Articles | Volume 24, issue 18
https://doi.org/10.5194/acp-24-10793-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-24-10793-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A thermal-driven graupel generation process to explain dry-season convective vigor over the Amazon
Toshi Matsui
CORRESPONDING AUTHOR
Mesoscale Atmospheric Processes Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Earth System Science Interdisciplinary Center – ESSIC, University of Maryland, College Park, MD, USA
Daniel Hernandez-Deckers
Grupo de Investigación en Ciencias Atmosféricas, Departamento de Geociencias, Universidad Nacional de Colombia, Bogotá, Colombia
Scott E. Giangrande
Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA
Thiago S. Biscaro
Meteorological Satellites and Sensors Division, National Institute for Space Research, Cachoeira Paulista, São Paulo, Brazil
Ann Fridlind
NASA Goddard Institute for Space Studies, New York, NY, USA
Scott Braun
Mesoscale Atmospheric Processes Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
Related authors
McKenna Stanford, Ann Fridlind, Andrew Ackerman, Bastiaan van Diedenhoven, Qian Xiao, Jian Wang, Toshihisa Matsui, Daniel Hernandez-Deckers, and Paul Lawson
EGUsphere, https://doi.org/10.5194/egusphere-2024-2413, https://doi.org/10.5194/egusphere-2024-2413, 2024
Short summary
Short summary
The evolution of cloud droplets, from the point they are activated by atmospheric aerosol to the formation of precipitation, is an important process relevant to understanding cloud-climate feedbacks. This study demonstrates a benchmark framework for using novel airborne measurements and retrievals to constrain high-resolution simulations of moderately deep cumulus clouds and pathways for scaling results to large-scale models and space-based observational platforms.
Daniel Hernandez-Deckers, Toshihisa Matsui, and Ann M. Fridlind
Atmos. Chem. Phys., 22, 711–724, https://doi.org/10.5194/acp-22-711-2022, https://doi.org/10.5194/acp-22-711-2022, 2022
Short summary
Short summary
We investigate how the concentration of aerosols (small particles that serve as seeds for cloud droplets) affect the dynamics of simulated clouds using two different frameworks, i.e., the traditional selection of cloudy rising grid points and tracking small-scale coherent rising features (cumulus thermals). By doing so, we find that these cumulus thermals reveal useful information about the coupling between internal cloud circulations and cloud droplet and raindrop formation.
Ann M. Fridlind, Marcus van Lier-Walqui, Scott Collis, Scott E. Giangrande, Robert C. Jackson, Xiaowen Li, Toshihisa Matsui, Richard Orville, Mark H. Picel, Daniel Rosenfeld, Alexander Ryzhkov, Richard Weitz, and Pengfei Zhang
Atmos. Meas. Tech., 12, 2979–3000, https://doi.org/10.5194/amt-12-2979-2019, https://doi.org/10.5194/amt-12-2979-2019, 2019
Short summary
Short summary
Weather radars are offering improved capabilities to investigate storm physics, which remain poorly understood. We investigate enhanced use of such data near Houston, Texas, where pollution sources often provide a convenient contrast between polluted and clean air. We conclude that Houston is a favorable location to conduct a future field campaign during June through September because isolated storms are common and tend to last an hour, allowing frequent observations of a full life cycle.
Mariko Oue, Pavlos Kollias, Alan Shapiro, Aleksandra Tatarevic, and Toshihisa Matsui
Atmos. Meas. Tech., 12, 1999–2018, https://doi.org/10.5194/amt-12-1999-2019, https://doi.org/10.5194/amt-12-1999-2019, 2019
Short summary
Short summary
This study investigated impacts of the selected radar volume coverage pattern, the sampling time period, the number of radars used, and the added value of advection correction on the retrieval of vertical air motion from a multi-Doppler-radar technique. The results suggest that the use of rapid-scan radars can substantially improve the quality of wind retrievals and that the retrieved wind field needs to be carefully used considering the limitations of the radar observing system.
Johannes Mülmenstädt, Andrew S. Ackerman, Ann M. Fridlind, Meng Huang, Po-Lun Ma, Naser Mahfouz, Susanne E. Bauer, Susannah M. Burrows, Matthew W. Christensen, Sudhakar Dipu, Andrew Gettelman, L. Ruby Leung, Florian Tornow, Johannes Quaas, Adam C. Varble, Hailong Wang, Kai Zhang, and Youtong Zheng
Atmos. Chem. Phys., 24, 13633–13652, https://doi.org/10.5194/acp-24-13633-2024, https://doi.org/10.5194/acp-24-13633-2024, 2024
Short summary
Short summary
Stratocumulus clouds play a large role in Earth's climate by reflecting incoming solar energy back to space. Turbulence at stratocumulus cloud top mixes in dry, warm air, which can lead to cloud dissipation. This process is challenging for coarse-resolution global models to represent. We show that global models nevertheless agree well with our process understanding. Global models also think the process is less important for the climate than other lines of evidence have led us to conclude.
Florian Tornow, Ann Fridlind, George Tselioudis, Brian Cairns, Andrew Ackerman, Seethala Chellappan, David Painemal, Paquita Zuidema, Christiane Voigt, Simon Kirschler, and Armin Sorooshian
EGUsphere, https://doi.org/10.5194/egusphere-2024-3462, https://doi.org/10.5194/egusphere-2024-3462, 2024
Short summary
Short summary
The recent NASA campaign ACTIVATE (Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment) performed 71 tandem flights in mid-latitude marine cold-air outbreaks off the US Eastern seaboard. We provide meteorological and cloud transition stage context, allowing us to identify days that are most suitable for Lagrangian modeling and analysis. Surveyed cloud properties show signatures of cloud microphysical processes, such as cloud-top entrainment and secondary ice formation.
Camila da Cunha Lopes, Rachel Ifanger Albrecht, Douglas Messias Uba, Thiago Souza Biscaro, and Ivan Saraiva
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-438, https://doi.org/10.5194/essd-2024-438, 2024
Preprint under review for ESSD
Short summary
Short summary
This study used observations collected during The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) Experiment to create a database of storms and thunderstorms characteristics with weather radar and lightning measurements. These storms have different sizes and durations between wet and dry seasons as well as throughout the day, with the most intense ones occurring in the dry-to-wet transition. This database is useful in future studies on Amazonian clouds.
Alexei Korolev, Zhipeng Qu, Jason Milbrandt, Ivan Heckman, Mélissa Cholette, Mengistu Wolde, Cuong Nguyen, Greg M. McFarquhar, Paul Lawson, and Ann M. Fridlind
Atmos. Chem. Phys., 24, 11849–11881, https://doi.org/10.5194/acp-24-11849-2024, https://doi.org/10.5194/acp-24-11849-2024, 2024
Short summary
Short summary
The phenomenon of high ice water content (HIWC) occurs in mesoscale convective systems (MCSs) when a large number of small ice particles with typical sizes of a few hundred micrometers is found at high altitudes. It was found that secondary ice production in the vicinity of the melting layer plays a key role in the formation and maintenance of HIWC. This study presents a conceptual model of the formation of HIWC in tropical MCSs based on in situ observations and numerical simulation.
Abigail S. Williams, Jeramy L. Dedrick, Lynn M. Russell, Florian Tornow, Israel Silber, Ann M. Fridlind, Benjamin Swanson, Paul J. DeMott, Paul Zieger, and Radovan Krejci
Atmos. Chem. Phys., 24, 11791–11805, https://doi.org/10.5194/acp-24-11791-2024, https://doi.org/10.5194/acp-24-11791-2024, 2024
Short summary
Short summary
The measured aerosol size distribution modes reveal distinct properties characteristic of cold-air outbreaks in the Norwegian Arctic. We find higher sea spray number concentrations, smaller Hoppel minima, lower effective supersaturations, and accumulation-mode particle scavenging during cold-air outbreaks. These results advance our understanding of cold-air outbreak aerosol–cloud interactions in order to improve their accurate representation in models.
Min Deng, Scott E. Giangrande, Michael P. Jensen, Karen Johnson, Christopher R. Williams, Jennifer M. Comstock, Ya-Chien Feng, Alyssa Matthews, Iosif A. Lindenmaier, Timothy G. Wendler, Marquette Rocque, Aifang Zhou, Zeen Zhu, Edward Luke, and Die Wang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2615, https://doi.org/10.5194/egusphere-2024-2615, 2024
Short summary
Short summary
A relative calibration technique is developed for the cloud radar by monitoring the intercept of the wet-radome attenuation (WRA) logarithmic behavior as a function of rainfall rates in light and moderate rain conditions. This WRA technique is applied to the measurements during the ARM TRACER campaign and reports Ze offsets that compare favorably with results from other traditional calibration methods.
McKenna Stanford, Ann Fridlind, Andrew Ackerman, Bastiaan van Diedenhoven, Qian Xiao, Jian Wang, Toshihisa Matsui, Daniel Hernandez-Deckers, and Paul Lawson
EGUsphere, https://doi.org/10.5194/egusphere-2024-2413, https://doi.org/10.5194/egusphere-2024-2413, 2024
Short summary
Short summary
The evolution of cloud droplets, from the point they are activated by atmospheric aerosol to the formation of precipitation, is an important process relevant to understanding cloud-climate feedbacks. This study demonstrates a benchmark framework for using novel airborne measurements and retrievals to constrain high-resolution simulations of moderately deep cumulus clouds and pathways for scaling results to large-scale models and space-based observational platforms.
Johannes Mülmenstädt, Edward Gryspeerdt, Sudhakar Dipu, Johannes Quaas, Andrew S. Ackerman, Ann M. Fridlind, Florian Tornow, Susanne E. Bauer, Andrew Gettelman, Yi Ming, Youtong Zheng, Po-Lun Ma, Hailong Wang, Kai Zhang, Matthew W. Christensen, Adam C. Varble, L. Ruby Leung, Xiaohong Liu, David Neubauer, Daniel G. Partridge, Philip Stier, and Toshihiko Takemura
Atmos. Chem. Phys., 24, 7331–7345, https://doi.org/10.5194/acp-24-7331-2024, https://doi.org/10.5194/acp-24-7331-2024, 2024
Short summary
Short summary
Human activities release copious amounts of small particles called aerosols into the atmosphere. These particles change how much sunlight clouds reflect to space, an important human perturbation of the climate, whose magnitude is highly uncertain. We found that the latest climate models show a negative correlation but a positive causal relationship between aerosols and cloud water. This means we need to be very careful when we interpret observational studies that can only see correlation.
Siddhant Gupta, Dié Wang, Scott E. Giangrande, Thiago S. Biscaro, and Michael P. Jensen
Atmos. Chem. Phys., 24, 4487–4510, https://doi.org/10.5194/acp-24-4487-2024, https://doi.org/10.5194/acp-24-4487-2024, 2024
Short summary
Short summary
We examine the lifecycle of isolated deep convective clouds (DCCs) in the Amazon rainforest. Weather radar echoes from the DCCs are tracked to evaluate their lifecycle. The DCC size and intensity increase, reach a peak, and then decrease over the DCC lifetime. Vertical profiles of air motion and mass transport from different seasons are examined to understand the transport of energy and momentum within DCC cores and to address the deficiencies in simulating DCCs using weather and climate models.
Kamil Mroz, Alessandro Battaglia, and Ann M. Fridlind
Atmos. Meas. Tech., 17, 1577–1597, https://doi.org/10.5194/amt-17-1577-2024, https://doi.org/10.5194/amt-17-1577-2024, 2024
Short summary
Short summary
In this study, we examine the extent to which radar measurements from space can inform us about the properties of clouds and precipitation. Surprisingly, our analysis showed that the amount of ice turning into rain was lower than expected in the current product. To improve on this, we came up with a new way to extract information about the size and concentration of particles from radar data. As long as we use this method in the right conditions, we can even estimate how dense the ice is.
Yang Wang, Chanakya Bagya Ramesh, Scott E. Giangrande, Jerome Fast, Xianda Gong, Jiaoshi Zhang, Ahmet Tolga Odabasi, Marcus Vinicius Batista Oliveira, Alyssa Matthews, Fan Mei, John E. Shilling, Jason Tomlinson, Die Wang, and Jian Wang
Atmos. Chem. Phys., 23, 15671–15691, https://doi.org/10.5194/acp-23-15671-2023, https://doi.org/10.5194/acp-23-15671-2023, 2023
Short summary
Short summary
We report the vertical profiles of aerosol properties over the Southern Great Plains (SGP), a region influenced by shallow convective clouds, land–atmosphere interactions, boundary layer turbulence, and the aerosol life cycle. We examined the processes that drive the aerosol population and distribution in the lower troposphere over the SGP. This study helps improve our understanding of aerosol–cloud interactions and the model representation of aerosol processes.
McKenna W. Stanford, Ann M. Fridlind, Israel Silber, Andrew S. Ackerman, Greg Cesana, Johannes Mülmenstädt, Alain Protat, Simon Alexander, and Adrian McDonald
Atmos. Chem. Phys., 23, 9037–9069, https://doi.org/10.5194/acp-23-9037-2023, https://doi.org/10.5194/acp-23-9037-2023, 2023
Short summary
Short summary
Clouds play an important role in the Earth’s climate system as they modulate the amount of radiation that either reaches the surface or is reflected back to space. This study demonstrates an approach to robustly evaluate surface-based observations against a large-scale model. We find that the large-scale model precipitates too infrequently relative to observations, contrary to literature documentation suggesting otherwise based on satellite measurements.
