Valentini, R., and Versino, B.: An overview of the Castelporziano experiments, Atmos. Environ., 31, 5–17, 1997.
Shao, M., Czapiewski, K. V., Heiden, A. C., Kobel, K., Komenda, M., Koppmann, R., and Wildt, J.: Volatile organic compound emissions from Scots pine: mechanisms and description by algorithms, J. Geophys. Res., 106, 20483–20491, 2001.
Sharkey, T. D.: Effects of moderate heat stress on photosynthesis: importance of thylakoid reactions, Rubisco deactivation, reactive oxygen species, and thermotolerance provided by isoprene, Plant Cell Environ., 28, 269–277, 2005.
Sharkey, T. D., and Singsaas, E. L.: Why plants emit isoprene, Nature, 374, p. 769, 1995.
Sharkey, T. D. and Yeh, S.: Isoprene emission from plants, Annu. Rev. Plant Phys., 52, 407–436, 2001.
Simon, V., Clement, B., Riba, M. L., and Torres, L.: The Landes experiment: monoterpenes emitted from maritime pine, J. Geophys. Res., 99, 16501–16510, 1994.
Simon, V., Dumergues, L., Ponche, J. L, Torres, L.: The biogenic volatile organic compounds emission inventory in France: Application to plant ecosystems in the Berre-Marseilles area (France), Sci. Total Environ., 372, 164–182, 2006.
Simpson, D., Guenther, A., Hewitt, C. N., and Steinbrecher, R.: Biogenic emissions in Europe. 1. Estimates and uncertainties, J. Geophys. Res., 100, 22875–22890, 1995.
Simpson, D., Winiwarter, W., Börjesson, G., Cinderby, S., Ferreiro, A., Guenther, A., Hewitt, C. N., Janson, R., Khalil, M. A. K., Owen, S., Pierce, T. E., Puxbaum, H., Shearer, M., Skiba, U., Steinbrecher, R., Tarrasón, L., and Öquist, M. G.: Inventorying emissions from nature in Europe, J. Geophys. Res.-Atmos., 104, 8113–8152, 1999.
Smith, B., Prentice, I. C., and Sykes, M. T.: Representation of vegetation dynamics in the modelling of terrestrial ecosystems: comparing two contrasting approaches within European climate space, Global Ecol. Biogeogr., 10, 621–637, 2001.
Solmon, F., Sarrat, C., Serça, D., Tulet, P., and Rosset, R.: Isoprene and monoterpenes biogenic emissions in France: modeling and impact during a regional pollution episode, Atmos. Environ., 38, 3853–3865, 2004.
Spirig, C., Neftel, A., Ammann, C., Dommen, J., Grabmer, W., Thielmann, A., Schaub, A., Beauchamp, J., Wisthaler, A., and Hansel, A.: Eddy covariance flux measurements of biogenic VOCs during ECHO 2003 using proton transfer reaction mass spectrometry, Atmos. Chem. Phys., 5, 465–481, 2005.
Staudt, M.: Untersuchungen der Monoterpen-Abgabe an europäischen Nadelbaumarten in Abhängigkeit von Umweltfaktoren. PhD Thesis, Universität Hohenheim, Documenta Naturae 111, ISSN 0723-8428, Verlag Documenta naturae, München, Stuttgart, 1997.
Staudt, M., Bertin, N., Hansen, U., Seufert, G., Ciccioli, P., Foster, P., Frenzel, B., and Fugit, J. L.: Seasonal and diurnal patterns of monoterpene emissions from Pinus pinea (L.) under field conditions, Atmos. Environ., 31, 145–156, 1997.
Staudt, M., Mir, C., Joffre, R., Rambal, S., Bonin, A., Landais, D., and Lumaret, R.: Isoprenoid emissions of Quercus spp. (Q. suber and Q. ilex) in mixed stands contrasting in interspecific genetic introgression, New Phytol., 163, 573–584, 2004.
Staudt, M. and Bertin, N.: Light and temperature dependence of the emission of cyclic and acyclic monoterpenes from holm oak (Quercus ilex L.) leaves, Plant Cell Environ., 21, 385–395, 1998.
Steinbrecher, R.: Emissions of selected European ecosystems: the state of the art, in: The proceedings of EUROTRAC symposium '94, edited by: Borrell, P. M., Borrell, P., Cvitas, T., and Seiler, W., SPB Academic Publishers, The Hague, 448–454, 1994.
