Articles | Volume 23, issue 16
https://doi.org/10.5194/acp-23-9401-2023
https://doi.org/10.5194/acp-23-9401-2023
Research article
 | Highlight paper
 | 
25 Aug 2023
Research article | Highlight paper |  | 25 Aug 2023

A rise in HFC-23 emissions from eastern Asia since 2015

Hyeri Park, Jooil Kim, Haklim Choi, Sohyeon Geum, Yeaseul Kim, Rona L. Thompson, Jens Mühle, Peter K. Salameh, Christina M. Harth, Kieran M. Stanley, Simon O'Doherty, Paul J. Fraser, Peter G. Simmonds, Paul B. Krummel, Ray F. Weiss, Ronald G. Prinn, and Sunyoung Park

Download

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-6', Anonymous Referee #1, 27 Jan 2023
    • AC1: 'Reply on RC1', Hyeri Park, 15 Apr 2023
  • RC2: 'Comment on egusphere-2023-6', Anonymous Referee #2, 03 Feb 2023
    • AC2: 'Reply on RC2', Hyeri Park, 15 Apr 2023

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
AR by Hyeri Park on behalf of the Authors (02 May 2023)  Author's response   Author's tracked changes   Manuscript 
ED: Referee Nomination & Report Request started (15 May 2023) by Gabriele Stiller
RR by Anonymous Referee #1 (28 May 2023)
RR by Anonymous Referee #2 (31 May 2023)
ED: Publish subject to minor revisions (review by editor) (14 Jun 2023) by Gabriele Stiller
AR by Hyeri Park on behalf of the Authors (21 Jun 2023)  Author's response   Author's tracked changes   Manuscript 
ED: Publish subject to technical corrections (03 Jul 2023) by Gabriele Stiller
AR by Hyeri Park on behalf of the Authors (19 Jul 2023)  Manuscript 
Download
Executive editor
The international Montreal Protocol was signed in 1987 in order to protect the atmospheric ozone layer by phasing out the production of halogenated hydrocarbons that deplete stratospheric ozone. The protocol was successfully implemented and, over the years, amendments and adjustments of the protocol were essential to its success. Ultimately, the protocol has resulted in a reduced halogen loading of the atmosphere since the mid-1990s. Trifluoromethane (HFC-23) is one of the substances regulated by the Montreal protocol since the Kigali amendment in 2016. HFC-23 does not deplete stratospheric ozone but is a very potent greenhouse gas. Commitments were made to reduce emissions of HFC-23 during the production of HCFC-22 as part of agreements in the protocol. However, the data presented and analysed in this paper indicate that in China more than the agreed amount of HFC-23 has been emitted since 2015, resulting either from unsuccessful factory-level HFC-23 abatement and/or inaccurate quantification of emission reductions. The analysis provides valuable data of atmospheric HFC-23. The study is also a good example of how compliance with the Montreal Protocol can be monitored.
Short summary
Based on atmospheric HFC-23 observations, the first estimate of post-CDM HFC-23 emissions in eastern Asia for 2008–2019 shows that these emissions contribute significantly to the global emissions rise. The observation-derived emissions were much larger than the bottom-up estimates expected to approach zero after 2015 due to national abatement activities. These discrepancies could be attributed to unsuccessful factory-level HFC-23 abatement and inaccurate quantification of emission reductions.
Altmetrics
Final-revised paper
Preprint