Articles | Volume 23, issue 16
https://doi.org/10.5194/acp-23-9401-2023
https://doi.org/10.5194/acp-23-9401-2023
Research article
 | Highlight paper
 | 
25 Aug 2023
Research article | Highlight paper |  | 25 Aug 2023

A rise in HFC-23 emissions from eastern Asia since 2015

Hyeri Park, Jooil Kim, Haklim Choi, Sohyeon Geum, Yeaseul Kim, Rona L. Thompson, Jens Mühle, Peter K. Salameh, Christina M. Harth, Kieran M. Stanley, Simon O'Doherty, Paul J. Fraser, Peter G. Simmonds, Paul B. Krummel, Ray F. Weiss, Ronald G. Prinn, and Sunyoung Park

Related authors

A renewed rise in global HCFC-141b emissions between 2017–2021
Luke M. Western, Alison L. Redington, Alistair J. Manning, Cathy M. Trudinger, Lei Hu, Stephan Henne, Xuekun Fang, Lambert J. M. Kuijpers, Christina Theodoridi, David S. Godwin, Jgor Arduini, Bronwyn Dunse, Andreas Engel, Paul J. Fraser, Christina M. Harth, Paul B. Krummel, Michela Maione, Jens Mühle, Simon O'Doherty, Hyeri Park, Sunyoung Park, Stefan Reimann, Peter K. Salameh, Daniel Say, Roland Schmidt, Tanja Schuck, Carolina Siso, Kieran M. Stanley, Isaac Vimont, Martin K. Vollmer, Dickon Young, Ronald G. Prinn, Ray F. Weiss, Stephen A. Montzka, and Matthew Rigby
Atmos. Chem. Phys., 22, 9601–9616, https://doi.org/10.5194/acp-22-9601-2022,https://doi.org/10.5194/acp-22-9601-2022, 2022
Short summary
Top-down and bottom-up estimates of anthropogenic methyl bromide emissions from eastern China
Haklim Choi, Mi-Kyung Park, Paul J. Fraser, Hyeri Park, Sohyeon Geum, Jens Mühle, Jooil Kim, Ian Porter, Peter K. Salameh, Christina M. Harth, Bronwyn L. Dunse, Paul B. Krummel, Ray F. Weiss, Simon O'Doherty, Dickon Young, and Sunyoung Park
Atmos. Chem. Phys., 22, 5157–5173, https://doi.org/10.5194/acp-22-5157-2022,https://doi.org/10.5194/acp-22-5157-2022, 2022
Short summary

Related subject area

Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Deciphering anthropogenic and biogenic contributions to selected non-methane volatile organic compound emissions in an urban area
Arianna Peron, Martin Graus, Marcus Striednig, Christian Lamprecht, Georg Wohlfahrt, and Thomas Karl
Atmos. Chem. Phys., 24, 7063–7083, https://doi.org/10.5194/acp-24-7063-2024,https://doi.org/10.5194/acp-24-7063-2024, 2024
Short summary
Emission characteristics of reactive organic gases (ROGs) from industrial volatile chemical products (VCPs) in the Pearl River Delta (PRD), China
Sihang Wang, Bin Yuan, Xianjun He, Ru Cui, Xin Song, Yubin Chen, Caihong Wu, Chaomin Wang, Yibo Huangfu, Xiao-Bing Li, Boguang Wang, and Min Shao
Atmos. Chem. Phys., 24, 7101–7121, https://doi.org/10.5194/acp-24-7101-2024,https://doi.org/10.5194/acp-24-7101-2024, 2024
Short summary
Measurement report: Enhanced photochemical formation of formic and isocyanic acids in urban regions aloft – insights from tower-based online gradient measurements
Qing Yang, Xiao-Bing Li, Bin Yuan, Xiaoxiao Zhang, Yibo Huangfu, Lei Yang, Xianjun He, Jipeng Qi, and Min Shao
Atmos. Chem. Phys., 24, 6865–6882, https://doi.org/10.5194/acp-24-6865-2024,https://doi.org/10.5194/acp-24-6865-2024, 2024
Short summary
Sources of organic gases and aerosol particles and their roles in nighttime particle growth at a rural forested site in southwest Germany
Junwei Song, Harald Saathoff, Feng Jiang, Linyu Gao, Hengheng Zhang, and Thomas Leisner
Atmos. Chem. Phys., 24, 6699–6717, https://doi.org/10.5194/acp-24-6699-2024,https://doi.org/10.5194/acp-24-6699-2024, 2024
Short summary
Surface snow bromide and nitrate at Eureka, Canada, in early spring and implications for polar boundary layer chemistry
Xin Yang, Kimberly Strong, Alison S. Criscitiello, Marta Santos-Garcia, Kristof Bognar, Xiaoyi Zhao, Pierre Fogal, Kaley A. Walker, Sara M. Morris, and Peter Effertz
Atmos. Chem. Phys., 24, 5863–5886, https://doi.org/10.5194/acp-24-5863-2024,https://doi.org/10.5194/acp-24-5863-2024, 2024
Short summary

