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Abstract. Accurate estimation of wind speed at wind turbine hub height is of significance for wind energy
assessment and exploitation. Nevertheless, the traditional power law method (PLM) generally estimates the hub-
height wind speed by assuming a constant exponent between surface and hub-height wind speed. This inevitably
leads to significant uncertainties in estimating the wind speed profile especially under unstable conditions. To
minimize the uncertainties, we here use a machine learning algorithm known as random forest (RF) to estimate
the wind speed at hub heights such as at 120 m (WS120), 160 m (WS160), and 200 m (WS200). These heights go
beyond the traditional wind mast limit of 100–120 m. The radar wind profiler and surface synoptic observations
at the Qingdao station from May 2018 to August 2020 are used as key inputs to develop the RF model. A deep
analysis of the RF model construction has been performed to ensure its applicability. Afterwards, the RF model
and the PLM model are used to retrieve WS120, WS160, and WS200. The comparison analyses from both RF and
PLM models are performed against radiosonde wind measurements. At 120 m, the RF model shows a relatively
higher correlation coefficient R of 0.93 and a smaller RMSE of 1.09 m s−1, compared with the R of 0.89 and
RMSE of 1.50 m s−1 for the PLM. Notably, the metrics used to determine the performance of the model decline
sharply with height for the PLM model, as opposed to the stable variation for the RF model. This suggests the
RF model exhibits advantages over the traditional PLM model. This is because the RF model considers well
the factors such as surface friction and heat transfer. The diurnal and seasonal variations in WS120, WS160, and
WS200 from RF are then analyzed. The hourly WS120 is large during daytime from 09:00 to 16:00 local solar
time (LST) and reach a peak at 14:00 LST. The seasonal WS120 is large in spring and winter and is low in summer
and autumn. The diurnal and seasonal variations in WS160 and WS200 are similar to those of WS120. Finally, we
investigated the absolute percentage error (APE) of wind power density between the RF and PLM models at
different heights. In the vertical direction, the APE is gradually increased as the height increases. Overall, the
PLM algorithm has some limitations in estimating wind speed at hub height. The RF model, which combines
more observations or auxiliary data, is more suitable for the hub-height wind speed estimation. These findings
obtained here have great implications for development and utilization in the wind energy industry in the future.
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1 Introduction

With the rapid economic development of the world, the mas-
sive consumption of fossil fuels produces an increasing emis-
sion of carbon dioxide, sulfur dioxide, and other pollutants
(Yuan, 2016; Magazzino et al., 2021). To tackle this problem,
it is increasingly becoming imperative to develop renewable
clean energy (Hong et al., 2012; Luo et al., 2022). Among
the myriad renewable energy resources, wind energy has
gained more and more favor because of its abundant avail-
ability, good sustainability, and high cost-effectiveness (Li et
al., 2018; Leung et al., 2012). As one of the largest energy
consuming countries in the world, China is currently facing
an increasingly serious energy and climate situation (Khatib
et al., 2012). The Chinese government proposes to peak its
carbon dioxide emissions before 2030 and achieve carbon
neutrality before 2060 (Shi et al., 2023; Su et al., 2022a, b).
With the stimulus of policies and the favor of investors, the
wind power industry in China is flourishing. Therefore, the
scientific assessment of wind energy resources in China is
of great importance for the healthy development of the wind
energy industry in the decades to come.

Characterizing the wind speed at wind turbine hub height
is key for wind energy assessment (Yu and Vautard, 2022).
The wind turbine is usually installed at the top of the wind
mast with a height of 100–120 m above ground level (a.g.l.),
which roughly corresponds to the surface layer (Veers et
al., 2019). The wind speed data that have been widely used
for wind energy assessment are mainly obtained from wind
mast, Doppler lidar, or reanalysis data (Debnath et al., 2021;
Lolli et al., 2011; Lolli, 2021). The 10 m wind data measured
by ground meteorological stations can be used for wind en-
ergy assessment (Oh et al., 2012; Liu et al., 2019). The wind
tower or mast can also provide wind speed observation data
below 100 m a.g.l. (Durisic et al., 2012; J. Liu et al., 2018).
Moreover, the reanalysis data, such as the fifth generation
European Centre for Medium-Range Weather Forecasts at-
mospheric reanalysis system (ERA5), can provide the hourly
wind speed at a height of 10 or 100 m a.g.l. for wind energy
assessment (Laurila et al., 2021; Gualtieri, 2021). However,
the wind turbines are increasing in height and rotor diameter
with the development of technology, which go beyond the
surface layer and enter the Ekman layer. Such as for some
offshore wind power plants, the blade tips of the largest wind
turbines can reach heights of 250 m a.g.l. (Gaertner et al.,
2020). In addition, increasing wind turbine hub height re-
duces the impact of surface friction, enabling wind turbines
to operate in high-quality wind resource environments (Veers
et al., 2019). Therefore, the wind profile is important for the
selection of wind turbine hub height and the assessment of
wind energy.

