Articles | Volume 23, issue 8
https://doi.org/10.5194/acp-23-4617-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/acp-23-4617-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessment of spectral UV radiation at Marambio Base, Antarctic Peninsula
Klára Čížková
CORRESPONDING AUTHOR
Department of Geography, Faculty of Science, Masaryk University, Brno,
611 37, Czech Republic
Solar and Ozone Observatory, Czech Hydrometeorological Institute,
Hradec Králové, 500 08, Czech Republic
Kamil Láska
Department of Geography, Faculty of Science, Masaryk University, Brno,
611 37, Czech Republic
Ladislav Metelka
Solar and Ozone Observatory, Czech Hydrometeorological Institute,
Hradec Králové, 500 08, Czech Republic
Martin Staněk
Solar and Ozone Observatory, Czech Hydrometeorological Institute,
Hradec Králové, 500 08, Czech Republic
Related authors
David Tichopád, Kamil Láska, Tove Svendby, Klára Čížková, Andrea Pazmiño, Boyan Petkov, and Ladislav Metelka
EGUsphere, https://doi.org/10.5194/egusphere-2025-3963, https://doi.org/10.5194/egusphere-2025-3963, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study examined changes in the total ozone column above three Antarctic stations in 2007–2023 using ground and satellite observations. Ozone changes were mainly influenced by stratospheric temperature and atmospheric circulation. A significant increase occurred at Marambio, and unusually warm conditions in September 2019 caused ozone to rise strongly over East Antarctica, improving understanding of how the ozone layer responds to environmental changes.
David Tichopád, Kamil Láska, Tove Svendby, Klára Čížková, Andrea Pazmiño, Boyan Petkov, and Ladislav Metelka
EGUsphere, https://doi.org/10.5194/egusphere-2025-3963, https://doi.org/10.5194/egusphere-2025-3963, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study examined changes in the total ozone column above three Antarctic stations in 2007–2023 using ground and satellite observations. Ozone changes were mainly influenced by stratospheric temperature and atmospheric circulation. A significant increase occurred at Marambio, and unusually warm conditions in September 2019 caused ozone to rise strongly over East Antarctica, improving understanding of how the ozone layer responds to environmental changes.
Ondřej Nedělčev, Michael Matějka, Kamil Láska, Zbyněk Engel, Jan Kavan, and Michal Jenicek
The Cryosphere, 19, 2457–2473, https://doi.org/10.5194/tc-19-2457-2025, https://doi.org/10.5194/tc-19-2457-2025, 2025
Short summary
Short summary
The annual variability of runoff has not been analysed in the maritime Antarctic. Thus, we simulated and analysed rain, snow and glacier contributions to runoff related to climate variability in a small catchment over 11 years. The majority of the runoff came from snowmelt. Inter-annual variability in total runoff was associated with large variability in glacier runoff. Between October and May, 92 % of the runoff occurred, with significant runoff events outside the usual measurement season.
Peter Hrabčák, Meritxell Garcia-Suñer, Violeta Matos, Víctor Estellés, Anna Pribullová, Jozef Depta, Martin Staněk, and Martin Stráník
EGUsphere, https://doi.org/10.5194/egusphere-2025-2887, https://doi.org/10.5194/egusphere-2025-2887, 2025
Short summary
Short summary
This study analyses 30 years of total ozone and aerosol optical depth measurements from Slovakia. It shows clear seasonal patterns and a long-term decrease in atmospheric particles, likely due to reduced pollution. We also found that changes in the height of the tropopause may influence ozone levels. The research helps us understand how human activity and climate change affect the atmosphere over time.
Eliane Maillard Barras, Alexander Haefele, René Stübi, Achille Jouberton, Herbert Schill, Irina Petropavlovskikh, Koji Miyagawa, Martin Stanek, and Lucien Froidevaux
Atmos. Chem. Phys., 22, 14283–14302, https://doi.org/10.5194/acp-22-14283-2022, https://doi.org/10.5194/acp-22-14283-2022, 2022
Short summary
Short summary
Intercomparisons of three Dobson and three Brewer spectrophotometers at Arosa/Davos, Switzerland, are used for the homogenization of the longest Umkehr ozone profiles time series worldwide. Dynamic linear modeling (DLM) reveals a significant positive trend after 2004 in the upper stratosphere, a persistent negative trend between 25 and 30 km in the middle stratosphere, and a negative trend at 20 km in the lower stratosphere, with different levels of significance depending on the dataset.