Steinbrecher, R.: Isoprene: production by plants and ecosystem-level estimates, in: Biogenic volatile organic compounds in the atmosphere, edited by: Helas, G., Slanina, J., and Steinbrecher, R., SPB Academic Publishing bv, Amsterdam, 101–114, 1997.
Steinbrecher, R. and Hauff, K.: Isoprene and monoterpene emission from Mediterranean oaks, in: The proceedings of EUROTRAC symposium '96, edited by: Borrell, P. M., Borrell, P., Cvitas, T., Kelly, K., and Seiler, W., Computational Mechanics Publications, Southampton, 229–233, 1996.
Steinbrecher, R., Hauff, K., Rabong, R., and Steinbrecher, J.: Isoprenoid emission of oak species typical for the Mediterranean area: source strength and controlling variables, Atmos. Environ., 31, 79–88, 1997.
Steinbrecher, R., Schurmann, W., Schreiner, A.-M., and Ziegler, H.: Terpenoid emissions from common oak (Quercus robur L.) and Norway spruce (Picea abies (L.) Karst.), in: Proceedings of the joint Workshop of CEC/BIATEX of EUROTRAC. General Assessment of Biogenic Emissions and Deposition of Nitrogen Compounds, Sulfur compounds and oxidants in Europe, edited by: Slanina, J., Angeletti, G., and Beilke, S., EC, Directorate-General for Science, Research and Development, Aveiro, Portugal, 251–257, 1993.
Street, R. A., Duckham, S. C., Boussard, C., and Hewitt, C. N.: Emissions of VOCs from stressed and unstressed vegetation, in: Biosphere-atmosphere exchange of pollutants and trace substances, edited by: Slanina, S., Springer Verlag, Berlin, 366–371, 1997a.
Street, R. A., Duckham, S. C., and Hewitt, C. N.: Laboratory and field studies of biogenic volatile organic compound emissions from Sitka spruce (Picea sitchensis Bong.) in the UK, J. Geophys. Res.–Atmos., 101, 22799–22806, 1996.
Street, R. A., Hewitt, C. N., and Mennicken, S.: Isoprene and monoterpene emissions from a Eucalyptus plantation in Portugal, J. Geophys. Res.-Atmos., 102, 15875–15887, 1997b.
Street, R. A., Owen, S., Duckham, S. C., Boissard, C., and Hewitt, C. N.: Effect of habitat and age on variations in volatile organic compound (VOC) emissions from Quercus ilex and Pinus pinea, Atmos. Environ., 31, 89–100, 1997c.
Szidat, S., Jenk, T. M., Synal, H. A., Kalberer, M., Wacker, L., Hajdas, I., Kasper-Giebl, A., and Baltensperger, U.: Contributions of fossil fuel, biomass-burning, and biogenic emissions to carbonaceous aerosols in Zurich as traced by C-14, J. Geophys. Res.-Atmos., 111, D07206, https://doi.org/10.1029/2005JD006590, 2006.
Tao, Z. and Jain, A. K.: Modeling of global biogenic emissions for key indirect greenhouse gases and their response to atmospheric CO2 increases and changes in land cover and climate, J. Geophys. Res.-Atmos., 110, D21309, https://doi.org/10.1029/22005JD005874, 2005.
Tarvainen, V., Hakola, H., Rinne, J., Hellen, H., and Haapanala, S.: Towards a comprehensive emission inventory of terpenoids from boreal ecosystems, Tellus B, 59, 526–534, 2007.
Tingey, D., Manning, M., Grothaus, L., and Burns, W.: Influence of light and temperature on monoterpene emission rates from slash pine, Plant Physiol., 65, 797–801, 1980.
Tollsten, L. and Müller, P. M.: Volatile organic compounds emitted from beech leaves, Phytochemistry, 43, 759–762, 1996.
Tunved, P., Hansson, H. C., Kerminen, V. M., Strom, J., Dal Maso, M., Lihavainen, H., Viisanen, Y., Aalto, P. P., Komppula, M., and Kulmala, M.: High natural aerosol loading over boreal forests, Science, 312, 261–263, 2006.
Valdes, P. J., Beerling, D. J., and Johnson, D. E.: The ice age methane budget, Geophys. Res. Lett., 32, L02704, https://doi.org/10.1029/02004GL021004, 2005.
van Poecke, R. M. and Dicke, M.: Indirect defence of plants against herbivores: using Arabidopsis thaliana as a model plant, Plant Biology, 6, 387–401, 2004.