It is widely recognized that the wind profile is mainly
obtained by empirical formulae (Li et al., 2018), such as
the power law method (PLM). The PLM generally assumes
that the wind speed below 150 m in the planetary bound-

ary layer (PBL) varies exponentially with height (Hellman
et al., 1914). This means that the wind speed at the wind
turbine hub height can be calculated from the surface wind
speed based on a constant power law exponent (α). How-
ever, the surface-layer wind profile is mainly controlled by
the surface roughness, friction velocity, and the atmospheric
stability (Gryning et al., 2007). The surface layer is where
obstructions such as trees, buildings, hills, and valleys cause
turbulence and reduce the wind speed (Coleman et al., 2021;
Solanki et al., 2022). Due to the influence of an inhomoge-
neous underlying surface and ubiquitous atmospheric turbu-
lence, wind speed varies constantly and greatly in the vertical
(Tieleman, 1992). Especially above the surface layer, factors
such as the Coriolis force, baroclinity, and wind shear in-
crease the complexity of the wind profile (Brümmer, 1991).
As a result, the α has spatiotemporal variability and depends
on a variety of factors, such as terrain, time, and height (Li et
al., 2018). Therefore, the assumption of a constant α poses
great challenges and uncertainties to wind energy assess-
ment. Some studies use more complex models to improve
the PLM, such as the perturbation theory (Sen et al., 2012)
and the bivariate wind speed–wind shear model (Jung et al.,
2017). These studies confirm that there is a complex non-
linear relationship between surface observations and wind
speed at the wind turbine hub height. Therefore, one of the
greatest challenges is to develop an accurate method to de-
scribe the nonlinear transfer from surface observations to
wind speed at wind turbine hub height.

With the development of machine learning (ML) tech-
nology, ML algorithms have been widely used in the field
of wind speed and wind power prediction (Magazzino et
al., 2021). Chi et al. (2015) compared two wind speed-
forecasting mechanisms in China based on linear regres-
sion and support vector machine algorithms. They find that
ML algorithms have better accuracy in solving the nonlinear
problem. Lahouar and Slama (2017) use several meteorolog-
ical factors to forecast wind power based on a random forest
(RF) model. The results indicate that, compared with phys-
ical and statistical approaches, the ML model can achieve
better accuracy when coping with problems that cannot be
analytically defined. Therefore, it is worth trying to use ML
algorithms to retrieve the wind speed at wind turbine hub
height from available observations.

Given the abovementioned problems, we attempt to use a
ML algorithm known as RF to retrieve wind speed at wind
turbine hub height from a radar wind profiler (RWP) and sur-
face synoptic observations. An RF model has been trained
based on the surface in situ wind speed, upper-height RWP
wind speed, and corresponding surface meteorological data
from May 2018 to August 2020. The performances of the
classical PLM model and the RF model are then compared.
Next, the wind speeds from the RF model are used to evaluate
the wind power. The results of our study can provide useful
information for the development of the wind energy indus-
try in coastal China. The observational data are introduced in
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Figure 1. (a, b) Geographical distribution and (c) surface type of
the radar wind profiler station at Qingdao. The surface type photo is
provided by Google Earth (© Google Maps).

Sect. 2. The RF model construction and wind energy evalua-
tion method are displayed in Sect. 3. Section 4 discusses the
accuracy of the RF model and the variation in wind energy
resources. A summary of results is presented in Sect. 5.

2 Materials and data

2.1 RWP data

The RWP is a ground-based remote sensing device that is
used to measure the atmospheric wind profiles from the sur-
face to 5–8 km a.g.l. (B. Liu et al., 2019; Guo et al., 2021a).
It has high and low detection modes in the vertical direc-
tion, and their corresponding vertical resolutions are 120 and
60 m, respectively (Liu et al., 2020; Chen et al., 2023). Nev-
ertheless, the wind profiles near the ground surface, espe-
cially those below 300 m a.g.l., are usually highly uncertain
due to the influence of the ground and intermittent clutter
(May and Strauch, 1998; Allabakash et al., 2019). There-
fore, there exists a large data gap between ground surface and
the lowest measurement height provided by the RWP. Here,
the RWP data are obtained at Qingdao (36.33◦ N, 120.23◦ E),
which is a typical coastal synoptic weather station. The spa-
tial distribution and surface type of this station are shown
in Fig. 1. Geographically, Qingdao station is located on the
south of Shandong Peninsula and lies to the west of the Yel-
low Sea. To be more specific, this station is set up in a sub-
urb surrounded by cropland. The altitude of this station is
12 m above mean sea level. The hourly wind speed (WS300)
and direction (WD300) data at 300 m a.g.l. are obtained from
1 May 2018 to 31 August 2020. The original RWP data at
6 min intervals have not been released temporarily but can
be requested upon reasonable demand by contacting Jian-
ping Guo (email: jpguocams@gmail.com).