Scott E. Giangrande, Thiago S. Biscaro, and John M. Peters
Atmos. Chem. Phys., 23, 5297–5316, https://doi.org/10.5194/acp-23-5297-2023, https://doi.org/10.5194/acp-23-5297-2023, 2023
Short summary
Short summary
Our study tracks thunderstorms observed during the wet and dry seasons of the Amazon Basin using weather radar. We couple this precipitation tracking with opportunistic overpasses of a wind profiler and other ground observations to add unique insights into the upwards and downwards air motions within these clouds at various stages in the storm life cycle. The results of a simple updraft model are provided to give physical explanations for observed seasonal differences.
Christopher R. Williams, Joshua Barrio, Paul E. Johnston, Paytsar Muradyan, and Scott E. Giangrande
Atmos. Meas. Tech., 16, 2381–2398, https://doi.org/10.5194/amt-16-2381-2023, https://doi.org/10.5194/amt-16-2381-2023, 2023
Short summary
Short summary
This study uses surface disdrometer observations to calibrate 8 years of 915 MHz radar wind profiler deployed in the central United States in northern Oklahoma. This study had two key findings. First, the radar wind profiler sensitivity decreased approximately 3 to 4 dB/year as the hardware aged. Second, this drift was slow enough that calibration can be performed using 3-month intervals. Calibrated radar wind profiler observations and Python processing code are available on public repositories.
Frederic Tridon, Israel Silber, Alessandro Battaglia, Stefan Kneifel, Ann Fridlind, Petros Kalogeras, and Ranvir Dhillon
Atmos. Chem. Phys., 22, 12467–12491, https://doi.org/10.5194/acp-22-12467-2022, https://doi.org/10.5194/acp-22-12467-2022, 2022
Short summary
Short summary
The role of ice precipitation in the Earth water budget is not well known because ice particles are complex, and their formation involves intricate processes. Riming of ice crystals by supercooled water droplets is an efficient process, but little is known about its importance at high latitudes. In this work, by exploiting the deployment of an unprecedented number of remote sensing systems in Antarctica, we find that riming occurs at much lower temperatures compared with the mid-latitudes.
Michael S. Diamond, Pablo E. Saide, Paquita Zuidema, Andrew S. Ackerman, Sarah J. Doherty, Ann M. Fridlind, Hamish Gordon, Calvin Howes, Jan Kazil, Takanobu Yamaguchi, Jianhao Zhang, Graham Feingold, and Robert Wood
Atmos. Chem. Phys., 22, 12113–12151, https://doi.org/10.5194/acp-22-12113-2022, https://doi.org/10.5194/acp-22-12113-2022, 2022
Short summary
Short summary
Smoke from southern Africa blankets the southeast Atlantic from June-October, overlying a major transition region between overcast and scattered clouds. The smoke affects Earth's radiation budget by absorbing sunlight and changing cloud properties. We investigate these effects in regional climate and large eddy simulation models based on international field campaigns. We find that large-scale circulation changes more strongly affect cloud transitions than smoke microphysical effects in our case.
Israel Silber, Robert C. Jackson, Ann M. Fridlind, Andrew S. Ackerman, Scott Collis, Johannes Verlinde, and Jiachen Ding
Geosci. Model Dev., 15, 901–927, https://doi.org/10.5194/gmd-15-901-2022, https://doi.org/10.5194/gmd-15-901-2022, 2022
Short summary
Short summary
The Earth Model Column Collaboratory (EMC2) is an open-source ground-based (and air- or space-borne) lidar and radar simulator and subcolumn generator designed for large-scale models, in particular climate models, applicable also for high-resolution models. EMC2 emulates measurements while remaining faithful to large-scale models' physical assumptions implemented in their cloud or radiation schemes. We demonstrate the use of EMC2 to compare AWARE measurements with the NASA GISS ModelE3 and LES.
Daniel Hernandez-Deckers, Toshihisa Matsui, and Ann M. Fridlind
Atmos. Chem. Phys., 22, 711–724, https://doi.org/10.5194/acp-22-711-2022, https://doi.org/10.5194/acp-22-711-2022, 2022
Short summary
Short summary
We investigate how the concentration of aerosols (small particles that serve as seeds for cloud droplets) affect the dynamics of simulated clouds using two different frameworks, i.e., the traditional selection of cloudy rising grid points and tracking small-scale coherent rising features (cumulus thermals). By doing so, we find that these cumulus thermals reveal useful information about the coupling between internal cloud circulations and cloud droplet and raindrop formation.
Michael P. Jensen, Virendra P. Ghate, Dié Wang, Diana K. Apoznanski, Mary J. Bartholomew, Scott E. Giangrande, Karen L. Johnson, and Mandana M. Thieman
Atmos. Chem. Phys., 21, 14557–14571, https://doi.org/10.5194/acp-21-14557-2021, https://doi.org/10.5194/acp-21-14557-2021, 2021
Short summary
Short summary
This work compares the large-scale meteorology, cloud, aerosol, precipitation, and thermodynamics of closed- and open-cell cloud organizations using long-term observations from the astern North Atlantic. Open-cell cases are associated with cold-air outbreaks and occur in deeper boundary layers, with stronger winds and higher rain rates compared to closed-cell cases. These results offer important benchmarks for model representation of boundary layer clouds in this climatically important region.
Florian Tornow, Andrew S. Ackerman, and Ann M. Fridlind
Atmos. Chem. Phys., 21, 12049–12067, https://doi.org/10.5194/acp-21-12049-2021, https://doi.org/10.5194/acp-21-12049-2021, 2021
Short summary
Short summary
Cold air outbreaks affect the local energy budget by forming bright boundary layer clouds that, once it rains, evolve into dimmer, broken cloud fields that are depleted of condensation nuclei – an evolution consistent with closed-to-open cell transitions. We find that cloud ice accelerates this evolution, primarily via riming prior to rain onset, which (1) reduces liquid water, (2) reduces condensation nuclei, and (3) leads to early precipitation cooling and moistening below cloud.
Christopher R. Williams, Karen L. Johnson, Scott E. Giangrande, Joseph C. Hardin, Ruşen Öktem, and David M. Romps
Atmos. Meas. Tech., 14, 4425–4444, https://doi.org/10.5194/amt-14-4425-2021, https://doi.org/10.5194/amt-14-4425-2021, 2021
Short summary
Short summary
In addition to detecting clouds, vertically pointing cloud radars detect individual insects passing over head. If these insects are not identified and removed from raw observations, then radar-derived cloud properties will be contaminated. This work identifies clouds in radar observations due to their continuous and smooth structure in time, height, and velocity. Cloud masks are produced that identify cloud vertical structure that are free of insect contamination.
Thiago S. Biscaro, Luiz A. T. Machado, Scott E. Giangrande, and Michael P. Jensen
Atmos. Chem. Phys., 21, 6735–6754, https://doi.org/10.5194/acp-21-6735-2021, https://doi.org/10.5194/acp-21-6735-2021, 2021
Short summary
Short summary
This study suggests that there are two distinct modes driving diurnal precipitating convective clouds over the central Amazon. In the wet season, local factors such as turbulence and nighttime cloud coverage are the main controls of daily precipitation, while dry-season daily precipitation is modulated primarily by the mesoscale convective pattern. The results imply that models and parameterizations must consider different formulations based on the seasonal cycle to correctly resolve convection.
Israel Silber, Ann M. Fridlind, Johannes Verlinde, Andrew S. Ackerman, Grégory V. Cesana, and Daniel A. Knopf
Atmos. Chem. Phys., 21, 3949–3971, https://doi.org/10.5194/acp-21-3949-2021, https://doi.org/10.5194/acp-21-3949-2021, 2021
Short summary
Short summary
Long-term ground-based radar and sounding measurements over Alaska (Antarctica) indicate that more than 85 % (75 %) of supercooled clouds are precipitating at cloud base and that 75 % (50 %) are precipitating to the surface. Such high prevalence is reconciled with lesser spaceborne estimates by considering radar sensitivity. Results provide a strong observational constraint for polar cloud processes in large-scale models.
Jens Redemann, Robert Wood, Paquita Zuidema, Sarah J. Doherty, Bernadette Luna, Samuel E. LeBlanc, Michael S. Diamond, Yohei Shinozuka, Ian Y. Chang, Rei Ueyama, Leonhard Pfister, Ju-Mee Ryoo, Amie N. Dobracki, Arlindo M. da Silva, Karla M. Longo, Meloë S. Kacenelenbogen, Connor J. Flynn, Kristina Pistone, Nichola M. Knox, Stuart J. Piketh, James M. Haywood, Paola Formenti, Marc Mallet, Philip Stier, Andrew S. Ackerman, Susanne E. Bauer, Ann M. Fridlind, Gregory R. Carmichael, Pablo E. Saide, Gonzalo A. Ferrada, Steven G. Howell, Steffen Freitag, Brian Cairns, Brent N. Holben, Kirk D. Knobelspiesse, Simone Tanelli, Tristan S. L'Ecuyer, Andrew M. Dzambo, Ousmane O. Sy, Greg M. McFarquhar, Michael R. Poellot, Siddhant Gupta, Joseph R. O'Brien, Athanasios Nenes, Mary Kacarab, Jenny P. S. Wong, Jennifer D. Small-Griswold, Kenneth L. Thornhill, David Noone, James R. Podolske, K. Sebastian Schmidt, Peter Pilewskie, Hong Chen, Sabrina P. Cochrane, Arthur J. Sedlacek, Timothy J. Lang, Eric Stith, Michal Segal-Rozenhaimer, Richard A. Ferrare, Sharon P. Burton, Chris A. Hostetler, David J. Diner, Felix C. Seidel, Steven E. Platnick, Jeffrey S. Myers, Kerry G. Meyer, Douglas A. Spangenberg, Hal Maring, and Lan Gao
Atmos. Chem. Phys., 21, 1507–1563, https://doi.org/10.5194/acp-21-1507-2021, https://doi.org/10.5194/acp-21-1507-2021, 2021
Short summary
Short summary
Southern Africa produces significant biomass burning emissions whose impacts on regional and global climate are poorly understood. ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) is a 5-year NASA investigation designed to study the key processes that determine these climate impacts. The main purpose of this paper is to familiarize the broader scientific community with the ORACLES project, the dataset it produced, and the most important initial findings.
Robert Jackson, Scott Collis, Valentin Louf, Alain Protat, Die Wang, Scott Giangrande, Elizabeth J. Thompson, Brenda Dolan, and Scott W. Powell
Atmos. Meas. Tech., 14, 53–69, https://doi.org/10.5194/amt-14-53-2021, https://doi.org/10.5194/amt-14-53-2021, 2021
Short summary
Short summary
About 4 years of 2D video disdrometer data in Darwin are used to develop and validate rainfall retrievals for tropical convection in C- and X-band radars in Darwin. Using blended techniques previously used for Colorado and Manus and Gan islands, with modified coefficients in each estimator, provided the most optimal results. Using multiple radar observables to develop a rainfall retrieval provided a greater advantage than using a single observable, including using specific attenuation.
Johannes Quaas, Antti Arola, Brian Cairns, Matthew Christensen, Hartwig Deneke, Annica M. L. Ekman, Graham Feingold, Ann Fridlind, Edward Gryspeerdt, Otto Hasekamp, Zhanqing Li, Antti Lipponen, Po-Lun Ma, Johannes Mülmenstädt, Athanasios Nenes, Joyce E. Penner, Daniel Rosenfeld, Roland Schrödner, Kenneth Sinclair, Odran Sourdeval, Philip Stier, Matthias Tesche, Bastiaan van Diedenhoven, and Manfred Wendisch
Atmos. Chem. Phys., 20, 15079–15099, https://doi.org/10.5194/acp-20-15079-2020, https://doi.org/10.5194/acp-20-15079-2020, 2020
Short summary
Short summary
Anthropogenic pollution particles – aerosols – serve as cloud condensation nuclei and thus increase cloud droplet concentration and the clouds' reflection of sunlight (a cooling effect on climate). This Twomey effect is poorly constrained by models and requires satellite data for better quantification. The review summarizes the challenges in properly doing so and outlines avenues for progress towards a better use of aerosol retrievals and better retrievals of droplet concentrations.
Scott E. Giangrande, Dié Wang, and David B. Mechem
Atmos. Chem. Phys., 20, 7489–7507, https://doi.org/10.5194/acp-20-7489-2020, https://doi.org/10.5194/acp-20-7489-2020, 2020
Short summary
Short summary
The Amazon basin experiences prolific and diverse cloud conditions that are strongly influenced by (and influence via feedbacks) seasonal shifts in the local conditions and larger-scale atmospheric circulations. The primary atmospheric regimes observed during a heavily instrumented 2-year Amazon deployment are classified. We assess the potential atmospheric controls on convective clouds, precipitation, and the propensity for these regimes to promote extremes in precipitation.
Alexei Korolev, Ivan Heckman, Mengistu Wolde, Andrew S. Ackerman, Ann M. Fridlind, Luis A. Ladino, R. Paul Lawson, Jason Milbrandt, and Earle Williams
Atmos. Chem. Phys., 20, 1391–1429, https://doi.org/10.5194/acp-20-1391-2020, https://doi.org/10.5194/acp-20-1391-2020, 2020
Short summary
Short summary
This study attempts identification of mechanisms of secondary ice production (SIP) based on the observation of small faceted ice crystals. It was found that in both mesoscale convective systems and frontal clouds, SIP was observed right above the melting layer and extended to the higher altitudes with colder temperatures. A principal conclusion of this work is that the freezing drop shattering mechanism is plausibly accounting for the measured ice concentrations in the observed condition.