Velikova, V. and Loreto, F.: On the relationship between isoprene emission and thermotolerance in Phragmites australis leaves exposed to high temperatures and during the recovery from a heat stress, Plant Cell Environ., 28, 318–327, 2005.
von Caemmerer, S. and Farquhar, G. D.: Some relationships between the biochemistry of photosynthesis and gas exchange of leaves, Planta, 153, 376–387, 1981.
Wang, Y. F., Owen, S., Li, Q. J., and Peñuelas, J.: Monoterpene emissions from rubber trees (Hevea brasiliensis) in a changing landscape and climate: chemical speciation and environmental control, Glob. Change Biol., 13, 2270–2282, 2007.
Wang, Y. P. and Leuning, R.: A two-leaf model for canopy conductance, photosynthesis and partitioning of available energy I: Model description and comparison with a multi-layered model, Agr. Forest Meteorol., 19, 89–111, 1998.
Wiberley, A. E., Linskey, A. R., Falbel, T. G., and Sharkey, T. D.: Development of the capacity for isoprene emission in kudzu, Plant Cell Environ., 28, 898–905, 2005.
Wiedinmyer, C., Guenther, A., Harley, P., Hewitt, C., Geron, C., Artaxo, P., Steinbrecher, R., and Rasmussen, R.: Global organic emissions from vegetation, in: Emissions of atmospheric trace compounds, edited by: Granier, C., Kluwer Publishing C., Dordrecht, The Netherlands, 121–182, 2004.
Winer, A. M., Arey, J., Aschmann, S. M., Atkinson, R., Long, W. D., Morrison, L. C., and Olszyk, O. M.: Hydrocarbon emissions from vegetation found in California's Central Valley, Contract No. A732-155, prepared for the California Air Resources Board, Riverside, California, U.S.A., Statewide Air Pollution Research Center, Springfield, Virginia, USA, 1989.
Winer, A. M., Arey, J., Atkinson, R., Aschmann, S. M., Long, W. D., Morrison, C. L., and Olszyk, D. M.: Emission rates of organics from vegetation in California's Central Valley, Atmos. Environ., 26A, 2647–2659, 1992.
Winer, A. M., Fitz, D. R., and Miller, P. R.: Investigation of the role of natural hydrocarbons in photochemical smog formation in California, Contract No. AO-056-32, prepared for the California Air Resources Board. Riverside, California, USA, Statewide Air Pollution Research Center, Springfield, Virginia, USA, 1983.
Wright, I. J., Reich, P. B., Westoby, M., Ackerly, D. D., Baruch, Z., Bongers, F., Cavender-Bares, J., Chapin, T., Cornelissen, J. H. C., Diemer, M., Flexas, J., Garnier, E., Groom, P. K., Gulias, J., Hikosaka, K., Lamont, B. B., Lee, T., Lee, W., Lusk, C., Midgley, J. J., Navas, M. L., Niinemets, Ü., Oleksyn, J., Osada, N., Poorter, H., Poot, P., Prior, L., Pyankov, V. I., Roumet, C., Thomas, S. C., Tjoelker, M. G., Veneklaas, E., and Villar R.: The world-wide leaf economics spectrum, Nature, 428, 821–827, 2004.
Xiaoshan, Z., Yujing, M., Wenzhi, S., and Yahui, Z.: Seasonal variations of isoprene emissions from deciduous trees, Atmos. Environ., 34, 3027–3032, 2000.
Zemankova, K.: Measurements of emission factors from forest species common in the Czech Republic, in: VOCBAS report, Department of Meteorology and Environment Protection, Charles University, Prag, 7 pp., 2007.
Zimmer, W., Brüggemann, N., Emeis, S., Giersch, C., Lehning, A., Steinbrecher, R., and Schnitzler, J. P.: Process-based modeling of isoprene emission by oak leaves, Plant Cell Environ., 23, 585–595, 2000.
Zimmerman, P. R.: Determination of emission rates of hydrocarbons from indigenous species of vegetation in the Tampa/St Petersburg, Florida Area, EPA Contract No. 904/9-77-028, prepared for Environmental Protection Agency, Environmental Protection Agency, Atlanta, Georgia, USA, 1979.
Altmetrics
Final-revised paper
Preprint