Marek Šmíd, Geiland Porrovecchio, Jiří Tesař, Tim Burnitt, Luca Egli, Julian Grőbner, Petr Linduška, and Martin Staněk
Atmos. Meas. Tech., 14, 3573–3582, https://doi.org/10.5194/amt-14-3573-2021, https://doi.org/10.5194/amt-14-3573-2021, 2021
Short summary
Short summary
We designed and developed a tuneable and portable radiation source (TuPS) to provide a reference wavelength scale, with a bandwidth of emitted radiation of 0.13 nm and uncertainty in wavelength of 0.02 nm. TuPS was successfully used for the in-field characterization of 14 Dobson spectrophotometers in campaigns in Europe. The line spread functions of Dobsons measured by TuPS in conjunction with the cross-sections from IUP improves the consistency between the Dobson and Brewer from 3 % to 1 %.
Cited articles
Adhikari, L., Wang, Z., and Deng, M.: Seasonal variations of Antarctic
clouds observed by CloudSat and CALIPSO satellites, J. Geophys. Res., 117
D04202, 1–17, https://doi.org/10.1029/2011JD016719, 2012.
Ambrožová, K., Hrbáček, F., and Láska, K.: The Summer
Surface Energy Budget of the Ice-Free Area of Northern James Ross Island and
Its Impact on the Ground Thermal Regime, Atmosphere-Basel, 11, 1–18,
https://doi.org/10.3390/atmos11080877, 2020.
Antón, M., Cancillo, M. L., Serrano, A., and García, J. A.: A
Multiple Regression Analysis Between UV Radiation Measurements at Badajoz
and Ozone, Reflectivity, and Aerosols Estimated by TOMS, Phys. Scripta, 118,
21–23, 2005.
Aun, M., Lakkala, K., Sanchez, R., Asmi, E., Nollas, F., Meinander, O., Sogacheva, L., De Bock, V., Arola, A., de Leeuw, G., Aaltonen, V., Bolsée, D., Cizkova, K., Mangold, A., Metelka, L., Jakobson, E., Svendby, T., Gillotay, D., and Van Opstal, B.: Solar UV radiation measurements in Marambio, Antarctica, during years 2017–2019, Atmos. Chem. Phys., 20, 6037–6054, https://doi.org/10.5194/acp-20-6037-2020, 2020.
Bais, A.: Absolute spectral measurements of direct solar ultraviolet
irradiance with a Brewer spectrophotometer, Appl. Opt., 36, 5199–5204,
1997.
Bais, A., Zerefos, C. S., Meleti, C., Ziomas, I. C., and Tourpali, K.:
Spectral Measurements of Solar UVB Radiation and its Relations to Total
Ozone, SO2, and Clouds, J. Geophys. Res., 98, 5199–5204, 1993.
Barbero, F. J., López, G., and Batlles, F. J.: Determination of daily solar ultraviolet radiation using statistical models and artificial neural networks, Ann. Geophys., 24, 2105–2114, https://doi.org/10.5194/angeo-24-2105-2006, 2006.
Barnes, P. W., Robson, T. M., Neale, P. J., Williamson, C. E., Zepp, R. G.,
Madronich, S., Wilson, S. R., Andrady, A. L., Heikkilä, A. M., Bernhard,
G. H., Bais, A. F., Neale, R. E., Bornman, J. F., Jansen, M. A. K.,
Klekociuk, A. R., Martinez-Abaigar, J., Robinson, S. A., Wang, Q.-W.,
Banaszak, A. T., Häder, D.-P., Hylander, S., Rose, K. C., Wängberg,
S.-Å., Foereid, B., Hou, W.-C., Ossola, R., Paul, N. D., Ukpebor, J. E.,
Andersen, M. P. S., Longstreth, J., Schikowski, T., Solomon, K. R.,
Sulzberger, B., Bruckman, L. S., Pandey, K. K., White, C. C., Zhu, L., Zhu,
M., Aucamp, P. J., Liley, J. B., McKenzie, R. L., Berwick, M., Byrne, S. N.,
Hollestein, L. M., Lucas, R. M., Olsen, C. M., Rhodes, L. E., Yazar, S., and
Young, A. R.: Environmental effects of stratospheric ozone depletion, UV
radiation, and interactions with climate change: UNEP Environmental Effects
Assessment Panel, Update 2021, Photochem. Photobiol. Sci., 21, 275–301,
2022.