2.2 Anemometer

The wind cup anemometer can measure the instantaneous
wind speed and is installed at 10 m a.g.l. (Mo et al., 2015).
The sensing part of the wind cup anemometer is composed
of three or four conical or hemispherical empty cups. It can
provide surface wind data with an error of less than 10 %
(Zhang et al., 2020). This device is also installed at Qing-
dao station. Here, the 10 m wind speed (WS10) and direction
(WD10) data are also obtained from 1 May 2018 to 31 Au-
gust 2020. The WS10 data are processed into hourly average
values to match the RWP data.

2.3 Radiosonde data

The radiosonde (RS) provides the vertical profiles of wind
speed and wind direction at 5–8 m intervals (Guo et al.,
2020). The accuracy of RS wind speed is within 0.1 m s−1

in the PBL (Guo et al., 2021b). One noteworthy drawback
is that the operational RS can provide observations of wind
profiles only twice per day: 08:00 and 20:00 local solar time
(LST). The Qingdao station is equipped with both an RS and
an RWP. The RS data also collect from 1 May 2018 to 31
August 2020.

2.4 ERA5 data

The ERA5 is the reanalysis data combining model data and
observations, which provides global hourly estimates of at-
mospheric variables (Hoffmann et al., 2019). The horizontal
resolution can reach 0.25× 0.25◦, and there are 137 verti-
cal levels in the vertical direction. “ERA5 hourly data on
single levels from 1959 to present” is a dataset of ERA5
which can provide a series of surface parameters such as
temperature, humidity, pressure, and radiation (Hersbach et
al., 2020). Here, nine parameters have been collected, includ-
ing Charnock coefficient (Char), forecast surface roughness
(FSR), friction velocity (FV), dew point (DP), temperature
(Temp), pressure (Pres), net solar radiation (Rn), latent heat
flux (LHF), and sensible heat flux (SHF). Char, FSR, and
FV are related to surface roughness and can evaluate the in-
fluence of different surface types on the wind speed in the
surface layer. DP, Temp, and Pres are the meteorological pa-
rameters associated with wind speed. Rn, LHF, and SHF in-
dicate the solar radiation level, which is directly related to
the generation of wind. According to the longitude and lati-
tude information of the Qingdao station, the grid where the
RWP station is located is selected, and those parameters in
the corresponding grid are obtained accordingly. These data
are obtained from 1 May 2018 to 31 August 2020.

3 Methods

The schematic diagram of surface-layer wind profile obser-
vations is shown in Fig. 2. The wind mast or tower can pro-
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Figure 2. The schematic diagram of surface-layer wind profile ob-
servations. The photos are provided by Baidu (© Baidu).

vide wind speed data below 100 m a.g.l. (Durisic et al., 2012;
J. Liu et al., 2018). The RWP can measure the wind profiles
from 300 m to a height of 5–8 km a.g.l. (B. Liu et al., 2019). It
leads to a gap (100 to 300 m) in the observations of the wind
profile. At present, the PLM is most often applied to extrap-
olate the surface wind speed to the wind turbine hub height,
such as wind speed at 120 m (WS120), 160 m (WS160), and
200 m (WS200) a.g.l.

3.1 Power law method

The PLM was proposed by Hellman et al. (1914). It assumes
that the wind speed below 150 m in the PBL varies exponen-
tially with height. As a result, the wind speed at wind turbine
hub height is typically estimated using the following formula
(Abbes et al., 2012):

v2 = v1×

(
h2

h1

)α
, (1)

where v1 and v2 are the wind speed at height h1 and h2, re-
spectively. The α is the power law exponent, which varies
with time, altitude, and location (Durisic et al., 2012). In en-
gineering applications, the value of α is determined by the
terrain type and generally is estimated to range from 0.1 to
0.4 (Li et al., 2018). Here, the general value of α for coastal
topography is set to 0.15 based on former studies (Patel et
al., 2005; Banuelos-Ruedas et al., 2010). However, Jung et
al. (2021) pointed out that the error in the wind power den-
sity estimation over China can reach 30 % based on a con-
stant α value. Therefore, we attempt to use an ML algorithm
to obtain WS120, WS160, and WS200.

3.2 RF algorithm

RF is an ensemble ML method which has been widely used
in regressive calculations (Breiman, 2001). It is a method to
integrate many decision trees into forests and predict the re-
sult. A schematic diagram of RF is shown in Fig. S1. RF is
composed of many decision trees, and each decision tree is
irrelevant. The performance of RF is determined by the ag-
gregation of the results of all the trees (Ma et al., 2021). For
the RF model, the number of trees (N ) is an important param-
eter to achieve the optimal performance of the model. Further
detailed information can be found in Breiman (2001).