Ann M. Fridlind, Marcus van Lier-Walqui, Scott Collis, Scott E. Giangrande, Robert C. Jackson, Xiaowen Li, Toshihisa Matsui, Richard Orville, Mark H. Picel, Daniel Rosenfeld, Alexander Ryzhkov, Richard Weitz, and Pengfei Zhang
Atmos. Meas. Tech., 12, 2979–3000, https://doi.org/10.5194/amt-12-2979-2019, https://doi.org/10.5194/amt-12-2979-2019, 2019
Short summary
Short summary
Weather radars are offering improved capabilities to investigate storm physics, which remain poorly understood. We investigate enhanced use of such data near Houston, Texas, where pollution sources often provide a convenient contrast between polluted and clean air. We conclude that Houston is a favorable location to conduct a future field campaign during June through September because isolated storms are common and tend to last an hour, allowing frequent observations of a full life cycle.
Mariko Oue, Pavlos Kollias, Alan Shapiro, Aleksandra Tatarevic, and Toshihisa Matsui
Atmos. Meas. Tech., 12, 1999–2018, https://doi.org/10.5194/amt-12-1999-2019, https://doi.org/10.5194/amt-12-1999-2019, 2019
Short summary
Short summary
This study investigated impacts of the selected radar volume coverage pattern, the sampling time period, the number of radars used, and the added value of advection correction on the retrieval of vertical air motion from a multi-Doppler-radar technique. The results suggest that the use of rapid-scan radars can substantially improve the quality of wind retrievals and that the retrieved wind field needs to be carefully used considering the limitations of the radar observing system.
Grégory Cesana, Anthony D. Del Genio, Andrew S. Ackerman, Maxwell Kelley, Gregory Elsaesser, Ann M. Fridlind, Ye Cheng, and Mao-Sung Yao
Atmos. Chem. Phys., 19, 2813–2832, https://doi.org/10.5194/acp-19-2813-2019, https://doi.org/10.5194/acp-19-2813-2019, 2019
Short summary
Short summary
The response of low clouds to climate change (i.e., cloud feedbacks) is still pointed out as being the largest source of uncertainty in climate models. Here we use CALIPSO observations to discriminate climate models that reproduce observed interannual change of cloud fraction with SST forcings, referred to as a present-day cloud feedback. Modeling moist processes in the planetary boundary layer is crucial to produce large stratocumulus decks and realistic present-day cloud feedbacks.
Jean-François Ribaud, Luiz Augusto Toledo Machado, and Thiago Biscaro
Atmos. Meas. Tech., 12, 811–837, https://doi.org/10.5194/amt-12-811-2019, https://doi.org/10.5194/amt-12-811-2019, 2019
Short summary
Short summary
The dominant hydrometeor types associated with Brazilian tropical precipitation systems are identified for the Amazon region during both the wet and dry seasons. Overall the stratiform regions are composed of five hydrometeor classes: drizzle, rain, wet snow, aggregates, and ice crystals, whereas convective echoes are generally associated with light rain, moderate rain, heavy rain, graupel, aggregates and ice crystals.
Katia Lamer, Ann M. Fridlind, Andrew S. Ackerman, Pavlos Kollias, Eugene E. Clothiaux, and Maxwell Kelley
Geosci. Model Dev., 11, 4195–4214, https://doi.org/10.5194/gmd-11-4195-2018, https://doi.org/10.5194/gmd-11-4195-2018, 2018
Short summary
Short summary
Weather and climate predictions of cloud, rain, and snow occurrence remain uncertain, in part because guidance from observation is incomplete. We present a tool that transforms predictions into observations from ground-based remote sensors. Liquid water and ice occurrence errors associated with the transformation are below 8 %, with ~ 3 % uncertainty. This (GO)2-SIM forward-simulator tool enables better evaluation of cloud, rain, and snow occurrence predictions using available observations.
Die Wang, Scott E. Giangrande, Mary Jane Bartholomew, Joseph Hardin, Zhe Feng, Ryan Thalman, and Luiz A. T. Machado
Atmos. Chem. Phys., 18, 9121–9145, https://doi.org/10.5194/acp-18-9121-2018, https://doi.org/10.5194/acp-18-9121-2018, 2018
Luiz A. T. Machado, Alan J. P. Calheiros, Thiago Biscaro, Scott Giangrande, Maria A. F. Silva Dias, Micael A. Cecchini, Rachel Albrecht, Meinrat O. Andreae, Wagner F. Araujo, Paulo Artaxo, Stephan Borrmann, Ramon Braga, Casey Burleyson, Cristiano W. Eichholz, Jiwen Fan, Zhe Feng, Gilberto F. Fisch, Michael P. Jensen, Scot T. Martin, Ulrich Pöschl, Christopher Pöhlker, Mira L. Pöhlker, Jean-François Ribaud, Daniel Rosenfeld, Jaci M. B. Saraiva, Courtney Schumacher, Ryan Thalman, David Walter, and Manfred Wendisch
Atmos. Chem. Phys., 18, 6461–6482, https://doi.org/10.5194/acp-18-6461-2018, https://doi.org/10.5194/acp-18-6461-2018, 2018
Short summary
Short summary
This overview discuss the main precipitation processes and their sensitivities to environmental conditions in the Central Amazon Basin. It presents a review of the knowledge acquired about cloud processes and rainfall formation in Amazonas. In addition, this study provides a characterization of the seasonal variation and rainfall sensitivities to topography, surface cover, and aerosol concentration. Airplane measurements were evaluated to characterize and contrast cloud microphysical properties.
Scott E. Giangrande, Zhe Feng, Michael P. Jensen, Jennifer M. Comstock, Karen L. Johnson, Tami Toto, Meng Wang, Casey Burleyson, Nitin Bharadwaj, Fan Mei, Luiz A. T. Machado, Antonio O. Manzi, Shaocheng Xie, Shuaiqi Tang, Maria Assuncao F. Silva Dias, Rodrigo A. F de Souza, Courtney Schumacher, and Scot T. Martin
Atmos. Chem. Phys., 17, 14519–14541, https://doi.org/10.5194/acp-17-14519-2017, https://doi.org/10.5194/acp-17-14519-2017, 2017
Short summary
Short summary
The Amazon forest is the largest tropical rain forest on the planet, featuring
prolific and diverse cloud conditions. The Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment was motivated by demands to gain a better understanding of aerosol and cloud interactions on climate and the global circulation. The routine DOE ARM observations from this 2-year campaign are summarized to help quantify controls on clouds and precipitation over this undersampled region.
Xiaoli Zhou, Andrew S. Ackerman, Ann M. Fridlind, Robert Wood, and Pavlos Kollias
Atmos. Chem. Phys., 17, 12725–12742, https://doi.org/10.5194/acp-17-12725-2017, https://doi.org/10.5194/acp-17-12725-2017, 2017
Short summary
Short summary
Shallow maritime clouds make a well-known transition from stratocumulus to trade cumulus with flow from the subtropics equatorward. Three-day large-eddy simulations that investigate the potential influence of overlying African biomass burning plumes during that transition indicate that cloud-related impacts are likely substantially cooling to negligible at the top of the atmosphere, with magnitude sensitive to background and perturbation aerosol and cloud properties.
Blake Rutherford, Timothy Dunkerton, Michael Montgomery, and Scott Braun
Atmos. Chem. Phys., 17, 10349–10366, https://doi.org/10.5194/acp-17-10349-2017, https://doi.org/10.5194/acp-17-10349-2017, 2017
Short summary
Short summary
Whether a tropical disturbance develops into a tropical cyclone is determined by many factors including whether nearby dry air is able to intrude into the disturbance and disrupt key thermodynamic processes. In this research, we explored a way to diagnose this interaction from a time-evolving rather than instantaneous viewpoint, so that the dry air import can be seen more precisely. We expect that this framework, here applicable to Hurricane Nate (2011), will also apply to other disturbances.
Kirk W. North, Mariko Oue, Pavlos Kollias, Scott E. Giangrande, Scott M. Collis, and Corey K. Potvin
Atmos. Meas. Tech., 10, 2785–2806, https://doi.org/10.5194/amt-10-2785-2017, https://doi.org/10.5194/amt-10-2785-2017, 2017
Short summary
Short summary
Vertical air motion retrievals from 3DVAR multiple distributed scanning Doppler radars are compared against collocated profiling radars and retrieved from an upward iteration integration iterative technique to characterize their veracity. The retrieved vertical air motions are generally within 1–2 m s−1 of agreement with profiling radars and better solution than the upward integration technique, and therefore can be used as a means to improve parameterizations in numerical models moving forward.
Ann M. Fridlind, Xiaowen Li, Di Wu, Marcus van Lier-Walqui, Andrew S. Ackerman, Wei-Kuo Tao, Greg M. McFarquhar, Wei Wu, Xiquan Dong, Jingyu Wang, Alexander Ryzhkov, Pengfei Zhang, Michael R. Poellot, Andrea Neumann, and Jason M. Tomlinson
Atmos. Chem. Phys., 17, 5947–5972, https://doi.org/10.5194/acp-17-5947-2017, https://doi.org/10.5194/acp-17-5947-2017, 2017
Short summary
Short summary
Understanding observed storm microphysics via computer simulation requires measurements of aerosol on which most hydrometeors form. We prepare aerosol input data for six storms observed over Oklahoma. We demonstrate their use in simulations of a case with widespread ice outflow well sampled by aircraft. Simulations predict too few ice crystals that are too large. We speculate that microphysics found in tropical storms occurred here, likely associated with poorly understood ice multiplication.
Ann M. Fridlind, Rachel Atlas, Bastiaan van Diedenhoven, Junshik Um, Greg M. McFarquhar, Andrew S. Ackerman, Elisabeth J. Moyer, and R. Paul Lawson
Atmos. Chem. Phys., 16, 7251–7283, https://doi.org/10.5194/acp-16-7251-2016, https://doi.org/10.5194/acp-16-7251-2016, 2016
Short summary
Short summary
Images of crystals within mid-latitude cirrus clouds are used to derive consistent ice physical and optical properties for a detailed cloud microphysics model, including size-dependent mass, projected area, and fall speed. Based on habits found, properties are derived for bullet rosettes, their aggregates, and crystals with irregular shapes. Derived bullet rosette fall speeds are substantially greater than reported in past studies, owing to differences in mass, area, or diameter representation.
A. M. Fridlind, A. S. Ackerman, A. Grandin, F. Dezitter, M. Weber, J. W. Strapp, A. V. Korolev, and C. R. Williams
Atmos. Chem. Phys., 15, 11713–11728, https://doi.org/10.5194/acp-15-11713-2015, https://doi.org/10.5194/acp-15-11713-2015, 2015
Short summary
Short summary
Airbus measurements at elevations circa 11 km within large storm systems near Darwin and Santiago indicate ice mass distributed over area-equivalent diameters of 100-500 µm. Profiler-observed radar reflectivity and mean Doppler velocity under similar conditions are found to be consistent with measurements and with 1D simulations of steady-state stratiform rain columns initialized with observed ice size distributions. Results motivate investigation of ice formation pathways in Part II.
A. S. Ackerman, A. M. Fridlind, A. Grandin, F. Dezitter, M. Weber, J. W. Strapp, and A. V. Korolev
Atmos. Chem. Phys., 15, 11729–11751, https://doi.org/10.5194/acp-15-11729-2015, https://doi.org/10.5194/acp-15-11729-2015, 2015
Short summary
Short summary
An updraft parcel model with size-resolved microphysics is used to investigate microphysical pathways leading to ice water content > 2 g m-3 with mass median area-equivalent diameter of 200-300 micron reported at ~11 km in tropical deep convection. Parcel simulations require substantial source of small crystals at temperatures > ~-10 deg C growing by vapor deposition. Warm rain in weaker updrafts surprisingly leads to greater ice mass owing to reduced competition for available water vapor.
Related subject area
Subject: Clouds and Precipitation | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Correction of ERA5 temperature and relative humidity biases by bivariate quantile mapping for contrail formation analysis
Can pollen affect precipitation?