Bernhard, G., Booth, C. R., and Ehramjian, J. C.: Version 2 data of the
National Science Foundation's Ultraviolet Radiation Monitoring Network:
South Pole, J. Geophys. Res., 109, 1–18, https://doi.org/10.1029/2004JD004937, 2004.
Bernhard, G., Booth, C., and Ehramjian, J. C.: UV climatology at Palmer
Station, Antarctica, based on Version 2 NSF network data, Proc. SPIE, 5886,
1–12, https://doi.org/10.1117/12.614172, 2005.
Bernhard, G., Booth, C. R., Ehramjian, J. C., and Nichol, S. E.: UV
climatology at McMurdo Station, Antarctica, based on version 2 data of the
National Science Foundation's Ultraviolet Radiation Monitoring Network, J.
Geophys. Res., 111, 1–15, https://doi.org/10.1029/2005JD005857, 2006.
Bernhard, G., Booth, C. R., and Ehramjian, J. C.: Comparison of UV irradiance measurements at Summit, Greenland; Barrow, Alaska; and South Pole, Antarctica, Atmos. Chem. Phys., 8, 4799–4810, https://doi.org/10.5194/acp-8-4799-2008, 2008.
Bernhard, G., Booth, C. R., and Ehramjian, C. R.: Climatology of Ultraviolet
Radiation at High Latitudes Derived from Measurements of the National
Science Foundation's Ultraviolet Spectral Irradiance Monitoring Network, in:
UV Radiation in Global Climate Change, edited by: Gao, W., Schmoldt, D. L.,
and Slusser, J. R., Springer, 48–72, ISBN 978-3-642-03312-4, 2010.
Bernhard, G. and Stierle, S.: Trends of UV Radiation in Antarctica,
Atmosphere-Basel, 11, 1–26, https://doi.org/10.3390/atmos11080795, 2020.
Bognar, K., Ramina, A., Strong, K., Chipperfield, M. P., Dhomse, S. S.,
Drummond, J. R., Feng, W., Fioletov, V., Goutail, F., Herrera, B., Manney,
G. L., McCullough, E. M., Millán, L. F., Pazmiño, A., Walker, K. A.,
Wizenberg, T., and Zhao, X.: Unprecedented Spring 2020 Ozone Depletion in
the Context of 20 Years of Measurements at Eureka, Canada, J. Geophys.
Res.-Atmos, 126, e2020JD034365, https://doi.org/10.1029/2020JD034365, 2021.
Bojkov, R. D., Fioletov, V. E., and Diaz, S. B.: The relationship between
solar UV irradiance and total ozone from observations over southern
Argentina, Geophys. Res. Lett., 22, 1249–1252, 1995.
Calbó, J., Pagès, D., and Gonzáles, J.-A.: Empirical studies of
cloud effects on UV radiation: a review, Rev. Geophys., 43, 1–28,
https://doi.org/10.1029/2004RG000155, 2005.
Carrasco, J. F. and Cordero, R. R.: Analyzing Precipitation Changes in the
Northern Tip of the Antarctic Peninsula during the 1970–2019 Period,
Atmosphere-Basel, 11, 1–19, https://doi.org/10.3390/atmos11121270, 2020.
Chubachi, S.: A Special Ozone Observation at Syowa Station, Antarctica from
February 1982 to January 1983, edited by: Zerefos, C. S. and Ghazi, A., Atmos. Ozone, Springer, Dordrecht, 285–289, https://doi.org/10.1007/978-94-009-5313-0_58, 1985.
Čížková, K., Rieder, H. E., Staněk, M.,
Petropavlovskikh, I., Metelka, L., and Láska, K.: Can Brewer Umkehr
Measurements Capture Ozone Variability Near the Edge of the Southern Polar
Vortex?,
Geophys. Res. Abstr.,
EGU2018-2213, EGU General Assembly 2018, Vienna, Austria, 2018.