3.2.1 Inputs for RF

In the construction of the RF model, it is necessary to obtain
the relevant variables that may affect the surface wind profile
according to the physical mechanism and previous research.
At present, the PLM is often used to calculate the wind speed
at hub height. It confirms that the wind speed at hub height
is related to the wind speed at other heights (Durisic et al.,
2012; Li et al., 2018). Therefore, WS10, WD10, WS300, and
WD300 are selected as inputs. The surface wind profile also
depends on the surface roughness, FV, and the atmospheric
stability (Gryning et al., 2007) so that FSR, FV, and Char are
also regarded as inputs. The higher FSR causes a slower wind
speed in the surface layer. The FV is a theoretical wind speed
at the Earth’s surface which is used to calculate the way wind
changes with height near the surface (Stull, 1988). Moreover,
considering that the generation of wind is closely associated
with uneven heating of the Earth’s surface by solar radiation
(Solanki et al., 2022), the Rn, LHF, and SHF are also se-
lected as input variables. Additionally, some studies use at-
mospheric temperature and pressure as input to improve the
accuracy of wind speed predictions (Chi et al., 2015). Here,
we also regard DP, Temp, and Pres as the input variables. The
reference value, also included as input in the RF model, is
WS120, WS160, and WS200 measured from RS. These values
are listed in Table S1.

3.2.2 Feature selection

To estimate WS120, WS160, and WS200, we need to build
an RF model for 120 m (RF120), 160 m (RF160), and 200 m
(RF200), respectively. For each model, it is necessary to select
the main features from the inputs to avoid data redundancy
and reduce the complexity of the model (Ma et al., 2021).
Following the research of De Arruda Moreira et al. (2022),
the inputs which cannot cause a 2 % reduction in correla-
tion coefficient are regarded as irrelevant features and are
removed. Figure 3 shows the importance analysis of inputs
for three RF models. The relevant features are marked by red
bars. The irrelevant features are marked by blue bars, which
are not regarded as final inputs in three RF models. For three
RF models, the relevant features are WS10, FV, Char, SHF,
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and WS300. It indicates that the factors such as surface fric-
tion, heat transfer, and upper-height wind speed constraints
are considered in the construction of RF models. In addition,
it is surprising that FSR has such low importance in three RF
model constructions. FSR is a measure of surface resistance,
which directly affects the near-surface wind speed (Gryning
et al., 2007). At a land station, FSR is derived from the veg-
etation type (Li et al., 2021). The surface type of Qingdao
station is cropland. Li et al. (2021) confirms that the FSR
for cropland is most likely up to 0.3 m. In training data, the
FSR from ERA5 also approximates a constant value (0.3 m).
Since the constant variable has no meaning for RF model
construction, the RF model divides FSR into irrelevant vari-
ables. Therefore, the final inputs for three RF models are
WS10, FV, Char, SHF, and WS300.

3.2.3 Tuning parameter

The RF algorithm requires the N to be setup in order to
avoid overfitting in the training dataset (Ma et al., 2021).
Here, we use the RF algorithm for regression in MAT-
LAB R2020b. The code and usage of RF are found at the
MATLAB help center (https://ww2.mathworks.cn/help/stats/
treebagger.html, last access: 15 November 2022). The spe-
cific tuning parameter process of the RF model is presented
as follows: the N value varies from 1–500 with an interval
of 10. Correlation coefficient (R) and root mean square er-
ror (RMSE) are used to evaluate the accuracy of the model.
We need to set an appropriate N value to maximize R and
minimize RMSE. Figure S2 shows the tuning parameter pro-
cess for the N of three RF models. For RF120, it was found
that the R increased when the N value increased, while the
R is almost unchanged when the N value is greater than 100.
When N equals 200, R reaches the maximum value (0.82)
and RMSE reaches the minimum value (1.68 m s−1). There-
fore, the N value is set to 200 for RF120. Moreover, accord-
ing to the same tuning parameter process, the N values are
set to 300 and 150 for RF160 and RF200, respectively. Af-
ter determining the final inputs and N values, the three RF
models were trained and tested. At Qingdao station, a total
of 746 sample data are obtained after data matching. We use
the fivefold crossover to train the RF models. The test results
are discussed in Sect. 4.1.