Potential impacts of marine fuel regulations on an Arctic stratocumulus case and its radiative response
The impact of the mesh size and microphysics scheme on the representation of mid-level clouds in the ICON model in hilly and complex terrain
The role of ascent timescales for warm conveyor belt (WCB) moisture transport into the upper troposphere and lower stratosphere (UTLS)
Estimating the concentration of silver iodide needed to detect unambiguous signatures of glaciogenic cloud seeding
Ice-nucleating particle concentration impacts cloud properties over Dronning Maud Land, East Antarctica, in COSMO-CLM2
Numerical simulation of aerosol concentration effects on cloud droplet size spectrum evolutions of warm stratiform clouds in Jiangxi, China
The impact of aerosol on cloud water: a heuristic perspective
The presence of clouds lowers climate sensitivity in the MPI-ESM1.2 climate model
Diurnal variation in an amplified canopy urban heat island during heat wave periods in the megacity of Beijing: roles of mountain–valley breeze and urban morphology
Diurnal evolution of non-precipitating marine stratocumuli in a large-eddy simulation ensemble
High ice water content in tropical mesoscale convective systems (a conceptual model)
Evolution of cloud droplet temperature and lifetime in spatiotemporally varying subsaturated environments with implications for ice nucleation at cloud edges
Effect of secondary ice production processes on the simulation of ice pellets using the Predicted Particle Properties microphysics scheme
Simulated particle evolution within a winter storm: contributions of riming to radar moments and precipitation fallout
Modeling homogeneous ice nucleation from drop-freezing experiments: impact of droplet volume dispersion and cooling rates
Cloud water adjustments to aerosol perturbations are buffered by solar heating in non-precipitating marine stratocumuli
Glaciation of mixed-phase clouds: insights from bulk model and bin-microphysics large-eddy simulation informed by laboratory experiment
Microphysical processes involving the vapour phase dominate in simulated low-level Arctic clouds
Understanding aerosol–cloud interactions using a single-column model for a cold-air outbreak case during the ACTIVATE campaign
Investigating ice formation pathways using a novel two-moment multi-class cloud microphysics scheme
On the sensitivity of aerosol–cloud interactions to changes in sea surface temperature in radiative–convective equilibrium
Exploring aerosol–cloud interactions in liquid-phase clouds over eastern China and its adjacent ocean using the WRF-Chem–SBM model
How the representation of microphysical processes affects tropical condensate in a global storm-resolving model
Impact of secondary ice production on thunderstorm electrification under different aerosol conditions
Finite domains cause bias in measured and modeled distributions of cloud sizes
A systematic evaluation of high-cloud controlling factors
Tracking precipitation features and associated large-scale environments over southeastern Texas
Revisiting the evolution of downhill thunderstorms over Beijing: a new perspective from a radar wind profiler mesonet
How well can persistent contrails be predicted? An update
Model analysis of biases in satellite diagnosed aerosol effect on cloud liquid water path
Dynamical imprints on precipitation cluster statistics across a hierarchy of high-resolution simulations
Present-day correlations are insufficient to predict cloud albedo change by anthropogenic aerosols in E3SM v2
Simulations of primary and secondary ice production during an Arctic mixed-phase cloud case from the Ny-Ålesund Aerosol Cloud Experiment (NASCENT) campaign
Microphysical characteristics of precipitation within convective overshooting over East China observed by GPM DPR and ERA5
Effects of radiative cooling on advection fog over the northwest Pacific Ocean: observations and large-eddy simulations
Evaluating the Wegener–Bergeron–Findeisen process in ICON in large-eddy mode with in situ observations from the CLOUDLAB project
Aerosol-induced closure of marine cloud cells: enhanced effects in the presence of precipitation
Impact of ice multiplication on the cloud electrification of a cold-season thunderstorm: a numerical case study
Developing a climatological simplification of aerosols to enter the cloud microphysics of a global climate model
Interactions between trade wind clouds and local forcings over the Great Barrier Reef: a case study using convection-permitting simulations
Variability in the properties of the distribution of the relative humidity with respect to ice: implications for contrail formation
Simulating the seeder–feeder impacts on cloud ice and precipitation over the Alps
Cloud response to co-condensation of water and organic vapors over the boreal forest
Distribution and morphology of non-persistent contrail and persistent contrail formation areas in ERA5
Connection of Surface Snowfall Bias to Cloud Phase Bias – Satellite Observations, ERA5, and CMIP6
Above-cloud concentrations of cloud condensation nuclei help to sustain some Arctic low-level clouds
Contrail formation on ambient aerosol particles for aircraft with hydrogen combustion: a box model trajectory study
Effects of intermittent aerosol forcing on the stratocumulus-to-cumulus transition
Kevin Wolf, Nicolas Bellouin, Olivier Boucher, Susanne Rohs, and Yun Li
Atmos. Chem. Phys., 25, 157–181, https://doi.org/10.5194/acp-25-157-2025, https://doi.org/10.5194/acp-25-157-2025, 2025
Short summary
Short summary
ERA5 atmospheric reanalysis and airborne in situ observations from IAGOS are compared in terms of the representation of the contrail formation potential and the presence of supersaturation. Differences are traced back to biases in ERA5 relative humidity fields. Those biases are addressed by applying a quantile mapping technique that significantly improved contrail estimation based on post-processed ERA5 data.
Marje Prank, Juha Tonttila, Xiaoxia Shang, Sami Romakkaniemi, and Tomi Raatikainen
Atmos. Chem. Phys., 25, 183–197, https://doi.org/10.5194/acp-25-183-2025, https://doi.org/10.5194/acp-25-183-2025, 2025
Short summary
Short summary
Large primary bioparticles such as pollen can be abundant in the atmosphere. In humid conditions pollen can rupture and release a large number of fine sub-pollen particles (SPPs). The paper investigates what kind of birch pollen concentrations are needed for the pollen and SPPs to start playing a noticeable role in cloud processes and alter precipitation formation. In the studied cases only the largest observed pollen concentrations were able to noticeably alter the precipitation formation.
Luís Filipe Escusa dos Santos, Hannah C. Frostenberg, Alejandro Baró Pérez, Annica M. L. Ekman, Luisa Ickes, and Erik S. Thomson
Atmos. Chem. Phys., 25, 119–142, https://doi.org/10.5194/acp-25-119-2025, https://doi.org/10.5194/acp-25-119-2025, 2025
Short summary
Short summary
The Arctic is experiencing enhanced surface warming. The observed decline in Arctic sea-ice extent is projected to lead to an increase in Arctic shipping activity, which may lead to further climatic feedbacks. Using an atmospheric model and results from marine engine experiments that focused on fuel sulfur content reduction and exhaust wet scrubbing, we investigate how ship exhaust particles influence the properties of Arctic clouds. Implications for radiative surface processes are discussed.
Nadja Omanovic, Brigitta Goger, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 14145–14175, https://doi.org/10.5194/acp-24-14145-2024, https://doi.org/10.5194/acp-24-14145-2024, 2024
Short summary
Short summary
We evaluated the numerical weather model ICON in two horizontal resolutions with two bulk microphysics schemes over hilly and complex terrain in Switzerland and Austria, respectively. We focused on the model's ability to simulate mid-level clouds in summer and winter. By combining observational data from two different field campaigns, we show that an increase in the horizontal resolution and a more advanced cloud microphysics scheme is strongly beneficial for cloud representation.
Cornelis Schwenk and Annette Miltenberger
Atmos. Chem. Phys., 24, 14073–14099, https://doi.org/10.5194/acp-24-14073-2024, https://doi.org/10.5194/acp-24-14073-2024, 2024
Short summary
Short summary
Warm conveyor belts (WCBs) transport moisture into the upper atmosphere, where it acts as a greenhouse gas. This transport is not well understood, and the role of rapidly rising air is unclear. We simulate a WCB and look at fast- and slow-rising air to see how moisture is (differently) transported. We find that for fast-ascending air more ice particles reach higher into the atmosphere and that frozen cloud particles are removed differently than during slow ascent, which has more water vapour.
Jing Yang, Jiaojiao Li, Meilian Chen, Xiaoqin Jing, Yan Yin, Bart Geerts, Zhien Wang, Yubao Liu, Baojun Chen, Shaofeng Hua, Hao Hu, Xiaobo Dong, Ping Tian, Qian Chen, and Yang Gao
Atmos. Chem. Phys., 24, 13833–13848, https://doi.org/10.5194/acp-24-13833-2024, https://doi.org/10.5194/acp-24-13833-2024, 2024
Short summary
Short summary
Detecting unambiguous signatures is vital for examining cloud-seeding impacts, but often, seeding signatures are immersed in natural variability. In this study, reflectivity changes induced by glaciogenic seeding using different AgI concentrations are investigated under various conditions, and a method is developed to estimate the AgI concentration needed to detect unambiguous seeding signatures. The results aid in operational seeding-based decision-making regarding the amount of AgI dispersed.
Florian Sauerland, Niels Souverijns, Anna Possner, Heike Wex, Preben Van Overmeiren, Alexander Mangold, Kwinten Van Weverberg, and Nicole van Lipzig
Atmos. Chem. Phys., 24, 13751–13768, https://doi.org/10.5194/acp-24-13751-2024, https://doi.org/10.5194/acp-24-13751-2024, 2024
Short summary
Short summary
We use a regional climate model, COSMO-CLM², enhanced with a module resolving aerosol processes, to study Antarctic clouds. We prescribe different concentrations of ice-nucleating particles to our model to assess how these clouds respond to concentration changes, validating results with cloud and aerosol observations from the Princess Elisabeth Antarctica station. Our results show that aerosol–cloud interactions vary with temperature, providing valuable insights into Antarctic cloud dynamics.
Yi Li, Xiaoli Liu, and Hengjia Cai
Atmos. Chem. Phys., 24, 13525–13540, https://doi.org/10.5194/acp-24-13525-2024, https://doi.org/10.5194/acp-24-13525-2024, 2024
Short summary
Short summary
The influence of different aerosol modes on cloud processes remains controversial. We modified the aerosol spectra and concentrations to simulate a warm stratiform cloud process in Jiangxi, China, using the WRF-SBM scheme. Research shows that different aerosol spectra have diverse effects on cloud droplet spectra, cloud development, and the correlation between dispersion (ε) and cloud physics quantities. Compared to cloud droplet concentration, ε is more sensitive to the volume radius.
Fabian Hoffmann, Franziska Glassmeier, and Graham Feingold
Atmos. Chem. Phys., 24, 13403–13412, https://doi.org/10.5194/acp-24-13403-2024, https://doi.org/10.5194/acp-24-13403-2024, 2024
Short summary
Short summary
Clouds constitute a major cooling influence on Earth's climate system by reflecting a large fraction of the incident solar radiation back to space. This ability is controlled by the number of cloud droplets, which is governed by the number of aerosol particles in the atmosphere, laying the foundation for so-called aerosol–cloud–climate interactions. In this study, a simple model to understand the effect of aerosol on cloud water is developed and applied.
Andrea Mosso, Thomas Hocking, and Thorsten Mauritsen
Atmos. Chem. Phys., 24, 12793–12806, https://doi.org/10.5194/acp-24-12793-2024, https://doi.org/10.5194/acp-24-12793-2024, 2024
Short summary
Short summary
Clouds play a crucial role in the Earth's energy balance, as they can either warm up or cool down the area they cover depending on their height and depth. They are expected to alter their behaviour under climate change, affecting the warming generated by greenhouse gases. This paper proposes a new method to estimate their overall effect on this warming by simulating a climate where clouds are transparent. Results show that with the model used, clouds have a stabilising effect on climate.
Tao Shi, Yuanjian Yang, Ping Qi, and Simone Lolli
Atmos. Chem. Phys., 24, 12807–12822, https://doi.org/10.5194/acp-24-12807-2024, https://doi.org/10.5194/acp-24-12807-2024, 2024
Short summary
Short summary
This paper explored the formation mechanisms of the amplified canopy urban heat island intensity (ΔCUHII) during heat wave (HW) periods in the megacity of Beijing from the perspectives of mountain–valley breeze and urban morphology. During the mountain breeze phase, high-rise buildings with lower sky view factors (SVFs) had a pronounced effect on the ΔCUHII. During the valley breeze phase, high-rise buildings exerted a dual influence on the ΔCUHII.
Yao-Sheng Chen, Jianhao Zhang, Fabian Hoffmann, Takanobu Yamaguchi, Franziska Glassmeier, Xiaoli Zhou, and Graham Feingold
Atmos. Chem. Phys., 24, 12661–12685, https://doi.org/10.5194/acp-24-12661-2024, https://doi.org/10.5194/acp-24-12661-2024, 2024
Short summary
Short summary
Marine stratocumulus cloud is a type of shallow cloud that covers the vast areas of Earth's surface. It plays an important role in Earth's energy balance by reflecting solar radiation back to space. We used numerical models to simulate a large number of marine stratocumuli with different characteristics. We found that how the clouds develop throughout the day is affected by the level of humidity in the air above the clouds and how closely the clouds connect to the ocean surface.
Alexei Korolev, Zhipeng Qu, Jason Milbrandt, Ivan Heckman, Mélissa Cholette, Mengistu Wolde, Cuong Nguyen, Greg M. McFarquhar, Paul Lawson, and Ann M. Fridlind
Atmos. Chem. Phys., 24, 11849–11881, https://doi.org/10.5194/acp-24-11849-2024, https://doi.org/10.5194/acp-24-11849-2024, 2024
Short summary
Short summary
The phenomenon of high ice water content (HIWC) occurs in mesoscale convective systems (MCSs) when a large number of small ice particles with typical sizes of a few hundred micrometers is found at high altitudes. It was found that secondary ice production in the vicinity of the melting layer plays a key role in the formation and maintenance of HIWC. This study presents a conceptual model of the formation of HIWC in tropical MCSs based on in situ observations and numerical simulation.
Puja Roy, Robert M. Rauber, and Larry Di Girolamo
Atmos. Chem. Phys., 24, 11653–11678, https://doi.org/10.5194/acp-24-11653-2024, https://doi.org/10.5194/acp-24-11653-2024, 2024
Short summary
Short summary
Cloud droplet temperature and lifetime impact cloud microphysical processes such as the activation of ice-nucleating particles. We investigate the thermal and radial evolution of supercooled cloud droplets and their surrounding environments with an aim to better understand observed enhanced ice formation at supercooled cloud edges. This analysis shows that the magnitude of droplet cooling during evaporation is greater than estimated from past studies, especially for drier environments.
Mathieu Lachapelle, Mélissa Cholette, and Julie M. Thériault
Atmos. Chem. Phys., 24, 11285–11304, https://doi.org/10.5194/acp-24-11285-2024, https://doi.org/10.5194/acp-24-11285-2024, 2024
Short summary
Short summary
Hazardous precipitation types such as ice pellets and freezing rain are difficult to predict because they are associated with complex microphysical processes. Using Predicted Particle Properties (P3), this work shows that secondary ice production processes increase the amount of ice pellets simulated while decreasing the amount of freezing rain. Moreover, the properties of the simulated precipitation compare well with those that were measured.