Cordero, R. R., Seckmeyer, G., Pissulla, D., DaSilva, L., and Labbe, F.:
Uncertainty evaluation of spectral UV irradiance measurements, Meas. Sci.
Technol., 19, 1–15, https://doi.org/10.1088/0957-0233/19/4/045104, 2008.
Cordero, R. R., Damiani, A., Seckmeyer, G., Riechelmann, S., Labbe, F.,
Laroze, D., and Garate, F.: Satellite-derived UV climatology at Escudero
Station, Antarctic Peninsula, Antarct. Sci., 25, 731–803, 2013.
Cordero, R. R., Damiani, A., Ferrer, J., Jorquera, J., Tobar, M., Labbe, F.,
Carrasco, J., and Laroze, D.: UV Irradiance and Albedo at Union Glacier Camp
(Antarctica): A Case Study, PLOS ONE, 9, 1–9, https://doi.org/10.1371/journal.pone.0090705, 2014.
Cordero, R. R., Damiani, A., Seckmeyer, G., Jorquera, J., Caballero, M.,
Rowe, P., Ferrer, J., Mubarak, R., Carrasco, J., Rondanelli, R., Matus, M.,
and Laroze, D.: The Solar Spectrum in the Atacama Desert, Sci. Rep., 6, 1–15, https://doi.org/10.1038/srep22457, 2016.
Cordero, R. R., Feron, S., Damiani, A., Redondas, A., Carrasco, J.,
Sepúlveda, E., Jorquera, J., Fernandoy, F., Llanillo, P., Rowe, P. M.,
and Seckmeyer, G.: Persistent extreme ultraviolet irradiance in Antarctica
despite the ozone recovery onset, Sci. Rep., 12, 1–10, https://doi.org/10.1038/s41598-022-05449-8, 2022.
Czerwińska, A. and Krzyścin, J. W.: Climatological aspects of the
increase of the skin cancer (melanoma) incidence rate in Europe, Int. J.
Climatol., 40, 3196–3207, 2019.
De Laat, A. T. J. and Van Weele, M.: The 2010 Antarctic ozone hole: Observed
reduction in ozone destruction by minor sudden stratospheric warmings, Sci.
Rep., 1, 1–8, https://doi.org/10.1038/srep00038, 2011.
DeLuisi, J.: Atmospheric Ultraviolet Radiation Scattering and Absorption,
NATO ASI Ser., 52, 65–84, 1997.
De Vaux, R. D., Psichogios, D. C., and Ungar, L. H.: A Comparison of Two
Nonparametric Estimation Schemes: MARS and Neural Networks, Comput. Chem.
Eng., 17, 819–837, 1993.
Diaz, S., Camilión, C., Deferrari, G., Fuenzalida, H., Armstrong, R.,
Booth, C., Paladini, A., Cabrera, S., Casicca, C., Lovengreen, C., Pedroni,
J., Rosales, A., Zagarese, H., and Vernet, M.: Ozone and UV Radiation over
Southern South America: Climatology and Anomalies, Photochem. Photobiol.,
82, 834–843, 2006.
Diffey, B. L.: Ultraviolet radiation physics and the skin, Phys. Med. Biol.,
25, 405–426, 1980.
Diffey, B. L.: Solar ultraviolet radiation effects on biological systems,
Phys. Med. Biol., 36, 299–328, 1990.
Engel, Z., Láska, K., Kavan, J., and Smolíková, J.: Persistent
mass loss of Triangular Glacier, James Ross Island, north-eastern Antarctic
Peninsula, J. Glaciol., 1–13, https://doi.org/10.1017/jog.2022.42, 2022.
Farman, J. C., Gardiner, B. G., and Shanklin, J. D.: Large losses of total
ozone in Antarctica reveal seasonal ClOx/NOx interaction, Nature, 315,
207–210, 1985.
Feister, U., Junk, J., Woldt, M., Bais, A., Helbig, A., Janouch, M., Josefsson, W., Kazantzidis, A., Lindfors, A., den Outer, P. N., and Slaper, H.: Long-term solar UV radiation reconstructed by ANN modelling with emphasis on spatial characteristics of input data, Atmos. Chem. Phys., 8, 3107–3118, https://doi.org/10.5194/acp-8-3107-2008, 2008.