Cited articles

Arnold, T., Mühle, J., Salameh, P. K., Harth, C. M., Ivy, D. J., and Weiss, R. F.: Automated measurement of nitrogen trifluoride in ambient air, Anal. Chem., 84, 4798–4804, 2012. 
Clark, E. and Wagner, S.: The Kigali Amendment to the Montreal Protocol: HFC Phase-Down, UNEP, 1–7, https://wedocs.unep.org/bitstream/handle/20.500.11822/26589/HFC_Phasedown_EN.pdf (last access: 20 August 2023), 2016. 
Kim, J., Thompson, R., Park, H., Bogle, S., Mühle, J., Park, M. K., Kim, Y., Harth, C. M., Salameh, P. K., and Schmidt, R.: Emissions of tetrafluoromethane (CF4) and hexafluoroethane (C2F6) from East Asia: 2008 to 2019, J. Geophys. Res.-Atmos., 126, e2021JD034888, https://doi.org/10.1029/2021JD034888, 2021. 
Li, S., Park, S., Lee, J.-Y., Ha, K.-J., Park, M.-K., Jo, C., Oh, H., Mühle, J., Kim, K.-R., and Montzka, S.: Chemical evidence of inter-hemispheric air mass intrusion into the Northern Hemisphere mid-latitudes, Sci. Rep., 8, 1–7, 2018. 
Miller, B. R., Weiss, R. F., Salameh, P. K., Tanhua, T., Greally, B. R., Mühle, J., and Simmonds, P. G.: Medusa: A sample preconcentration and GC/MS detector system for in situ measurements of atmospheric trace halocarbons, hydrocarbons, and sulfur compounds, Anal. Chem., 80, 1536–1545, 2008. 
Download
Executive editor
The international Montreal Protocol was signed in 1987 in order to protect the atmospheric ozone layer by phasing out the production of halogenated hydrocarbons that deplete stratospheric ozone. The protocol was successfully implemented and, over the years, amendments and adjustments of the protocol were essential to its success. Ultimately, the protocol has resulted in a reduced halogen loading of the atmosphere since the mid-1990s. Trifluoromethane (HFC-23) is one of the substances regulated by the Montreal protocol since the Kigali amendment in 2016. HFC-23 does not deplete stratospheric ozone but is a very potent greenhouse gas. Commitments were made to reduce emissions of HFC-23 during the production of HCFC-22 as part of agreements in the protocol. However, the data presented and analysed in this paper indicate that in China more than the agreed amount of HFC-23 has been emitted since 2015, resulting either from unsuccessful factory-level HFC-23 abatement and/or inaccurate quantification of emission reductions. The analysis provides valuable data of atmospheric HFC-23. The study is also a good example of how compliance with the Montreal Protocol can be monitored.
Short summary
Based on atmospheric HFC-23 observations, the first estimate of post-CDM HFC-23 emissions in eastern Asia for 2008–2019 shows that these emissions contribute significantly to the global emissions rise. The observation-derived emissions were much larger than the bottom-up estimates expected to approach zero after 2015 due to national abatement activities. These discrepancies could be attributed to unsuccessful factory-level HFC-23 abatement and inaccurate quantification of emission reductions.
Altmetrics
Final-revised paper
Preprint