Andrew DeLaFrance, Lynn A. McMurdie, Angela K. Rowe, and Andrew J. Heymsfield
Atmos. Chem. Phys., 24, 11191–11206, https://doi.org/10.5194/acp-24-11191-2024, https://doi.org/10.5194/acp-24-11191-2024, 2024
Short summary
Short summary
Using a numerical model, the process whereby falling ice crystals accumulate supercooled liquid water droplets is investigated to elucidate its effects on radar-based measurements and surface precipitation. We demonstrate that this process accounted for 55% of the precipitation during a wintertime storm and is uniquely discernable from other ice crystal growth processes in Doppler velocity measurements. These results have implications for measurements from airborne and spaceborne platforms.
Ravi Kumar Reddy Addula, Ingrid de Almeida Ribeiro, Valeria Molinero, and Baron Peters
Atmos. Chem. Phys., 24, 10833–10848, https://doi.org/10.5194/acp-24-10833-2024, https://doi.org/10.5194/acp-24-10833-2024, 2024
Short summary
Short summary
Ice nucleation from supercooled droplets is important in many weather and climate modeling efforts. For experiments where droplets are steadily supercooled from the freezing point, our work combines nucleation theory and survival probability analysis to predict the nucleation spectrum, i.e., droplet freezing probabilities vs. temperature. We use the new framework to extract approximately consistent rate parameters from experiments with different cooling rates and droplet sizes.
Jianhao Zhang, Yao-Sheng Chen, Takanobu Yamaguchi, and Graham Feingold
Atmos. Chem. Phys., 24, 10425–10440, https://doi.org/10.5194/acp-24-10425-2024, https://doi.org/10.5194/acp-24-10425-2024, 2024
Short summary
Short summary
Quantifying cloud response to aerosol perturbations presents a major challenge in understanding the human impact on climate. Using a large number of process-resolving simulations of marine stratocumulus, we show that solar heating drives a negative feedback mechanism that buffers the persistent negative trend in cloud water adjustment after sunrise. This finding has implications for the dependence of the cloud cooling effect on the timing of deliberate aerosol perturbations.
Aaron Wang, Steve Krueger, Sisi Chen, Mikhail Ovchinnikov, Will Cantrell, and Raymond A. Shaw
Atmos. Chem. Phys., 24, 10245–10260, https://doi.org/10.5194/acp-24-10245-2024, https://doi.org/10.5194/acp-24-10245-2024, 2024
Short summary
Short summary
We employ two methods to examine a laboratory experiment on clouds with both ice and liquid phases. The first assumes well-mixed properties; the second resolves the spatial distribution of turbulence and cloud particles. Results show that while the trends in mean properties generally align, when turbulence is resolved, liquid droplets are not fully depleted by ice due to incomplete mixing. This underscores the threshold of ice mass fraction in distinguishing mixed-phase clouds from ice clouds.
Theresa Kiszler, Davide Ori, and Vera Schemann
Atmos. Chem. Phys., 24, 10039–10053, https://doi.org/10.5194/acp-24-10039-2024, https://doi.org/10.5194/acp-24-10039-2024, 2024
Short summary
Short summary
Microphysical processes impact the phase-partitioning of clouds. In this study we evaluate these processes while focusing on low-level Arctic clouds. To achieve this we used an extensive simulation set in combination with a new diagnostic tool. This study presents our findings on the relevance of these processes and their behaviour under different thermodynamic regimes.
Shuaiqi Tang, Hailong Wang, Xiang-Yu Li, Jingyi Chen, Armin Sorooshian, Xubin Zeng, Ewan Crosbie, Kenneth L. Thornhill, Luke D. Ziemba, and Christiane Voigt
Atmos. Chem. Phys., 24, 10073–10092, https://doi.org/10.5194/acp-24-10073-2024, https://doi.org/10.5194/acp-24-10073-2024, 2024
Short summary
Short summary
We examined marine boundary layer clouds and their interactions with aerosols in the E3SM single-column model (SCM) for a case study. The SCM shows good agreement when simulating the clouds with high-resolution models. It reproduces the relationship between cloud droplet and aerosol particle number concentrations as produced in global models. However, the relationship between cloud liquid water and droplet number concentration is different, warranting further investigation.
Tim Lüttmer, Peter Spichtinger, and Axel Seifert
EGUsphere, https://doi.org/10.5194/egusphere-2024-2157, https://doi.org/10.5194/egusphere-2024-2157, 2024
Short summary
Short summary
We investigate ice formation pathways in idealized convective clouds using a novel microphysics scheme, that distinguishes between five ice classes each with their unique formation mechanism. Ice crystals from rime splintering forms the lowermost layer of ice crystals around the updraft core. The majority of ice crystals in the anvil of the convective cloud stems from frozen droplets. Ice stemming from homogeneous and deposition nucleation was only relevant in the overshoot.
Suf Lorian and Guy Dagan
Atmos. Chem. Phys., 24, 9323–9338, https://doi.org/10.5194/acp-24-9323-2024, https://doi.org/10.5194/acp-24-9323-2024, 2024
Short summary
Short summary
We examine the combined effect of aerosols and sea surface temperature (SST) on clouds under equilibrium conditions in cloud-resolving radiative–convective equilibrium simulations. We demonstrate that the aerosol–cloud interaction's effect on top-of-atmosphere energy gain strongly depends on the underlying SST, while the shortwave part of the spectrum is significantly more sensitive to SST. Furthermore, increasing aerosols influences upper-troposphere stability and thus anvil cloud fraction.
Jianqi Zhao, Xiaoyan Ma, Johannes Quaas, and Hailing Jia
Atmos. Chem. Phys., 24, 9101–9118, https://doi.org/10.5194/acp-24-9101-2024, https://doi.org/10.5194/acp-24-9101-2024, 2024
Short summary
Short summary
We explore aerosol–cloud interactions in liquid-phase clouds over eastern China and its adjacent ocean in winter based on the WRF-Chem–SBM model, which couples a spectral-bin microphysics scheme and an online aerosol module. Our study highlights the differences in aerosol–cloud interactions between land and ocean and between precipitation clouds and non-precipitation clouds, and it differentiates and quantifies their underlying mechanisms.
Ann Kristin Naumann, Monika Esch, and Bjorn Stevens
EGUsphere, https://doi.org/10.5194/egusphere-2024-2268, https://doi.org/10.5194/egusphere-2024-2268, 2024
Short summary
Short summary
This study explores how uncertainties in the representation of microphysical processes affect the tropical condensate distribution in the global storm-resolving model ICON. The results point to the importance of the fall speed of hydrometeor particles and to a simple relationship: the faster a condensate falls, the less there is of it. Implications for the energy balance and precipitation properties are discussed.
Shiye Huang, Jing Yang, Qian Chen, Jiaojiao Li, Qilin Zhang, and Fengxia Guo
EGUsphere, https://doi.org/10.5194/egusphere-2024-2013, https://doi.org/10.5194/egusphere-2024-2013, 2024
Short summary
Short summary
Aerosol and secondary ice production are both vital to charge separation in thunderstorms, but the relative importance of different SIP processes to cloud electrification under different aerosol conditions is not well understood. In this study, we show in a clean environment, the shattering of freezing drops has the greatest effect on the charging rate, while in a polluted environment, both rime splintering and the shattering of freezing drops have a significant effect on cloud electrification.
Thomas D. DeWitt and Timothy J. Garrett
Atmos. Chem. Phys., 24, 8457–8472, https://doi.org/10.5194/acp-24-8457-2024, https://doi.org/10.5194/acp-24-8457-2024, 2024
Short summary
Short summary
There is considerable disagreement on mathematical parameters that describe the number of clouds of different sizes as well as the size of the largest clouds. Both are key defining characteristics of Earth's atmosphere. A previous study provided an incorrect explanation for the disagreement. Instead, the disagreement may be explained by prior studies not properly accounting for the size of their measurement domain. We offer recommendations for how the domain size can be accounted for.
Sarah Wilson Kemsley, Paulo Ceppi, Hendrik Andersen, Jan Cermak, Philip Stier, and Peer Nowack
Atmos. Chem. Phys., 24, 8295–8316, https://doi.org/10.5194/acp-24-8295-2024, https://doi.org/10.5194/acp-24-8295-2024, 2024
Short summary
Short summary
Aiming to inform parameter selection for future observational constraint analyses, we incorporate five candidate meteorological drivers specifically targeting high clouds into a cloud controlling factor framework within a range of spatial domain sizes. We find a discrepancy between optimal domain size for predicting locally and globally aggregated cloud radiative anomalies and identify upper-tropospheric static stability as an important high-cloud controlling factor.
Ye Liu, Yun Qian, Larry K. Berg, Zhe Feng, Jianfeng Li, Jingyi Chen, and Zhao Yang
Atmos. Chem. Phys., 24, 8165–8181, https://doi.org/10.5194/acp-24-8165-2024, https://doi.org/10.5194/acp-24-8165-2024, 2024
Short summary
Short summary
Deep convection under various large-scale meteorological patterns (LSMPs) shows distinct precipitation features. In southeastern Texas, mesoscale convective systems (MCSs) contribute significantly to precipitation year-round, while isolated deep convection (IDC) is prominent in summer and fall. Self-organizing maps (SOMs) reveal convection can occur without large-scale lifting or moisture convergence. MCSs and IDC events have distinct life cycles influenced by specific LSMPs.
Xiaoran Guo, Jianping Guo, Tianmeng Chen, Ning Li, Fan Zhang, and Yuping Sun
Atmos. Chem. Phys., 24, 8067–8083, https://doi.org/10.5194/acp-24-8067-2024, https://doi.org/10.5194/acp-24-8067-2024, 2024
Short summary
Short summary
The prediction of downhill thunderstorms (DSs) remains elusive. We propose an objective method to identify DSs, based on which enhanced and dissipated DSs are discriminated. A radar wind profiler (RWP) mesonet is used to derive divergence and vertical velocity. The mid-troposphere divergence and prevailing westerlies enhance the intensity of DSs, whereas low-level divergence is observed when the DS dissipates. The findings highlight the key role that an RWP mesonet plays in the evolution of DSs.
Sina Hofer, Klaus Gierens, and Susanne Rohs
Atmos. Chem. Phys., 24, 7911–7925, https://doi.org/10.5194/acp-24-7911-2024, https://doi.org/10.5194/acp-24-7911-2024, 2024
Short summary
Short summary
We try to improve the forecast of ice supersaturation (ISS) and potential persistent contrails using data on dynamical quantities in addition to temperature and relative humidity in a modern kind of regression model. Although the results are improved, they are not good enough for flight routing. The origin of the problem is the strong overlap of probability densities conditioned on cases with and without ice-supersaturated regions (ISSRs) in the important range of 70–100 %.
Harri Kokkola, Juha Tonttila, Silvia Calderón, Sami Romakkaniemi, Antti Lipponen, Aapo Peräkorpi, Tero Mielonen, Edward Gryspeerdt, Timo H. Virtanen, Pekka Kolmonen, and Antti Arola
EGUsphere, https://doi.org/10.5194/egusphere-2024-1964, https://doi.org/10.5194/egusphere-2024-1964, 2024
Short summary
Short summary
Understanding how atmospheric aerosols affect clouds is a scientific challenge. One question is how aerosols affects the amount cloud water. We used a cloud-scale model to study these effects on marine clouds. The study showed that variations in cloud properties and instrument noise can cause bias in satellite derived cloud water content. However, our results suggest that for similar weather conditions with well-defined aerosol concentrations, satellite data can reliably track these effects.
Claudia Christine Stephan and Bjorn Stevens
EGUsphere, https://doi.org/10.5194/egusphere-2024-2020, https://doi.org/10.5194/egusphere-2024-2020, 2024
Short summary
Short summary
Tropical precipitation cluster area and intensity distributions follow power laws, but the physical processes responsible for this behavior remain unknown. We analyze global simulations that realistically represent precipitation processes. We consider Earth-like planets as well as virtual planets to realize different types of large-scale dynamics. Our finding is that power laws in Earth’s precipitation cluster statistics stem from the robust power laws in Earth’s atmospheric wind field.
Naser Mahfouz, Johannes Mülmenstädt, and Susannah Burrows
Atmos. Chem. Phys., 24, 7253–7260, https://doi.org/10.5194/acp-24-7253-2024, https://doi.org/10.5194/acp-24-7253-2024, 2024
Short summary
Short summary
Climate models are our primary tool to probe past, present, and future climate states unlike the more recent observation record. By constructing a hypothetical model configuration, we show that present-day correlations are insufficient to predict a persistent uncertainty in climate projection (how much sun because clouds will reflect in a changing climate). We hope our result will contribute to the scholarly conversation on better utilizing observations to constrain climate uncertainties.
Britta Schäfer, Robert Oscar David, Paraskevi Georgakaki, Julie Thérèse Pasquier, Georgia Sotiropoulou, and Trude Storelvmo
Atmos. Chem. Phys., 24, 7179–7202, https://doi.org/10.5194/acp-24-7179-2024, https://doi.org/10.5194/acp-24-7179-2024, 2024
Short summary
Short summary
Mixed-phase clouds, i.e., clouds consisting of ice and supercooled water, are very common in the Arctic. However, how these clouds form is often not correctly represented in standard weather models. We show that both ice crystal concentrations in the cloud and precipitation from the cloud can be improved in the model when aerosol concentrations are prescribed from observations and when more processes for ice multiplication, i.e., the production of new ice particles from existing ice, are added.