GMAO (Global Modeling and Assimilation Office): MERRA-2 tavg3_3d_cld_Np: 3d,3-Hourly,Time-Averaged,Pressure-Level,Assimilation,Cloud Diagnostics V5.12.4, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set], https://doi.org/10.5067/TX10URJSKT53, 2005.
Gorshelev, V., Serdyuchenko, A., Weber, M., Chehade, W., and Burrows, J. P.: High spectral resolution ozone absorption cross-sections – Part 1: Measurements, data analysis and comparison with previous measurements around 293 K, Atmos. Meas. Tech., 7, 609–624, https://doi.org/10.5194/amt-7-609-2014, 2014.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková,
M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay,
P., Rozum, I., Vamborg, F., Villaume, S., and Tépaut, J.-N.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, 2020.
Hockberger, P. E.: A History of Ultraviolet Photobiology for Humans, Animals
and Microorganisms, Photochem. Photobiol., 76, 561–579, 2002.
Holick, M. F.: Biological Effects of Sunlight, Ultraviolet Radiation,
Visible Light, Infrared Radiation and Vitamin D for Helath, Anticancer Res.,
36, 1345–1356, 2016.
Joiner, J.: OMI/Aura Cloud Pressure and Fraction (Raman Scattering) 1-Orbit L2 Swath 13 × 24 km V003, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC) [data set],
https://doi.org/10.5067/Aura/OMI/DATA2010, 2006.
Juzeniene, A., Brekke, P., Dahlback, A., Andersson-Engels, S., Reichrath,
J., Moan, K., Holick, M. F., Grant, W. B., and Moan, J.: Solar radiation and
human health, Rep. Prog. Phys., 74, 1–56, https://doi.org/10.1088/0034-4885/74/6/066701, 2011.
Karhu, J. A., Taalas, P., Damski, J., and Kaurola, J.: Vertical distribution
of ozone at Marambio, Antarctic Peninsula, during 1987–1999, J. Geophys.
Res., 108, 1–9, https://doi.org/10.1029/2003JD001435, 2003.
Kerr, J. B. and Fioletov, V. E.: Surface Ultraviolet Radiation, Atmos.
Ocean, 46, 159–184, 2008.
Klekociuk, A. R., Tully, M. B., Krummel, P. B., Gies, H. P., Petelina, S.
V., Alexander, S. P., Deschamps, L. L., Fraser, P. J., Henderson, S. I.,
Javorniczky, J., Shanklin, J. D., Siddaway, J. M., and Stone, K. A.: The
Antarctic ozone hole during 2011, Aust. Meteorol. Ocean., 64, 293–311,
2014.
Klekociuk, A. R., Tully, M. B., Krummel, P. B., Henderson, S. I., Smale, D.,
Querel, R., Nichol, S., Alexander, S. P., Fraser, P. J., and Nedoluha, G.:
The Antarctic ozone hole during 2018 and 2019, J. South. Hemisphere Earth
Syst. Sci., 71, 66–91, 2021.
Kruskal, W. H. and Wallis, W. A.: Use of Ranks in One-Criterion Variance
Analysis, J. Am. Stat. Assoc., 47, 583–621, 1952.
Kuchinke, C. and Nunez, M.: Cloud Transmission Estimates of UV-B Erythemal
Irradiance, Theor. Appl. Climatol., 63, 149–161, 1999.
Kylling, A., Albold, A., and Seckmeyer, G.: Transmittance of a cloud is
wavelength-dependent in the UV-range: Physical interpretation, Geophys. Res.
Lett., 24, 397–400, 1997.
Lachlan-Cope, T.: Antarctic clouds, Polar Res., 29, 150–158, 2010.
Lakkala, K., Arola, A., Heikkilä, A., Kaurola, J., Koskela, T., Kyrö, E., Lindfors, A., Meinander, O., Tanskanen, A., Gröbner, J., and Hülsen, G.: Quality assurance of the Brewer spectral UV measurements in Finland, Atmos. Chem. Phys., 8, 3369–3383, https://doi.org/10.5194/acp-8-3369-2008, 2008.
