Articles | Volume 23, issue 5
https://doi.org/10.5194/acp-23-3181-2023
https://doi.org/10.5194/acp-23-3181-2023
Research article
 | 
10 Mar 2023
Research article |  | 10 Mar 2023

Estimating hub-height wind speed based on a machine learning algorithm: implications for wind energy assessment

Boming Liu, Xin Ma, Jianping Guo, Hui Li, Shikuan Jin, Yingying Ma, and Wei Gong

Related authors

Extending the wind profile beyond the surface layer by combining physical and machine learning approaches
Boming Liu, Xin Ma, Jianping Guo, Renqiang Wen, Hui Li, Shikuan Jin, Yingying Ma, Xiaoran Guo, and Wei Gong
Atmos. Chem. Phys., 24, 4047–4063, https://doi.org/10.5194/acp-24-4047-2024,https://doi.org/10.5194/acp-24-4047-2024, 2024
Short summary
A comprehensive reappraisal of long-term aerosol characteristics, trends, and variability in Asia
Shikuan Jin, Yingying Ma, Zhongwei Huang, Jianping Huang, Wei Gong, Boming Liu, Weiyan Wang, Ruonan Fan, and Hui Li
Atmos. Chem. Phys., 23, 8187–8210, https://doi.org/10.5194/acp-23-8187-2023,https://doi.org/10.5194/acp-23-8187-2023, 2023
Short summary
Performance evaluation for retrieving aerosol optical depth from the Directional Polarimetric Camera (DPC) based on the GRASP algorithm
Shikuan Jin, Yingying Ma, Cheng Chen, Oleg Dubovik, Jin Hong, Boming Liu, and Wei Gong
Atmos. Meas. Tech., 15, 4323–4337, https://doi.org/10.5194/amt-15-4323-2022,https://doi.org/10.5194/amt-15-4323-2022, 2022
Short summary
Carbon dioxide cover: carbon dioxide column concentration seamlessly distributed globally during 2009–2020
Haowei Zhang, Boming Liu, Xin Ma, Ge Han, Qinglin Yang, Yichi Zhang, Tianqi Shi, Jianye Yuan, Wanqi Zhong, Yanran Peng, Jingjing Xu, and Wei Gong
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-215,https://doi.org/10.5194/essd-2022-215, 2022
Preprint withdrawn
Short summary
Intercomparison of wind observations from ESA’s satellite mission Aeolus, ERA5 reanalysis and radiosonde over China
Boming Liu, Jianping Guo, Wei Gong, Yong Zhang, Lijuan Shi, Yingying Ma, Jian Li, Xiaoran Guo, Ad Stoffelen, Gerrit de Leeuw, and Xiaofeng Xu
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-26,https://doi.org/10.5194/amt-2022-26, 2022
Publication in AMT not foreseen
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Measurement report: Per- and polyfluoroalkyl substances (PFAS) in particulate matter (PM10) from activated sludge aeration
Jishnu Pandamkulangara Kizhakkethil, Zongbo Shi, Anna Bogush, and Ivan Kourtchev
Atmos. Chem. Phys., 25, 5947–5958, https://doi.org/10.5194/acp-25-5947-2025,https://doi.org/10.5194/acp-25-5947-2025, 2025
Short summary
African dust transported to Barbados in the wintertime lacks indicators of chemical aging
Haley M. Royer, Michael T. Sheridan, Hope E. Elliott, Edmund Blades, Nurun Nahar Lata, Zezhen Cheng, Swarup China, Zihua Zhu, Andrew P. Ault, and Cassandra J. Gaston
Atmos. Chem. Phys., 25, 5743–5759, https://doi.org/10.5194/acp-25-5743-2025,https://doi.org/10.5194/acp-25-5743-2025, 2025
Short summary
A 60-year atmospheric nitrate isotope record from a southeastern Greenland ice core with minimal postdepositional alteration
Zhao Wei, Shohei Hattori, Asuka Tsuruta, Zhuang Jiang, Sakiko Ishino, Koji Fujita, Sumito Matoba, Lei Geng, Alexis Lamothe, Ryu Uemura, Naohiro Yoshida, Joel Savarino, and Yoshinori Iizuka
Atmos. Chem. Phys., 25, 5727–5742, https://doi.org/10.5194/acp-25-5727-2025,https://doi.org/10.5194/acp-25-5727-2025, 2025
Short summary
Measurement report: Characterization of aerosol hygroscopicity over Southeast Asia during the NASA CAMP2Ex campaign
Genevieve Rose Lorenzo, Luke D. Ziemba, Avelino F. Arellano, Mary C. Barth, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Richard Ferrare, Miguel Ricardo A. Hilario, Michael A. Shook, Simone Tilmes, Jian Wang, Qian Xiao, Jun Zhang, and Armin Sorooshian
Atmos. Chem. Phys., 25, 5469–5495, https://doi.org/10.5194/acp-25-5469-2025,https://doi.org/10.5194/acp-25-5469-2025, 2025
Short summary
Molecular characterization of organic aerosols in urban and forested areas of Paris using high-resolution mass spectrometry
Diana L. Pereira, Chiara Giorio, Aline Gratien, Alexander Zherebker, Gael Noyalet, Servanne Chevaillier, Stéphanie Alage, Elie Almarj, Antonin Bergé, Thomas Bertin, Mathieu Cazaunau, Patrice Coll, Ludovico Di Antonio, Sergio Harb, Johannes Heuser, Cécile Gaimoz, Oscar Guillemant, Brigitte Language, Olivier Lauret, Camilo Macias, Franck Maisonneuve, Bénédicte Picquet-Varrault, Raquel Torres, Sylvain Triquet, Pascal Zapf, Lelia Hawkins, Drew Pronovost, Sydney Riley, Pierre-Marie Flaud, Emilie Perraudin, Pauline Pouyes, Eric Villenave, Alexandre Albinet, Olivier Favez, Robin Aujay-Plouzeau, Vincent Michoud, Christopher Cantrell, Manuela Cirtog, Claudia Di Biagio, Jean-François Doussin, and Paola Formenti
Atmos. Chem. Phys., 25, 4885–4905, https://doi.org/10.5194/acp-25-4885-2025,https://doi.org/10.5194/acp-25-4885-2025, 2025
Short summary