3.2.4 Sensitivity analysis

The accuracy and generalization of the RF model depend
on training and testing samples (Ma et al., 2021). However,
the training and testing samples are obtained at 08:00 and
20:00 LST. It needs to be discussed whether the RF model
also applies to other times. This depends on whether the RF
model has enough generalization for the training samples and
whether the inputs at other times have appeared in the train-
ing samples. Figures S3–S5 show the differences between
estimated wind speed and observed wind speed of the three

RF models, which are a function of the inputs. For the three
RF models, the deviations are relatively stable and do not
change with the increase in inputs. It indicates that the three
RF models have good generalization for the training and test-
ing samples. This is because RF tends to increase random
disturbance in the sample space, parameter space, and model
space, thereby reducing the impact of “cases” and improving
the generalization ability (Breiman, 2001). Moreover, Fig. S6
shows the distribution of inputs at different times. The dashed
red lines represent the maximum and minimum values of
each variable in training samples. In the range of the red line,
the three RF models can provide stable output due to its good
generalization ability. It can be found that almost all the in-
puts have appeared in training samples. Therefore, the three
RF models have sufficient generalization and can be used at
other times.

3.3 Assessment methods of wind energy

For the wind speed at hub height, a series of indicators have
been used to evaluate wind energy, such as Weibull distribu-
tion and wind power density (WPD) (Pishgar-Komleh et al.,
2015). These parameters are commonly used to evaluate the
wind energy at a certain station (Fagbenle et al., 2011; J. Liu
et al., 2018).

3.3.1 Weibull distribution

The Weibull distribution can calculate the cumulative prob-
ability F (v) and probability density f (v) function of WS120
in a certain period of time, which are expressed as follows
(Chang et al., 2011):

F (v)= 1− exp
[
−

(v
c

)k]
, (2)

f (v)=
dF (v)

dv
=

(
k

c

)(v
c

)k−1
exp

[
−

(v
c

)k]
, (3)

where v is WS120, and k and c are the shape parameters of the
Weibull distribution. Higher c indicates larger wind speed,
while the k indicates wind stability. Saleh et al. (2012) com-
pared different methods to estimate k and c and pointed out
that the method of moments is recommended in estimating
the Weibull shape parameter. Therefore, we use the method
of moments to calculate the k and c, which are as follows
(Rocha et al., 2012):

k =
(σ
v̄

)−1.086
, (4)

c =
v̄

T
(

1+ 1
k

) , (5)

where v̄ and σ are the mean and square deviation of WS120,
respectively. 0 is the gamma function, which has a standard
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Figure 3. Importance analysis of inputs for the RF model at (a) 120 m, (b) 160 m, and (c) 200 m.

form as follows:

T (x)=

∞∫
0

e−uux−1du. (6)

3.3.2 Wind power density

WPD is the wind energy per unit area that the airflow passes
vertically in unit time and generally takes the following form
(Akpinar et al., 2005):

WPD=
1
2
ρc3T

(
k+ 3
k

)
, (7)

where ρ is the air density, k and c are the shape parameters of
the Weibull distribution (Eqs. 4 and 5), and 0 is the gamma
function (Eq. 6). In addition, the absolute percentage error
(APE) is used to quantify the differences in wind energy as-
sessment based on different methods. The APE is calculated
by

APE=
|WPDRF−WPDPLM|

WPDRF
· 100%, (8)

where WPDRF and WPDPLM are calculated by the wind
speed from RF and the PLM, respectively.

4 Results and discussion

4.1 Intercomparison of wind speed using different
methods

Figure 4 shows the wind profile from different methods at
different times. The red, black, and blue lines represent the
mean wind speed from RS, the PLM, and RF, respectively.
For the PLM, the retrieved results below 80 m a.g.l. are con-
sistent with the RS observations. Gryning et al. (2007) also
pointed out that the wind profile based on surface-layer the-
ory is valid up to a height of 50–80 m. Above 80 m a.g.l., the

wind speeds retrieved by the PLM deviate from the RS ob-
servations. This deviation is increasing with the height. The
comparison results between the PLM and RS at 120, 160,
and 200 m a.g.l. (Fig. 5) also confirmed it. This is due to the
fact that above the surface layer, the Coriolis force, baroclin-
ity, and wind shear increase the complexity of the wind pro-
file (Brümmer, 1991). Moreover, most of estimated results
from the PLM are underestimated when the observed wind
speed is high, especially at 200 m a.g.l. The reason is that the
surface wind profile is affected by turbulence, surface fric-
tion, and other factors (Tieleman, 2021; Solanki et al., 2022).
The turbulence caused by an inhomogeneous underlying sur-
face can change the wind direction and reduce the horizon-
tal wind speed (Coleman et al., 2021). Especially in coastal
areas, the sea–land interaction and complex surface types
make the variations in near-surface wind profiles more com-
plex. The simple exponential relationship is unable to ob-
tain the surface wind profile with high accuracy, especially at
high-wind-speed conditions. By comparison, WS120, WS160,
and WS200 retrieved from RF are closer to RS observations.
Compared with the PLM, the R and RMSE between the ob-
served wind speed and the estimated wind speed from RF at
three heights are significantly improved (Fig. 5). This is due
to the fact that the surface friction (FV), heat transfer (SHF),
and upper-height wind speed constraints (WS300) are consid-
ered in the construction of a RF model, which can improve
the accuracy of the model. Moreover, it notes that the three
RF models tend to slightly overestimate small values and un-
derestimate high values. The reason is the small number of
training samples at high and low values, resulting in the re-
duction in RF model generalization. Overall, it can be seen
from the metrics of R and RMSE that the wind speed from
the RF model is better than that from the PLM.