Lakkala, K., Redondas, A., Meinander, O., Thölix, L., Hamari, B., Almansa, A. F., Carreno, V., García, R. D., Torres, C., Deferrari, G., Ochoa, H., Bernhard, G., Sanchez, R., and de Leeuw, G.: UV measurements at Marambio and Ushuaia during 2000–2010, Atmos. Chem. Phys., 18, 16019–16031, https://doi.org/10.5194/acp-18-16019-2018, 2018.
Lakkala, K., Aun, M., Sanchez, R., Bernhard, G., Asmi, E., Meinander, O., Nollas, F., Hülsen, G., Karppinen, T., Aaltonen, V., Arola, A., and de Leeuw, G.: New continuous total ozone, UV, VIS and PAR measurements at Marambio, 64∘ S, Antarctica, Earth Syst. Sci. Data, 12, 947–960, https://doi.org/10.5194/essd-12-947-2020, 2020.
Latosińska, J. N., Latosińska, M., and Bielak, J.: Towards analysis
and predicting maps of ultraviolet index from experimental astronomical
parameters (solar elevation, total ozone level, aerosol index,
reflectivity). Artificial neural networks global scale approach, Aerosp.
Sci. Technol., 43, 301–313, 2015.
Lee, Y. G., Koo, J.-H., and Kim, J.: Influence of cloud fraction and snow
cover to the variation of surface UV radiation at King Sejong station,
Antarctica, Atmos. Res., 164–165, 99–109, 2015.
Lindfors, A., Kaurola, J., Arola, A., Koskela, T., Lakkala, K., Josefsson,
W., Olseth, J. A., and Johnsen, B.: A method for reconstruction of past UV
radiation based on radiative transfer modelling: Applied to four stations in
northern Europe, J. Geophys. Res., 112, 1–15, https://doi.org/10.1029/2007JD008454, 2007.
Lubin, D. and Frederick, J. E.: The Ultraviolet Environment of the Antarctic
Peninsula: The Roles of Ozone and Cloud Cover, J. Appl. Meteorol., 30,
478–493, 1991.
Mayer, B. and Kylling, A.: Technical note: The libRadtran software package for radiative transfer calculations – description and examples of use, Atmos. Chem. Phys., 5, 1855–1877, https://doi.org/10.5194/acp-5-1855-2005, 2005.
McClave, J. T. and Dietrich, F. H.: Statistics, San Francisco, CA: Dellon
Publishing Company, 928 pp., 1991.
McKenzie, R., Kotkamp, M., Seckmeyer, G., Erb, R., Roy, C. R., Gies, H. P.,
and Toomey, S. J.: First Southern Hemisphere Intercomparison of Measured
Solar UV Spectra, Geophys. Res. Lett., 20, 2223–2226, 1993.
McKenzie, R., Aucamp, P. J., Bais, A. F., Björn, L. O., and Ilyas, M.:
Changes in biologically-active ultraviolet radiation reaching the Earth's
surface, Photochem. Photobiol. Sci., 2007, 218–231, 2007.
McKenzie, R., Bernhard, G., Liley, B., Disterhoft, P., Rhodes, S., Bais, A.,
Morgenstern, O., Newman, P., Oman, L., Brogniez, C., and Simic, S.: Success
of Montreal Protocol Demonstrated by Comparing High-Quality UV Measurements
with “World Avoided” Calculations from Two Chemistry-Climate Models, Sci.
Rep., 9, 1–13, https://doi.org/10.1038/s41598-019-48625-z, 2019.
Meinander, O., Josefsson, W., Kaurola, J., Koskela, T., and Lakkala, K.:
Spike detection and correction in Brewer spectroradiometer ultraviolet
spectra, Opt. Eng., 42, 1812–1819, 2003.
Nichol, S. E. and Valenti, C.: Intercomparison of total ozone measured at
low sun angles by the Brewer and Dobson spectrophotometers at Scott Base,
Antarctica, Geophys. Res. Lett., 20, 2051–2054, 1993.
