Articles | Volume 24, issue 18
https://doi.org/10.5194/acp-24-10793-2024
https://doi.org/10.5194/acp-24-10793-2024
Research article
 | 
26 Sep 2024
Research article |  | 26 Sep 2024

A thermal-driven graupel generation process to explain dry-season convective vigor over the Amazon

Toshi Matsui, Daniel Hernandez-Deckers, Scott E. Giangrande, Thiago S. Biscaro, Ann Fridlind, and Scott Braun

Related authors

Warm-phase Microphysical Evolution in Large Eddy Simulations of Tropical Cumulus Congestus: Constraining Drop Size Distribution Evolution using Polarimetery Retrievals and a Thermal-Based Framework
McKenna Stanford, Ann Fridlind, Andrew Ackerman, Bastiaan van Diedenhoven, Qian Xiao, Jian Wang, Toshihisa Matsui, Daniel Hernandez-Deckers, and Paul Lawson
EGUsphere, https://doi.org/10.5194/egusphere-2024-2413,https://doi.org/10.5194/egusphere-2024-2413, 2024
Short summary
Updraft dynamics and microphysics: on the added value of the cumulus thermal reference frame in simulations of aerosol–deep convection interactions
Daniel Hernandez-Deckers, Toshihisa Matsui, and Ann M. Fridlind
Atmos. Chem. Phys., 22, 711–724, https://doi.org/10.5194/acp-22-711-2022,https://doi.org/10.5194/acp-22-711-2022, 2022
Short summary
Use of polarimetric radar measurements to constrain simulated convective cell evolution: a pilot study with Lagrangian tracking
Ann M. Fridlind, Marcus van Lier-Walqui, Scott Collis, Scott E. Giangrande, Robert C. Jackson, Xiaowen Li, Toshihisa Matsui, Richard Orville, Mark H. Picel, Daniel Rosenfeld, Alexander Ryzhkov, Richard Weitz, and Pengfei Zhang
Atmos. Meas. Tech., 12, 2979–3000, https://doi.org/10.5194/amt-12-2979-2019,https://doi.org/10.5194/amt-12-2979-2019, 2019
Short summary
Investigation of observational error sources in multi-Doppler-radar three-dimensional variational vertical air motion retrievals
Mariko Oue, Pavlos Kollias, Alan Shapiro, Aleksandra Tatarevic, and Toshihisa Matsui
Atmos. Meas. Tech., 12, 1999–2018, https://doi.org/10.5194/amt-12-1999-2019,https://doi.org/10.5194/amt-12-1999-2019, 2019
Short summary

Related subject area

Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Correction of ERA5 temperature and relative humidity biases by bivariate quantile mapping for contrail formation analysis
Kevin Wolf, Nicolas Bellouin, Olivier Boucher, Susanne Rohs, and Yun Li
Atmos. Chem. Phys., 25, 157–181, https://doi.org/10.5194/acp-25-157-2025,https://doi.org/10.5194/acp-25-157-2025, 2025
Short summary
Can pollen affect precipitation?
Marje Prank, Juha Tonttila, Xiaoxia Shang, Sami Romakkaniemi, and Tomi Raatikainen
Atmos. Chem. Phys., 25, 183–197, https://doi.org/10.5194/acp-25-183-2025,https://doi.org/10.5194/acp-25-183-2025, 2025
Short summary
Potential impacts of marine fuel regulations on an Arctic stratocumulus case and its radiative response
Luís Filipe Escusa dos Santos, Hannah C. Frostenberg, Alejandro Baró Pérez, Annica M. L. Ekman, Luisa Ickes, and Erik S. Thomson
Atmos. Chem. Phys., 25, 119–142, https://doi.org/10.5194/acp-25-119-2025,https://doi.org/10.5194/acp-25-119-2025, 2025
Short summary
The impact of the mesh size and microphysics scheme on the representation of mid-level clouds in the ICON model in hilly and complex terrain
Nadja Omanovic, Brigitta Goger, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 14145–14175, https://doi.org/10.5194/acp-24-14145-2024,https://doi.org/10.5194/acp-24-14145-2024, 2024
Short summary
The role of ascent timescales for warm conveyor belt (WCB) moisture transport into the upper troposphere and lower stratosphere (UTLS)
Cornelis Schwenk and Annette Miltenberger
Atmos. Chem. Phys., 24, 14073–14099, https://doi.org/10.5194/acp-24-14073-2024,https://doi.org/10.5194/acp-24-14073-2024, 2024
Short summary

Cited articles

Arakawa, A. and Schubert, W. H.: Interaction of a cumulus cloud ensemble with the large–scale environment, Part I, J. Atmos. Sci., 31, 674–701, https://doi.org/10.1175/1520-0469(1974)031<0674>2.0.CO;2, 1974. 
Bang, S. D. and Cecil, D. J.: Constructing a Multifrequency Passive Microwave Hail Retrieval and Climatology in the GPM Domain, J. Appl. Meteorol. Clim., 58, 1889–1904, https://doi.org/10.1175/JAMC-D-19-0042.1, 2019. 
Bergeron, T.: On the physics of cloud and precipitation, Proc. 5th Assembly U.G.G.I., Lisbon, 2, 156, 1935. 
Biscaro, T. S., Machado, L. A. T., Giangrande, S. E., and Jensen, M. P.: What drives daily precipitation over the central Amazon? Differences observed between wet and dry seasons, Atmos. Chem. Phys., 21, 6735–6754, https://doi.org/10.5194/acp-21-6735-2021, 2021. 
Blyth, A. M. and Latham, J.: Development of ice and precipitation in New Mexican summertime cumulus clouds, Q. J. Roy. Meteor. Soc., 119, 91–120, https://doi.org/10.1002/qj.49711950905, 1993. 
Download
Short summary
Using computer simulations and real measurements, we discovered that storms over the Amazon were narrower but more intense during the dry periods, producing heavier rain and more ice particles in the clouds. Our research showed that cumulus bubbles played a key role in creating these intense storms. This study can improve the representation of the effect of continental and ocean environments on tropical regions' rainfall patterns in simulations.
Altmetrics
Final-revised paper
Preprint