In addition, for both the PLM and RF, the retrieved wind
profile at 20:00 LST is closer to the RS observations. The
comparisons between the observed wind speed and the esti-
mated wind speed for the PLM and RS at different times are
shown in Fig. S7. The fitting results of the PLM and RF at
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Figure 4. Vertical profiles of the wind speed from different meth-
ods at (a) all times, (b) 08:00, and (c) 20:00 LST. Red, black, and
blue lines represent mean wind profile from RS, the PLM, and RF,
respectively. Corresponding color shading areas represent the stan-
dard deviation.

20:00 LST are slightly higher than those at 08:00 LST. It indi-
cates that the performance of the PLM and RF vary with the
hour of the day. This is because the wind profile depends not
only on the surface friction but also on the atmospheric strat-
ification (Gryning et al., 2007). The surface layer is in an un-
stable stratification due to heat transfer caused by solar radia-
tion during daytime, while the surface layer tends to stabilize
stratification due to surface radiation cooling during night-
time (Yu et al., 2022; Solanki et al., 2022). WS120, WS160,
and WS200 are more vulnerable to the surface turbulence due
to the unstable stratification during daytime. Therefore, the
performance of the PLM and RF at nighttime is better than
that during daytime.

Figure 6 shows the comparisons between the observed re-
sults and the estimated results for the PLM and RF in dif-
ferent seasons. The red, green, blue, and black represent the
spring, summer, autumn, and winter, respectively. At three
heights, the performance of the PLM is the best in winter
and the worst in summer. It shows that the performance of
the PLM is affected by seasonal factors, which is due to the
wind shear varying dramatically with the season (Banuelos-
Ruedas et al., 2010). Pérez et al. (2005) indicate that the
surface-layer wind speed profile is mainly affected by the
convection produced by surface heating in summer. WS120,
WS160, and WS200 are affected by the surface due to the un-
stable stratification, which leads to the PLM performing the
worst in summer. In contrast, during winter, the surface tem-
perature is generally lower than the air temperature aloft cre-
ating a stable inversion (Yu et al., 2022; Liu et al., 2022).
WS120, WS160, and WS200 are disconnected from the sur-
face due to stable stratification. It leads to the PLM perform-
ing the best in winter. As for RF, although the performance
in spring is slightly lower than that in other seasons, the fit-
ting results for the four seasons are significantly improved
compared with the PLM. This indicates that RF is the least
affected by seasons. The reason is that the RF model is less
subjective than the PLM because they are data driven. Over-

Figure 5. Comparisons between observed wind speed and esti-
mated wind speed for (a, c, e) the PLM and (b, d, f) RF at 120, 160,
and 200 m. The gray and black lines are the reference and regres-
sion lines, respectively. The color bar represents the data density.
The asterisk indicates that the correlation coefficient (R) has passed
the t test at a confidence level of 95 %.

all, in terms of stability and accuracy, RF is more suitable for
estimating wind speed at hub height.

4.2 Vertical profiles of wind speed at surface layer

Figure 7 shows the diurnal and seasonal variations in WS120,
WS160, and WS200. The diurnal and seasonal variations in
wind speed at three heights are on average similar to each
other. From the perspective of daily variation, the wind speed
is larger during daytime from 09:00 to 16:00 LST, while it is
lower at nighttime from 00:00 to 04:00 LST. This daily cy-
cle is mainly affected by the solar radiation and the sea–land
breeze. On the one hand, the surface is heated by solar ra-
diation during daytime, warming the low-level air. The con-
vection formed by the rising warm air mass results in high
wind speed during the daytime. After sunset, the surface ra-
diation cools and the air layer tends to stabilize, resulting in
a gradual decrease in wind speed (R. Liu et al., 2018). On
the other hand, the difference in specific heat capacity be-
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Figure 6. Comparisons between observed wind speed and estimated wind speed for (a, b, c) the PLM and (d, e, f) RF at 120, 160, and 200 m
in different seasons. The red, green, blue, and black represent spring, summer, autumn, and winter, respectively. The asterisk indicates that
the correlation coefficient (R) has passed the t test at a confidence level of 95 %.