Nichol, S. E., Bodeker, G. E., McKenzie, R. L., Wood, S. W., and Bernhard,
G.: Moderation of Cloud Reduction of UV in the Antarctic Due to High Surface
Albedo, J. Appl. Meteorol., 42, 1174–1183, 2003.
Orte, P. F., Wolfram, E., Salvador, J., Mizuno, A., Bègue, N., Bencherif, H., Bali, J. L., D'Elia, R., Pazmiño, A., Godin-Beekmann, S., Ohyama, H., and Quiroga, J.: Analysis of a southern sub-polar short-term ozone variation event using a millimetre-wave radiometer, Ann. Geophys., 37, 613–629, https://doi.org/10.5194/angeo-37-613-2019, 2019.
Park, S. S., Kim, M., Lee, H., Lee, H., Kim, S.-M., and Lee, Y. G..:
Estimating Cloud and Aerosol UV Modification Factors Based on Spectral
Measurement from the Brewer Spectrophotometer, Atmosphere-Basel, 8,
1–17, https://doi.org/10.3390/atmos8060109, 2017.
Pazmiño, A., Godin-Beekmann, S., Ginzburk, M., Bekki, S., Hauchecorne,
A., Piacentini, R. D., and Quel, E. J.: Impact of Antarctic polar vortex
occurrences on total ozone and UVB radiation at southern Argentinean and
Antarctic stations during 1997–2003 period, J. Geophys. Res., 110,
1–13, https://doi.org/10.1029/2004JD005304, 2005.
Pazmiño, A., Godin-Beekmann, S., Hauchecorne, A., Claud, C., Khaykin, S., Goutail, F., Wolfram, E., Salvador, J., and Quel, E.: Multiple symptoms of total ozone recovery inside the Antarctic vortex during austral spring, Atmos. Chem. Phys., 18, 7557–7572, https://doi.org/10.5194/acp-18-7557-2018, 2018.
Petkov, B. H., Láska, K., Vitale, V., Lanconelli, C., Lupi, A., Mazzola,
M., and Budíková, M.: Variability in solar irradiance observed at
two contrasting Antarctic sites, Atmos. Res., 172, 126–135, 2016.
Qu, Z.-W., Zhu, H., Grebenshchikov, S. Y., Schinke, R., and Farantos, S. C.:
The Huggins band of ozone: A theoretical analysis, J. Chem. Phys., 121,
11731–11745, 2004.
Raksasat, R., Sri-iesaranusorn, P., Pemcharoen, J., Laiwarin, P., Buntoung,
S., Janjai, S., Boontaveeyuwat, E., Asawanonda, P., Sriswasdi, S., and
Chuangsuwanich, E.: Accurate surface ultraviolet radiation forecasting for
clinical applications with deep neural network, Sci. Rep., 11,
1–12, https://doi.org/10.1038/s41598-021-84396-2, 2021.
Scarnato, B., Staehlin, J., Stübl, R, and Schill, H.: Long-term total
ozone observations at Arosa (Switzerland) with Dobson and Brewer instruments
(1988–2007), J. Geophys. Res., 115, 1–11, https://doi.org/10.1029/2009JD011908, 2010.
Schwander, H., Koepke, P., Kaifel, A., and Seckmeyer, G.: Modification of
spectral UV irradiance by clouds, J. Geophys. Res., 107, 1–12, https://doi.org/10.1029/2001JD001297, 2002.
Scott, R., Lubin, D., Vogelman, A. M., and Kato, S.: West Antarctic Ice
Sheet Cloud Cover and Surface Radiation Budget from NASA A-Train Satellites,
J. Climate, 30, 6151–6170, 2017.
Seckmeyer, G., Erb, R., and Albold, A.: Transmitance of a cloud is
wavelength-dependent in the UV-range, Geophys. Res. Lett., 23, 2753–2755,
1996.
Shepherd, T. G.: Dynamics, Stratospheric Ozone, and Climate Change, Atmos.
Ocean, 46, 117–138, 2008.
Solomon, S.: Stratospheric ozone depletion: a review of concepts and
history, Rev. Geophys., 37, 275–316, 1999.
Solomon, S., Ivy, D. J., Kinnison, D., Mills, M. J., Neely, R. R., and
Schmidt, A.: Emergence of healing in the Antarctic ozone layer, Science,
353, 269–274, 2016.