Nan Sun, Gaopeng Lu, and Yunfei Fu
Atmos. Chem. Phys., 24, 7123–7135, https://doi.org/10.5194/acp-24-7123-2024, https://doi.org/10.5194/acp-24-7123-2024, 2024
Short summary
Short summary
Microphysical characteristics of convective overshooting are essential but poorly understood, and we examine them by using the latest data. (1) Convective overshooting events mainly occur over NC (Northeast China) and northern MEC (Middle and East China). (2) Radar reflectivity of convective overshooting over NC accounts for a higher proportion below the zero level, while the opposite is the case for MEC and SC (South China). (3) Droplets of convective overshooting are large but sparse.
Liu Yang, Saisai Ding, Jing-Wu Liu, and Su-Ping Zhang
Atmos. Chem. Phys., 24, 6809–6824, https://doi.org/10.5194/acp-24-6809-2024, https://doi.org/10.5194/acp-24-6809-2024, 2024
Short summary
Short summary
Advection fog occurs when warm and moist air moves over a cold sea surface. In this situation, the temperature of the foggy air usually drops below the sea surface temperature (SST), particularly at night. High-resolution simulations show that the cooling effect of longwave radiation from the top of the fog layer permeates through the fog, resulting in a cooling of the surface air below SST. This study emphasizes the significance of monitoring air temperature to enhance sea fog forecasting.
Nadja Omanovic, Sylvaine Ferrachat, Christopher Fuchs, Jan Henneberger, Anna J. Miller, Kevin Ohneiser, Fabiola Ramelli, Patric Seifert, Robert Spirig, Huiying Zhang, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 6825–6844, https://doi.org/10.5194/acp-24-6825-2024, https://doi.org/10.5194/acp-24-6825-2024, 2024
Short summary
Short summary
We present simulations with a high-resolution numerical weather prediction model to study the growth of ice crystals in low clouds following glaciogenic seeding. We show that the simulated ice crystals grow slower than observed and do not consume as many cloud droplets as measured in the field. This may have implications for forecasting precipitation, as the ice phase is crucial for precipitation at middle and high latitudes.
Matthew W. Christensen, Peng Wu, Adam C. Varble, Heng Xiao, and Jerome D. Fast
Atmos. Chem. Phys., 24, 6455–6476, https://doi.org/10.5194/acp-24-6455-2024, https://doi.org/10.5194/acp-24-6455-2024, 2024
Short summary
Short summary
Clouds are essential to keep Earth cooler by reflecting sunlight back to space. We show that an increase in aerosol concentration suppresses precipitation in clouds, causing them to accumulate water and expand in a polluted environment with stronger turbulence and radiative cooling. This process enhances their reflectance by 51 %. It is therefore prudent to account for cloud fraction changes in assessments of aerosol–cloud interactions to improve predictions of climate change.
Jing Yang, Shiye Huang, Tianqi Yang, Qilin Zhang, Yuting Deng, and Yubao Liu
Atmos. Chem. Phys., 24, 5989–6010, https://doi.org/10.5194/acp-24-5989-2024, https://doi.org/10.5194/acp-24-5989-2024, 2024
Short summary
Short summary
This study contributes to filling the dearth of understanding the impacts of different secondary ice production (SIP) processes on the cloud electrification in cold-season thunderstorms. The results suggest that SIP, especially the rime-splintering process and the shattering of freezing drops, has significant impacts on the charge structure of the storm. In addition, the modeled radar composite reflectivity and flash rate are improved after implementing the SIP processes in the model.
Ulrike Proske, Sylvaine Ferrachat, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 5907–5933, https://doi.org/10.5194/acp-24-5907-2024, https://doi.org/10.5194/acp-24-5907-2024, 2024
Short summary
Short summary
Climate models include treatment of aerosol particles because these influence clouds and radiation. Over time their representation has grown increasingly detailed. This complexity may hinder our understanding of model behaviour. Thus here we simplify the aerosol representation of our climate model by prescribing mean concentrations, which saves run time and helps to discover unexpected model behaviour. We conclude that simplifications provide a new perspective for model study and development.
Wenhui Zhao, Yi Huang, Steven Siems, Michael Manton, and Daniel Harrison
Atmos. Chem. Phys., 24, 5713–5736, https://doi.org/10.5194/acp-24-5713-2024, https://doi.org/10.5194/acp-24-5713-2024, 2024
Short summary
Short summary
We studied how shallow clouds and rain behave over the Great Barrier Reef (GBR) using a detailed weather model. We found that the shape of the land, especially mountains, and particles in the air play big roles in influencing these clouds. Surprisingly, the sea's temperature had a smaller effect. Our research helps us understand the GBR's climate and how various factors can influence it, where the importance of the local cloud in thermal coral bleaching has recently been identified.
Sidiki Sanogo, Olivier Boucher, Nicolas Bellouin, Audran Borella, Kevin Wolf, and Susanne Rohs
Atmos. Chem. Phys., 24, 5495–5511, https://doi.org/10.5194/acp-24-5495-2024, https://doi.org/10.5194/acp-24-5495-2024, 2024
Short summary
Short summary
Relative humidity relative to ice (RHi) is a key variable in the formation of cirrus clouds and contrails. This study shows that the properties of the probability density function of RHi differ between the tropics and higher latitudes. In line with RHi and temperature variability, aircraft are likely to produce more contrails with bioethanol and liquid hydrogen as fuel. The impact of this fuel change decreases with decreasing pressure levels but increases from high latitudes to the tropics.
Zane Dedekind, Ulrike Proske, Sylvaine Ferrachat, Ulrike Lohmann, and David Neubauer
Atmos. Chem. Phys., 24, 5389–5404, https://doi.org/10.5194/acp-24-5389-2024, https://doi.org/10.5194/acp-24-5389-2024, 2024
Short summary
Short summary
Ice particles precipitating into lower clouds from an upper cloud, the seeder–feeder process, can enhance precipitation. A numerical modeling study conducted in the Swiss Alps found that 48 % of observed clouds were overlapping, with the seeder–feeder process occurring in 10 % of these clouds. Inhibiting the seeder–feeder process reduced the surface precipitation and ice particle growth rates, which were further reduced when additional ice multiplication processes were included in the model.
Liine Heikkinen, Daniel G. Partridge, Sara Blichner, Wei Huang, Rahul Ranjan, Paul Bowen, Emanuele Tovazzi, Tuukka Petäjä, Claudia Mohr, and Ilona Riipinen
Atmos. Chem. Phys., 24, 5117–5147, https://doi.org/10.5194/acp-24-5117-2024, https://doi.org/10.5194/acp-24-5117-2024, 2024
Short summary
Short summary
The organic vapor condensation with water vapor (co-condensation) in rising air below clouds is modeled in this work over the boreal forest because the forest air is rich in organic vapors. We show that the number of cloud droplets can increase by 20 % if considering co-condensation. The enhancements are even larger if the air contains many small, naturally produced aerosol particles. Such conditions are most frequently met in spring in the boreal forest.
Kevin Wolf, Nicolas Bellouin, and Olivier Boucher
Atmos. Chem. Phys., 24, 5009–5024, https://doi.org/10.5194/acp-24-5009-2024, https://doi.org/10.5194/acp-24-5009-2024, 2024
Short summary
Short summary
The contrail formation potential and its tempo-spatial distribution are estimated for the North Atlantic flight corridor. Meteorological conditions of temperature and relative humidity are taken from the ERA5 re-analysis and IAGOS. Based on IAGOS flight tracks, crossing length, size, orientation, frequency of occurrence, and overlap of persistent contrail formation areas are determined. The presented conclusions might provide a guide for statistical flight track optimization to reduce contrails.
Franziska Hellmuth, Tim Carlsen, Anne Sophie Daloz, Robert Oscar David, and Trude Storelvmo
EGUsphere, https://doi.org/10.5194/egusphere-2024-754, https://doi.org/10.5194/egusphere-2024-754, 2024
Short summary
Short summary
This article compares the occurrence of supercooled liquid-containing clouds (sLCCs) and their link to surface snowfall in CloudSat-CALIPSO, ERA5, and CMIP6 models. Significant discrepancies were found, with ERA5 and CMIP6 consistently overestimating sLCC and snowfall frequency. This bias is likely due to cloud microphysics parameterization. This conclusion has implications for accurately representing cloud phase and snowfall in future climate projections.
Lucas J. Sterzinger and Adele L. Igel
Atmos. Chem. Phys., 24, 3529–3540, https://doi.org/10.5194/acp-24-3529-2024, https://doi.org/10.5194/acp-24-3529-2024, 2024
Short summary
Short summary
Using idealized large eddy simulations, we find that clouds forming in the Arctic in environments with low concentrations of aerosol particles may be sustained by mixing in new particles through the cloud top. Observations show that higher concentrations of these particles regularly exist above cloud top in concentrations that are sufficient to promote this sustenance.
Andreas Bier, Simon Unterstrasser, Josef Zink, Dennis Hillenbrand, Tina Jurkat-Witschas, and Annemarie Lottermoser
Atmos. Chem. Phys., 24, 2319–2344, https://doi.org/10.5194/acp-24-2319-2024, https://doi.org/10.5194/acp-24-2319-2024, 2024
Short summary
Short summary
Using hydrogen as aviation fuel affects contrails' climate impact. We study contrail formation behind aircraft with H2 combustion. Due to the absence of soot emissions, contrail ice crystals are assumed to form only on ambient particles mixed into the plume. The ice crystal number, which strongly varies with temperature and aerosol number density, is decreased by more than 80 %–90 % compared to kerosene contrails. However H2 contrails can form at lower altitudes due to higher H2O emissions.
Prasanth Prabhakaran, Fabian Hoffmann, and Graham Feingold
Atmos. Chem. Phys., 24, 1919–1937, https://doi.org/10.5194/acp-24-1919-2024, https://doi.org/10.5194/acp-24-1919-2024, 2024
Short summary
Short summary
In this study, we explore the impact of deliberate aerosol perturbation in the northeast Pacific region using large-eddy simulations. Our results show that cloud reflectivity is sensitive to the aerosol sprayer arrangement in the pristine system, whereas in the polluted system it is largely proportional to the total number of aerosol particles injected. These insights would aid in assessing the efficiency of various aerosol injection strategies for climate intervention applications.
Cited articles
Arakawa, A. and Schubert, W. H.: Interaction of a cumulus cloud ensemble with the large–scale environment, Part I, J. Atmos. Sci., 31, 674–701, https://doi.org/10.1175/1520-0469(1974)031<0674>2.0.CO;2, 1974.
Bang, S. D. and Cecil, D. J.: Constructing a Multifrequency Passive Microwave Hail Retrieval and Climatology in the GPM Domain, J. Appl. Meteorol. Clim., 58, 1889–1904, https://doi.org/10.1175/JAMC-D-19-0042.1, 2019.
Bergeron, T.: On the physics of cloud and precipitation, Proc. 5th Assembly U.G.G.I., Lisbon, 2, 156, 1935.
Biscaro, T. S., Machado, L. A. T., Giangrande, S. E., and Jensen, M. P.: What drives daily precipitation over the central Amazon? Differences observed between wet and dry seasons, Atmos. Chem. Phys., 21, 6735–6754, https://doi.org/10.5194/acp-21-6735-2021, 2021.
Blyth, A. M. and Latham, J.: Development of ice and precipitation in New Mexican summertime cumulus clouds, Q. J. Roy. Meteor. Soc., 119, 91–120, https://doi.org/10.1002/qj.49711950905, 1993.
Blyth, A. M., Lasher-Trapp, S. G., and Cooper, W. A.: A study of thermals in cumulus clouds, Q. J. Roy. Meteor. Soc., 131, 1171–1190, https://doi.org/10.1256/qj.03.180, 2005.
Borque, P., Vidal, L., Rugna, M., Lang, T. J., Nicora, M. G., and Nesbitt, S. W.: Distinctive Signals in 1-min Observations of Overshooting Tops and Lightning Activity in a Severe Supercell Thunderstorm, J. Geophys. Res.-Atmos., 125, e2020JD032856, https://doi.org/10.1029/2020JD032856, 2020.
Chou, M.-D. and Suarez, M. J.: A solar radiation parameterization for atmospheric studies, NASA Tech. Rep. NASA/TM-1999-10460, NASA GSFC, Vol. 15, p. 38, 1999.
Chou, M.-D. and Suarez, M. J.: A thermal infrared radiation parameterization for atmospheric studies, NASA Tech. Rep. NASA/TM-2001-104606, NASA GSFC, Vol. 19, p. 55, 2001.
Coulter, R., Muradyan, P., and Martin, T.: Radar Wind Profiler (1290RWPPRECIPMOM), Atmospheric Radiation Measurement (ARM) User Facility, mao1290precipmomM1.a0, ARM [data set], https://doi.org/10.5439/1256461, 2024.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., and Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Dolan, B., Fuchs, B., Rutledge, S. A., Barnes, E. A., and Thompson, E. J.: Primary Modes of Global Drop Size Distributions, J. Atmos. Sci., 75, 1453–1476, https://doi.org/10.1175/JAS-D-17-0242.1, 2018.
Emanuel, K. A., Neelin, J. D., and Bretherton, C. S.: On large-scale circulations in convecting atmospheres, Q. J. Roy. Meteor. Soc., 120, 1111–1143, https://doi.org/10.1002/qj.49712051902, 1994.
Ghate, V. P. and Kollias, P.: On the Controls of Daytime Precipitation in the Amazonian Dry Season, J. Hydrometeorol., 17, 3079–3097, https://doi.org/10.1175/JHM-D-16-0101.1, 2016.
Giangrande, S. E., Luke, E. P., and Kollias, P.: Characterization of Vertical Velocity and Drop Size Distribution Parameters in Widespread Precipitation at ARM Facilities, J. Appl. Meteorol. Clim., 51, 380–391, https://doi.org/10.1175/JAMC-D-10-05000.1, 2012.