tween sea and land can form the difference in thermal prop-
erties between sea and land. The difference in air pressure is
obvious, which is easy to form sea–land breezes (Li et al.,
2020). Similar diurnal variations in 10 m wind speed are also
observed at three other stations in China (Liu et al., 2013).
From the perspective of seasonal variation, the wind speed is
large in spring and winter and is low in summer and autumn.
This is because the influence of the East Asian Monsoon and
Mongolian cyclones (Yu et al., 2016; Zheng et al., 2020).
The large-scale synoptic systems in China have a relatively
high occurrence frequency during the cold season (spring and
winter), which results in the higher wind speed than in the
warm season (summer and autumn) (F. Liu et al., 2019).

The histograms of WS120, WS160, and WS200 with cor-
responding Weibull distributions are plotted in Fig. 8. The
blue bar and pink lines represent occurrence probability and
Weibull distributions, respectively. Moreover, the mean wind
speed and Weibull distribution parameters for three heights
are listed in Table 1. The occurrence probabilities of WS120,
WS160, and WS200 are the unimodal distribution, with a peak
probability at medium wind speed (about 5 m s−1) and a low
probability at high and low wind speeds. The mean WS120,
WS160, and WS200 are 5.84, 6.26, and 6.57 m s−1, which
gradually increase with height. The lower wind speed near
the ground is caused by the influence of underlying surface
roughness and surface friction (Li et al., 2018, 2020). In
addition, there is a deviation between the probability den-
sity function and the frequency of occurrence at some sta-
tions, which is because the Weibull distribution generally
has a long tail effect or a right-skewed distribution (Pishgar-

Komleh et al., 2015; Ali et al., 2018). Overall, the Weibull
distribution matches with the frequency of wind speed at all
stations. Therefore, the Weibull distribution parameters can
be applied for the wind energy assessment.

4.3 Influence of wind speed from different methods on
WPD

Figure 9 shows the diurnal variations in WPD from the PLM
and RF at 120, 160, and 200 m a.g.l. The solid and dotted red
lines represent the variation in WPD from RF and the PLM,
respectively. The gray bar represents the APE of WPD be-
tween RF and the PLM. The diurnal pattern of WPD from RF
is like that from the PLM. At three heights, the hourly mean
WPD is larger during daytime from 09:00 to 16:00 LST with
a peak at 14:00 LST and is lower at nighttime from 00:00
to 04:00 LST. On the contrary, the APE is lower during day-
time (08:00 to 18:00 LST) and larger at nighttime (20:00 to
06:00 LST). At 120 m, the mean APEs during daytime and
nighttime are 14.09 % and 35.80 %, respectively. Consider-
ing that the results from RF are underestimated at high-wind-
speed conditions, the APE of WPD between the PLM and
actual observations during daytime should be slightly greater
than 14.09 %. Moreover, the diurnal variations in APE at 160
and 200 m a.g.l. generally resemble the features obtained at
120 m a.g.l. But the APE of WPD between RF and the PLM
increases with the height. These results indicate that the PLM
is more suitable for wind energy assessment in the daytime,
and the error in wind energy assessment based on the PLM
is gradually increased as the height increases.
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Figure 7. Monthly and diurnal cycles of (a) WS120, (b) WS160, and (c) WS200 from 1 May 2018 to 31 August 2020. The color bar represents
the wind speed from the RF model.

Table 1. Statistics for the Weibull distribution of WS120, WS160, and WS200 from 1 May 2018 to 31 August 2020.

Height (m) Mean wind Standard Weibull shape Weibull scale
speed (m s−1) deviation (m s−1) factor k factor c (m s−1)

120 5.84 2.54 2.47 6.58
160 6.26 2.59 2.60 7.05
200 6.57 2.80 2.52 7.40

Figure 10 shows the monthly variations in WPD from the
PLM and RF at 120, 160, and 200 m a.g.l. The monthly vari-
ation in WPD from RF is also similar to that from the PLM.
The monthly WPD is relatively high for the period from
March to May, as compared to the lower values from June
to October. At 120 m, the APE is largest in summer and is
lowest in winter. The seasonal APEs during spring, sum-
mer, autumn, and winter are 23.65 %, 40.83 %, 19.67 %, and
12.62 %, respectively. The monthly variations in APE at 160
and 200 m are consistent with that at 120 m. It indicates that
the PLM is more suitable for wind energy assessment in au-
tumn and winter. In addition, the APEs during spring at 120,
160, and 200 m are 23.65 %, 28.12 %, and 34.22 %, respec-
tively. Due to the performance of the RF model being the
worst in spring, the APE of WPD between the PLM and the

real value during spring may increase. Jung et al. (2021) also
find that the global median absolute percentage error in the
wind energy estimations is 36.9 % assuming the power law
exponent is 0.14. Overall, the PLM has some limitations in
wind energy assessment above 100 m. When using the PLM
to evaluate wind energy at a greater height, it is necessary to
pay attention to its errors. Moreover, the use of an RF model
that takes the factors such as surface friction, heat transfer,
and upper-height wind speed constraints into account is sug-
gested to evaluate wind energy.