Stair, R.: Ultraviolet Spectral Distribution of Radiant Energy From the Sun,
J. Res. Nat. Bur. Stand., 46, 353–357, 1951.
Stamnes, K., Slusser, J., and Bowen, M.: Derivation of total ozone abundance
and cloud effects from spectral irradiance measurements, Appl. Opt., 30,
4418–4426, 1991.
Tanskanen, A., Krotkov, N. A., Herman, J. R., and Arola, A.: Surface
Ultraviolet Irradiance from OMI, IEEE T. Geosci. Remote, 44, 1267–1271,
2006.
Tarasick, D. W., Fioletov, V. E., Wardle, D. I., Kerr, J. B., McArthur, L.
J. B., and McLinden, C. A.: Climatology and trends of surface UV radiation,
Atmos. Ocean, 41, 121–138, 2003.
TIBCO Statistica® User's Guide:
https://docs.tibco.com/pub/stat/14.0.0/doc/html/UsersGuide/GUID-F60C241F-CD88-4714-A8C8-1F28473C52EE.html,
last access: 3 February 2023.
Velders, G. J. M., Andersen, S. O., Daniel, J. S., Fahey, D. W., and
McFarland, M.: The importance of the Montreal Protocol in protecting
climate, P. Natl. Acad. Sci. USA, 104, 4814–4819, 2007.
Webb, A. R.: Ultraviolet radiation: the missing link in the ozone debate,
Norsk Geol. Tidsskr., 71, 211–213, 1991.
Webb, A. R. and Engelsen, O.: Ultraviolet Exposure Scenarios: Risks of
Erythema from Recommendations on Cutaneous Vitamin D Synthesis, Adv. Exp.
Med. Biol., 624, 72–85, 2008.
Weber, M., Dikty, S., Burrows, J. P., Garny, H., Dameris, M., Kubin, A., Abalichin, J., and Langematz, U.: The Brewer-Dobson circulation and total ozone from seasonal to decadal time scales, Atmos. Chem. Phys., 11, 11221–11235, https://doi.org/10.5194/acp-11-11221-2011, 2011.
WHO, WMO, UNEP, and ICNIRP: Global Solar UV Index: A Practical Guide, WHO,
Geneva, 28 pp., ISBN 9241590076, 2002.
World Meteorological Organization (WMO): Scientific Assessment of Ozone
Depletion: 2022, GAW Report No. 278,
509 pp., WMO, Geneva, ISBN 978-9914-733-97-6, 2022.
Yadav, A. K. and Chandel, S. S.: Solar radiation prediction using Artificial
Neural Network techniques: A review, Renew. Sust. Energ. Rev., 33, 772–781,
2014.
Young, A. R., Morgan, K. A., Harrison, G. I., Lawrence, K. P., Petersen, B.,
Wulf, H. C., and Philipsen, P. A.: A revised action spectrum for vitamin D
synthesis by suberythemal UV radiation exposure in humans in vivo, P. Natl. Acad. Sci. USA, 118, 1–8, https://doi.org/10.1073/pnas.2015867118, 2021.
Young, P. R., Harper, A. B., Huntingford, C., Paul, N. D., Morgenstern, O.,
Newman, P. A., Oman, L. D., Madronich, S., and Garcia, R. R.: The Montreal
Protocol protects the terrestrial carbon sink, Nature, 596, 384–388, 2021.
Zhou, C., Zhang, T., and Zheng, L.: The Characteristics of Surface Albedo
Change Trends over the Antarctic Sea Ice Region during Recent Decades,
Remote Sens., 11, 1–25, https://doi.org/10.3390/rs11070821, 2019.
Short summary
The study deals with ultraviolet (UV) radiation in southern polar conditions, where ozone depletion occurs each spring. A 10-year-long time series of UV spectra from Marambio Base, Antarctic Peninsula, has been studied, with a focus on the changes of UV radiation at different wavelengths and the effects of atmospheric and terrestrial variables like ozone, solar elevation, or cloudiness. At the very short wavelengths, the effect of ozone and its deficiency was clearly observed.
The study deals with ultraviolet (UV) radiation in southern polar conditions, where ozone...
Altmetrics
Final-revised paper
Preprint