Giangrande, S. E., Collis, S., Straka, J., Protat, A., Williams, C., and Krueger, S.: A Summary of Convective-Core Vertical Velocity Properties Using ARM UHF Wind Profilers in Oklahoma, J. Appl. Meteorol. Clim., 52, 2278–2295, https://doi.org/10.1175/JAMC-D-12-0185.1, 2013.
Giangrande, S. E., Toto, T., Jensen, M. P., Bartholomew, M. J., Feng, Z., Protat, A., Williams, C. R., Schumacher, C., and Machado, L.: Convective cloud vertical velocity and mass-flux characteristics from radar wind profiler observations during GoAmazon2014/5, J. Geophys. Res.-Atmos., 121, 12891–12913, https://doi.org/10.1002/2016JD025303, 2016.
Giangrande, S. E., Feng, Z., Jensen, M. P., Comstock, J. M., Johnson, K. L., Toto, T., Wang, M., Burleyson, C., Bharadwaj, N., Mei, F., Machado, L. A. T., Manzi, A. O., Xie, S., Tang, S., Silva Dias, M. A. F., de Souza, R. A. F., Schumacher, C., and Martin, S. T.: Cloud characteristics, thermodynamic controls and radiative impacts during the Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5) experiment, Atmos. Chem. Phys., 17, 14519–14541, https://doi.org/10.5194/acp-17-14519-2017, 2017.
Giangrande, S. E., Wang, D., and Mechem, D. B.: Cloud regimes over the Amazon Basin: perspectives from the GoAmazon2014/5 campaign, Atmos. Chem. Phys., 20, 7489–7507, https://doi.org/10.5194/acp-20-7489-2020, 2020.
Giangrande, S. E., Biscaro, T. S., and Peters, J. M.: Seasonal controls on isolated convective storm drafts, precipitation intensity, and life cycle as observed during GoAmazon2014/5, Atmos. Chem. Phys., 23, 5297–5316, https://doi.org/10.5194/acp-23-5297-2023, 2023.
Grabowski, W. W. and Petch, J.: Deep Convective Clouds, in: Clouds in the Perturbed Climate System: Their Relationship to Energy Balance, MIT Press, 197–215, https://doi.org/10.7551/mitpress/9780262012874.003.0009, 2009.
Gu, J.-F., Plant, R. S., Holloway, C. E., and Muetzelfeldt, M. R.: Pressure drag for shallow cumulus clouds: From thermals to the cloud ensemble, Geophys. Res. Lett., 47, e2020GL090460, https://doi.org/10.1029/2020GL090460, 2020.
Hartmann, D. L.: Global Physical Climatology, 2nd edn., Academic Press, Cambridge, UK, https://doi.org/10.1016/C2009-0-00030-0, 2016.
Hernandez-Deckers, D. and Sherwood, S. C.: A Numerical Investigation of Cumulus Thermals, J. Atmos. Sci., 73, 4117–4136, https://doi.org/10.1175/JAS-D-15-0385.1, 2016.
Hernandez-Deckers, D. and Sherwood, S. C.: On the Role of Entrainment in the Fate of Cumulus Thermals, J. Atmos. Sci., 75, 3911–3924, https://doi.org/10.1175/JAS-D-18-0077.1, 2018.
Hernandez-Deckers, D., Matsui, T., and Fridlind, A. M.: Updraft dynamics and microphysics: on the added value of the cumulus thermal reference frame in simulations of aerosol–deep convection interactions, Atmos. Chem. Phys., 22, 711–724, https://doi.org/10.5194/acp-22-711-2022, 2022.
Heymsfield, A. J.: Case Study of a Halistorm in Colorado. Part IV: Graupel and Hail Growth Mechanisms Deduced through Particle Trajectory Calculations, J. Atmos. Sci., 40, 1482–1509, https://doi.org/10.1175/1520-0469(1983)040<1482:CSOAHI>2.0.CO;2, 1983.
Holland, G. J., John, L., McBride, R. K., Smith, D. J., Jasper, D., and Keenan, T. D.: The BMRC Australian Monsoon Experiment: AMEX, B. Am. Meteorol. Soc., 67, 1466–1472, https://doi.org/10.1175/1520-0477(1986)067<1466:TBAMEA>2.0.CO;2, 1986.
Iguchi, T., Matsui, T., Tao, W., Khain, A., Phillips, V., Kidd, C., L'Ecuyer, T., Braun, S., and Hou, A.: WRF-SBM simulations of melting layer structure in mixed-phase precipitation events observed during LPVEx, J. Appl. Meteorol. Clim., 53, 2710–2731, https://doi.org/10.1175/JAMC-D-13-0334.1, 2014.
Jeyaratnam, J., Luo, Z. J., Giangrande, S. E., Wang, D., and Masunaga, H.: A satellite-based estimate of convective vertical velocity and convective mass flux: Global survey and comparison with radar wind profiler observations, Geophys. Res. Lett., 48, e2020GL090675, https://doi.org/10.1029/2020GL090675, 2021.
Kanji, Z. A., Ladino, L. A., Wex, H., Boose, Y., Burkert-Kohn, M., Cziczo, D. J., and Krämer, M.: Overview of Ice Nucleating Particles, Meteor. Mon., 58, 1.1–1.33, https://doi.org/10.1175/AMSMONOGRAPHS-D-16-0006.1, 2017.
Keenan, T. D. and Carbone, R. E.: A Preliminary Morphology of Precipitation Systems In Tropical Northern Australia, Q. J. Roy. Meteor. Soc., 118, 283–326, https://doi.org/10.1002/qj.49711850406, 1992.
Kikuchi, H., Suezawa, T., Ushio, T., Takahashi, N., Hanado, H., Nakagawa, K., Osada, M., Maesaka, T., Iwanami, K., Yoshimi, K., and Mizutani, F.: Initial observations for precipitation cores with X-band dual polarized phased array weather radar, IEEE T. Geosci. Remote, 58, 3657–3666, https://doi.org/10.1109/TGRS.2019.2959628, 2020.
Kollias, P., Luke, E. P., Tuftedal, K., Dubois, M., and Knapp, E. J.: Agile Weather Observations using a Dual-Polarization X-band Phased Array Radar, 2022 IEEE Radar Conference (RadarConf22), 21–25 March 2022, New York City, NY, USA, 1–6, https://doi.org/10.1109/RadarConf2248738.2022.9764308, 2022a.
Kollias, P., Palmer, R., Bodine, D., Adachi, T., Bluestein, H., Cho, J., Griffin, C., Houser, J., Kirstetter, P., Kumjian, M., Kurdzo, J., Lee, W., Luke, E., Nesbitt, S., Oue, M., Shapiro, A., Rowe, A., Salazar, J., Tanamachi, R., Tuftedal, K., Wang, X., Zrnić, D., and Treserras, B.: Science Applications of Phased Array Radars, B. Am. Meteorol. Soc., 103, E2370–E2390, https://doi.org/10.1175/BAMS-D-21-0173.1, 2022b.
Korolev, A. and Leisner, T.: Review of experimental studies of secondary ice production, Atmos. Chem. Phys., 20, 11767–11797, https://doi.org/10.5194/acp-20-11767-2020, 2020.
Korolev, A., Heckman, I., Wolde, M., Ackerman, A. S., Fridlind, A. M., Ladino, L. A., Lawson, R. P., Milbrandt, J., and Williams, E.: A new look at the environmental conditions favorable to secondary ice production, Atmos. Chem. Phys., 20, 1391–1429, https://doi.org/10.5194/acp-20-1391-2020, 2020.
Lang, S. E., Tao, W.-K., Chern, J.-D., Wu, D., and Li, X.: Benefits of a fourth ice class in the simulated radar reflectivities of convective systems using a bulk microphysics scheme, J. Atmos. Sci., 71, 3583–3612, https://doi.org/10.1175/JAS-D-13-0330.1, 2014.
Lin, J. C., Matsui, T., Pielke Sr., R. A., and Kummerow, C.: Effects of biomass burning-derived aerosols on precipitation and clouds in the Amazon Basin: A satellite-based empirical study, J. Geophys. Res., 111, D19204, https://doi.org/10.1029/2005JD006884, 2006.
Liu, C. and Zipser, E. J.: The global distribution of largest, deepest, and most intense precipitation systems, Geophys. Res. Lett., 42, 3591–3595, https://doi.org/10.1002/2015GL063776, 2015.
Lucas, C., Zipser, E. J., and Lemone, M. A.: Vertical velocity in oceanic convection off tropical Australia, J. Atmos. Sci., 51, 3183–3193, https://doi.org/10.1175/1520-0469(1994)051<3183:VVIOCO>2.0.CO;2, 1994.
Martin, S., Artaxo, P., Machado, L., Manzi, A., Souza, R., Schumacher, C., Wang, J., Biscaro, T., Brito, J., Calheiros, A., Jardine, K., Medeiros, A., Portela, B., de Sá, S., Adachi, K., Aiken, A., Albrecht, R., Alexander, L., Andreae, M., Barbosa, H., Buseck, P., Chand, D., Comstock, J., Day, D., Dubey, M., Fan, J., Fast, J., Fisch, G., Fortner, E., Giangrande, S., Gilles, M., Goldstein, A., Guenther, A., Hubbe, J., Jensen, M., Jimenez, J., Keutsch, F., Kim, S., Kuang, C., Laskin, A., McKinney, K., Mei, F., Miller, M., Nascimento, R., Pauliquevis, T., Pekour, M., Peres, J., Petäjä, T., Pöhlker, C., Pöschl, U., Rizzo, L., Schmid, B., Shilling, J., Dias, M., Smith, J., Tomlinson, J., Tóta, J., and Wendisch, M. : The Green Ocean Amazon Experiment (GoAmazon2014/5) Observes Pollution Affecting Gases, Aerosols, Clouds, and Rainfall over the Rain Forest, B. Am. Meteorol. Soc., 98, 981–997, https://doi.org/10.1175/BAMS-D-15-00221.1, 2017.
Matsui, T. and Mocko, D. M.: Transpiration and Physical Evaporation: Regional and Seasonal Variability Over the Conterminous United States, in: Encyclopedia of Natural Resources, edited by: Wang, Y. Q., Taylor & Francis Group, New York, 1086 pp., ISBN 9781439852583, 2014.
Matsui, T., Ichoku, C., Randles, C., Yuan, T., da Silva, A., Colarco, P., Kim, D., Levy, R., Sayer, A., Chin, M., Giles, D., Holben, B., Welton, E., Eck, T., and Remer, L.: Current and Future Perspectives of Aerosol Research at NASA Goddard Space Flight Center, BAMS Meeting Summary, 95, ES203–ES207, https://doi.org/10.1175/BAMS-D-13-00153.1, 2014a.
Matsui, T., Santanello, J., Shi, J. J., Tao, K., Wu, D., Peters-Lidard, C., Kemp, E., Chin, M., Starr, D., Sekiguchi, M., and Aires, F.: Introducing multisensor satellite radiance-based evaluation for regional Earth System modeling, J. Geophys. Res.-Atmos., 119, 8450–8475, https://doi.org/10.1002/2013JD021424, 2014b.
Matsui, T., Chern, J., Tao, W., Lang, S., Satoh, M., Hashino, T., and Kubota, T.: On the land–ocean contrast of tropical convection and microphysics statistics derived from TRMM satellite signals and global storm-resolving models, J. Hydrometeorol., 17, 1425–1445, https://doi.org/10.1175/JHM-D-15-0111.1, 2016.
Matsui, T., Zhang, S. Q., Lang, S. E., Tao, W.-K., Liu, Y., Shige, S., and Takayabu, Y. N.: Impact of radiation frequency, precipitation radiative forcing, and radiation column aggregation on convection-permitting West African monsoon simulations, Clim. Dynam., 55, 193–213, https://doi.org/10.1007/s00382-018-4187-2, 2018.
Matsui, T., Dolan, B., Iguchi, T., Rutledge, S. A., Tao, W., and Lang, S.: Polarimetric radar characteristics of simulated and observed intense convective cores for a midlatitude continental and tropical maritime environment, J. Hydrometeorol., 21, 501–517, https://doi.org/10.1175/JHM-D-19-0185.1, 2020.
Matsui, T., Wolff, D. B., Lang, S., Mohr, K., Zhang, M., Xie, S., Tang, S., Saleeby, S. M., Posselt, D. J., Braun, S. A., Chern, D., Dolan, B., Pippitt, J. L., and Loftus, A. M.: Systematic validation of ensemble cloud-process simulations using polarimetric radar observations and simulator over the NASA Wallops Flight Facility, J. Geophys. Res.-Atmos., 128, e2022JD038134, https://doi.org/10.1029/2022JD038134, 2023.
Morrison, H., Peters, J. M., Varble, A. C., Hannah, W. M., and Giangrande, S. E.: Thermal chains and entrainment in cumulus updrafts. Part I: Theoretical description, J. Atmos. Sci., 77, 3637–3660, https://doi.org/10.1175/JAS-D-19-0243.1, 2020.
Morrison, H., Peters, J. M., and Sherwood, S. C.: Comparing Growth Rates of Simulated Moist and Dry Convective Thermals, J. Atmos. Sci., 78, 797–816, https://doi.org/10.1175/JAS-D-20-0166.1, 2021.
Morrison, H., Jeevanjee, N., Lecoanet, D., and Peters, J. M.: What controls the entrainment rate of dry buoyant thermals with varying initial aspect ratio?, J. Atmos. Sci., 80, 2711–2728, https://doi.org/10.1175/JAS-D-23-0063.1, 2023.