Cited articles

Abbes, M. and Belhadj, J.: Wind resource estimation and wind park design in El-Kef region, Tunisia. Energy, 40, 348–357, https://doi.org/10.1016/j.energy.2012.01.061, 2012. 
Akpinar, E. K. and Akpinar, S.: An assessment on seasonal analysis of wind energy characteristics and wind turbine characteristics, Energy Convers. Manage., 46, 1848–1867, https://doi.org/10.1016/j.enconman.2004.08.012, 2005. 
Ali, S., Lee, S. M., and Jang, C. M.: Statistical analysis of wind characteristics using Weibull and Rayleigh distributions in Deokjeok-do Island–Incheon, South Korea, Renew. Energ., 123, 652–663, https://doi.org/10.1016/j.renene.2018.02.087, 2018. 
Allabakash, S., Lim, S., Yasodha, P., Kim, H., and Lee, G.: Intermittent clutter suppression method based on adaptive harmonic wavelet transform for L-band radar wind profiler, IEEE T. Geosci. Remote, 57, 8546–8556, 2019. 
Banuelos-Ruedas, F., Angeles-Camacho, C., and Rios-Marcuello, S.: Analysis and validation of the methodology used in the extrapolation of wind speed data at different heights, Renew. Sustain. Energy Rev., 14, 2383–2391, https://doi.org/10.1016/j.rser.2010.05.001, 2010. 
Download
Short summary
Wind energy is one of the most essential clean and renewable forms of energy in today’s world. However, the traditional power law method generally estimates the hub-height wind speed by assuming a constant exponent between surface and hub-height wind speeds. This inevitably leads to significant uncertainties in estimating the wind speed profile. To minimize the uncertainties, we here use a machine learning algorithm known as random forest to estimate the wind speed at hub height.
Share
Altmetrics
Final-revised paper
Preprint