Morton, B. R., Taylor, G. I., and Turner, J. S.: Turbulent gravitational convection from maintained and instantaneous sources, Proc. Roy. Soc. London, 234A, 1–23, https://doi.org/10.1098/RSPA.1956.0011, 1956.
NCCS: Code, Goddard [code], https://portal.nccs.nasa.gov/datashare/cloudlibrary/PUB_DATA/GoAmazon_ACP/Code/ (last access: 16 September 2024), 2024a.
NCCS: Data, Goddard [data set], https://portal.nccs.nasa.gov/datashare/cloudlibrary/PUB_DATA/GoAmazon_ACP/Data/ (last access: 16 September 2024), 2024b.
Nelson, S. P.: The influence of storm flow structure on hail growth, J. Atmos. Sci., 40, 1965–1983, https://doi.org/10.1175/1520-0469(1983)040<1965:TIOSFS>2.0.CO;2, 1983.
Öktem, R., Romps, D. M., and Varble, A. C.: No warm-phase invigoration of convection detected during GoAmazon, J. Atmos. Sci., 80, 2345–2364, https://doi.org/10.1175/JAS-D-22-0241.1, 2023.
Peters, J. M., Morrison, H., Varble, A. C., Hannah, W. M., and Giangrande, S. E.: Thermal chains and entrainment in cumulus updrafts. Part II: Analysis of idealized simulations, J. Atmos. Sci., 77, 3661–3681, https://doi.org/10.1175/JAS-D-19-0244.1, 2020.
Pielke, R. A.: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convective rainfall, Rev. Geophys., 39, 151–177, https://doi.org/10.1029/1999RG000072, 2001.
Pope, M., Jakob, C., and Reeder, M. J.: Regimes of the North Australian wet season, J. Climate, 22, 6699–6715, https://doi.org/10.1175/2009JCLI3057.1, 2009.
Prein, A. F., Ge, M., Valle, A. R., Wang, D., and Giangrande, S. E.: Towards a unified setup to simulate mid-latitude and tropical mesoscale convective systems at kilometer-scales, Earth Space Sci., 9, https://doi.org/10.1029/2022EA002295, 2022.
Ramos-Valle, A. N., Prein, A. F., Ge, M., Wang, D., and Giangrande, S. E.: Grid spacing sensitivities of simulated mid-latitude and tropical mesoscale convective systems in the convective gray zone, J. Geophys. Res.-Atmos., 128, https://doi.org/10.1029/2022JD037043, 2023.
Robinson, F., Sherwood, S., Gerstle, D., Liu, C., and Kirshbaum, D.: Exploring the land-ocean contrast in convective vigor using islands, J. Atmos. Sci., 68, 602–618, https://doi.org/10.1175/2010JAS3558.1, 2011.
Rocha, H. R., Goulden, M., Miller, S. D., Menton, M. C., Pinto, L. D. V. O., Freitas, H. C., and Figueira, A. M. S.: Seasonality of water and heat fluxes over a tropical forest in eastern Amazonia, Ecol. Appl., 14, 22–32, 2004.
Romps, D. M. and Charn, A. B.: Sticky thermals: Evidence for a dominant balance between buoyancy and drag in cloud updrafts, J. Atmos. Sci., 72, 2890–2901, https://doi.org/10.1175/JAS-D-15-0042.1, 2015.
Sherwood, S. C., Hernández-Deckers, D., Colin, M., and Robinson, F.: Slippery thermals and the cumulus entrainment paradox, J. Atmos. Sci., 70, 2426–2442, https://doi.org/10.1175/JAS-D-12-0220.1, 2013.
Steiner, M., Houze Jr., R. A., and Yuter, S. E.: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data, J. Appl. Meteorol., 34, 1978–2007, 1995.
Stephens, G. L., Vane, D. G., Boain, R. J., Mace, G. G., Sassen, K., Wang, Z., and the CloudSat Science Team: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation, B. Am. Meteorol. Soc., 83, 1771–1790, https://doi.org/10.1175/BAMS-83-12-1771, 2002.
Stolz, D. C., Rutledge, S. A., and Pierce, J. R.: Simultaneous influences of thermodynamics and aerosols on deep convection and lightning in the tropics, J. Geophys. Res.-Atmos., 120, 6207–6231, https://doi.org/10.1002/2014JD023033, 2015.
Sullivan, S. C. and Voigt, A.: Ice microphysical processes exert a strong control on the simulated radiative energy budget in the tropics, Commun. Earth Environ., 2, 137, https://doi.org/10.1038/s43247-021-00206-7, 2021.
Takahashi, H., Luo, Z. J., and Stephens, G. L.: Level of neutral buoyancy, deep convective outflow, and convective core: New perspectives based on 5 years of CloudSat data, J. Geophys. Res.-Atmos., 122, 2958–2969, 2017.
Takahashi, N., Ushio, T., Nakagawa, K.,, Mizutani, F., Iwanami, K., Yamaji, A., Kawagoe, T., Osada, T., Ohta, T., and Kawasaki, M.: Development of multi-parameter phased array weather radar (MP-PAWR) and early detection of torrential rainfall and tornado risk, J. Disaster Res., 14, 235–247, https://doi.org/10.20965/jdr.2019.p0235, 2019.
Takahashi, H., Luo, Z. J., and Stephens, G. L.: Revisiting the entrainment relationship of convective plumes: A perspective from global observations, Geophys. Res. Lett., 48, https://doi.org/10.1029/2020GL092349, 2021.
Tang, S., Xie, S., Zhang, Y., Zhang, M., Schumacher, C., Upton, H., Jensen, M. P., Johnson, K. L., Wang, M., Ahlgrimm, M., Feng, Z., Minnis, P., and Thieman, M.: Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GoAmazon2014/5 experiment, Atmos. Chem. Phys., 16, 14249–14264, https://doi.org/10.5194/acp-16-14249-2016, 2016.
Tao, W.-K., Lang, S., Zeng, X., Li, X., Matsui, T., Mohr, K., Posselt, D., Chern, J., Peters-Lidard, C., Norris, P. M., Kang, I.-S., Choi, I., Hou, A., Lau, K.-M., and Yang, Y.-M.: The Goddard Cumulus Ensemble model (GCE): Improvements and applications for studying precipitation processes, Atmos. Res., 143, 392–424, https://doi.org/10.1016/j.atmosres.2014.03.005, 2014.
Tao, W.-K., Wu, D., Lang, S., Chern, J.-D., Peters-Lidard, C., Fridlind, A., and Matsui, T.: High-resolution NU-WRF simulations of a deep convective-precipitation system during MC3E: Further improvements and comparisons between Goddard microphysics schemes and observations, J. Geophys. Res.-Atmos., 121, 1278–1305, https://doi.org/10.1002/2015JD023986, 2016.
Tao, K., Iguchi, T., Lang, S., Li, X., Mohr, K., Matsui, T., and Braun, S.: Relating vertical velocity and cloud/precipitation properties: A numerical cloud ensemble modeling study of tropical convection, J. Adv. Model. Earth Syst., 14, e2021MS002677, https://doi.org/10.1029/2021MS002677, 2022.
Tokay, A. and Short, D. A.: Evidence from Tropical Raindrop Spectra of the Origin of Rain from Stratiform versus Convective Clouds, J. Appl. Meteorol. Clim., 35, 355–371, https://doi.org/10.1175/1520-0450(1996)035<0355:EFTRSO>2.0.CO;2, 1996.
Wang, D., Giangrande, S. E., Bartholomew, M. J., Hardin, J., Feng, Z., Thalman, R., and Machado, L. A. T.: The Green Ocean: precipitation insights from the GoAmazon2014/5 experiment, Atmos. Chem. Phys., 18, 9121–9145, https://doi.org/10.5194/acp-18-9121-2018, 2018.
Wang, D., Giangrande, S. E., Schiro, K., Jensen, M. P., and Houze, R. A.: The characteristics of tropical and midlatitude mesoscale convective systems as revealed by radar wind profilers, J. Geophys. Res.-Atmos., 124, 4601–4619, https://doi.org/10.1029/2018JD030087, 2019.
Wehr, T., Kubota, T., Tzeremes, G., Wallace, K., Nakatsuka, H., Ohno, Y., Koopman, R., Rusli, S., Kikuchi, M., Eisinger, M., Tanaka, T., Taga, M., Deghaye, P., Tomita, E., and Bernaerts, D.: The EarthCARE mission – science and system overview, Atmos. Meas. Tech., 16, 3581–3608, https://doi.org/10.5194/amt-16-3581-2023, 2023.
Williams, E. and Stanfill, S.: The physical origin of the land–ocean contrast in lightning activity, C. R. Phys., 3, 1277–1292, https://doi.org/10.1016/S1631-0705(02)01407-X, 2002.
Williams, E., Rosenfeld, D., Madden, N., Gerlach, J., Gears, N., Atkinson, L., Dunnemann, N., Frostrom, G., Antonio, M., Biazon, B., Camargo, R., Franca, H., Gomes, A., Lima, M., Machado, R., Manhaes, S., Nachtigall, L., Piva, H., Quintiliano, W., Machado, L., Artaxo, P., Roberts, G., Renno, N., Blakeslee, R., Bailey, J., Boccippio, D., Betts, A., Wolff, D., Roy, B., Halverson, J., Rickenbach, T., Fuentes, J., and Avelino, E.: Contrasting convective regimes over the Amazon: implications for cloud electrification, J. Geophys. Res.-Atmos., 107, 8082, https://doi.org/10.1029/2001JD000380, 2002.
Williams, E., Chan, T., and Boccippio, D.: Islands as miniature continents: Another look at the land–ocean lightning contrast, J. Geophys. Res., 109, D16206, https://doi.org/10.1029/2003JD003833, 2004.
Williams, E., Mushtak, V., Rosenfeld, D., Goodman, S., and Boccippio, D.: Thermodynamic conditions favorable to superlative thunderstorm updraft, mixed phase microphysics and lightning flash rate, Atmos. Res., 76, 288–306, https://doi.org/10.1016/j.atmosres.2004.11.009, 2005.
Williams, C. R., Barrio, J., Johnston, P. E., Muradyan, P., and Giangrande, S. E.: Calibrating radar wind profiler reflectivity factor using surface disdrometer observations, Atmos. Meas. Tech., 16, 2381–2398, https://doi.org/10.5194/amt-16-2381-2023, 2023.
Wu, J., Del Genio, A. D., Yao, M.-S., and Wolf, A. B.: WRF and GISS SCM simulations of convective updraft properties during TWP-ICE, J. Geophys. Res., 114, D04206, https://doi.org/10.1029/2008JD010851, 2009.
Xie, S., Cederwall, R. T., and Zhang, M.: Developing long-term single-column model/cloud system–resolving model forcing data using numerical weather prediction products constrained by surface and top of the atmosphere observations, J. Geophys. Res., 109, D01104, https://doi.org/10.1029/2003JD004045, 2004.
Xie, S., Tao, C., and Zhang, M.: Constrained Variational Analysis (180VARANAECMWFANARADAR), Atmospheric Radiation Measurement (ARM) User Facility, ARM [data set], https://doi.org/10.5439/1879988, 2024.
Xu, X., Sun, C., Lu, C., Liu, Y., Zhang, G. J., and Chen, Q.: Factors affecting entrainment rate in deep convective clouds and parameterizations, J. Geophys. Res.-Atmos., 126, e2021JD034881, https://doi.org/10.1029/2021JD034881, 2021.
Yanai, M., Esbensen, S., and Chu, J.: Determination of Bulk Properties of Tropical Cloud Clusters from Large-Scale Heat and Moisture Budgets, J. Atmos. Sci., 30, 611–627, https://doi.org/10.1175/1520-0469(1973)030<0611:DOBPOT>2.0.CO;2, 1973.
Yuter, S. E. and Houze Jr., R. A.: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distribution of vertical velocity, reflectivity, and differential reflectivity, Mon. Weather Rev., 123, 1941–1963, 1995.
Zhang, M. and Lin, J.: Constrained variational analysis of sounding data based on column-integrated budgets of mass, heat, moisture, and momentum: Approach and application to ARM measurements, J. Atmos. Sci., 54, 1503–1524, https://doi.org/10.1175/1520-0469(1997)054<1503:CVAOSD>2.0.CO;2, 1997.
Zhang, M., Lin, J., Cederwall, R. T., Yio, J. J., and Xie, S. C.: Objective analysis of ARM IOP data: Method and sensitivity, Mon. Weather Rev., 129, 295–311, https://doi.org/10.1175/1520-0493(2001)129<0295:OAOAID>2.0.CO;2, 2001.
Ziegler, C. L., Ray, P. S., and Knight, N. C.: Hail growth in an Oklahoma multicell storm, J. Atmos. Sci., 40, 1768–1791, https://doi.org/10.1175/1520-0469(1983)040<1768:HGIAOM>2.0.CO;2, 1983.
Zipser, E. J., Liu, C., Cecil, D. J., Nesbitt, S. W., and Yorty, D. P.: Where are the most intense thunderstorms on Earth?, B. Am. Meteorol. Soc., 87, 1057–1071, https://doi.org/10.1175/BAMS-87-8-1057, 2006.
Short summary
Using computer simulations and real measurements, we discovered that storms over the Amazon were narrower but more intense during the dry periods, producing heavier rain and more ice particles in the clouds. Our research showed that cumulus bubbles played a key role in creating these intense storms. This study can improve the representation of the effect of continental and ocean environments on tropical regions' rainfall patterns in simulations.
Using computer simulations and real measurements, we discovered that storms over the Amazon were...
Altmetrics
Final-revised paper
Preprint