5 Summary and conclusions

The traditional methods such as the PLM used to estimate
wind speed at hub height generally assume a constant ex-
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Figure 8. Probability distribution and Weibull distribution of (a)
WS120, (b) WS160, and (c) WS200 from 1 May 2018 to 31 August
2020. The blue bar and pink lines represent occurrence probability
and Weibull distributions, respectively.

Figure 9. Diurnal variation in the wind power density (WPD) at
(a) 120 m, (b) 160 m, and (c) 200 m. The solid and dotted red lines
represent WPD from RF and the PLM, respectively. The gray bar
represents the absolute percentage error (APE) of WPD between
RF and the PLM.

ponent α in establishing the power law relationship between
wind speeds at surface and hub height, which inevitably leads
to large uncertainties. To confront this challenge, this study

Figure 10. Similar to Fig. 9 but for the monthly variation.

uses the RF algorithm to retrieve the wind profile based on
the RWP and surface meteorological data from May 2018 to
August 2020.

The comparison against observations indicates that WS120
values estimated from RF are better than those from the PLM
given the relatively higher R (0.93 versus 0.89) and smaller
RMSE (1.09 m s−1 versus 1.50 m s−1). Particularly, the per-
formance of the PLM declines with height. Especially at
200 m, the R and RMSE from the PLM change to 0.78 and
2.42 m s−1, respectively. In contrast, the RF model maintains
good accuracy at different heights. The R (RMSE) values
for the RF model at 160 and 200 m are 0.91 (1.29 m s−1)
and 0.91 (1.48 m s−1), respectively. These results show that
above the surface layer, the wind speeds from the PLM de-
viate from the observed value. The RF model is more suit-
able for retrieving the hub-height wind speed when the hub
height is extended above the surface layer. Overall, the RF
model shows advantages over the traditional PLM. This is
because the RF model considers well the influence of near-
surface environmental parameters, such as friction velocity
and Charnock coefficient. Moreover, the heat transfer and
upper-height wind speed constraints are also considered in
the construction of the RF model. Based on the wind speed
from RF, the diurnal and seasonal variations in wind energy
are then analyzed. The hourly mean WPD is larger from
09:00 to 16:00 LST with a peak at 14:00 LST. WPD is rela-
tively high in spring and winter, as compared to the lower val-
ues in summer and autumn. Finally, the differences in WPD
between RF and the PLM at different heights are investi-
gated. At 120 m, the mean APEs of WPD between RF and the
PLM during daytime and nighttime are 14.09 % and 35.80 %,
respectively. Moreover, the seasonal APE at 120 m is largest
in summer (40.83 %) and is lowest in winter (12.62 %). In ad-
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dition, the mean APEs at 120, 160, and 200 m are 24.19 %,
27.99 %, and 32.57 %, respectively. These results indicate
that there are some errors in the wind energy evaluation based
on wind speed from the PLM. Therefore, when retrieving
upper-height wind speed, it is suggested to combine more
observation or auxiliary data to build a more accurate model,
such as an RF model. In the absence of other observation
data, it is necessary to pay attention to the errors when using
the PLM to evaluate wind energy at greater heights.

Our work provides a new pathway to fill the data gap of
wind speed at the hub height for the high capability of the
state-of-the-art ML algorithm, which lays a solid foundation
for more robust wind energy assessments. However, the high-
precision wind profile estimate is only one part of the effi-
cient utilization of wind energy resources. The cost of wind
turbines, topography conditions, and other factors also need
more attention, which deserves further investigation in the
future.

Code and data availability. The output data and codes used
in this paper can be provided for non-commercial research
purposes upon reasonable request (Jianping Guo, email: jpguo-
cams@gmail.com). The anemometer data can be downloaded from
http://www.nmic.cn/data/cdcdetail/dataCode/A.0012.0001.html
(National Meteorological Science Data Center, 2023a). The
RS data can be downloaded from http://www.nmic.cn/data/
cdcdetail/dataCode/B.0011.0001C.html (National Meteorological
Science Data Center, 2023b). The ERA5 data can be down-
loaded from https://cds.climate.copernicus.eu/cdsapp#!/dataset/
reanalysis-era5-single-levels?tab=overview (ECMWF, 2023).

Supplement. The supplement related to this article is available
online at: https://doi.org/10.5194/acp-23-3181-2023-supplement.

Author contributions. The study was completed with coopera-
tion between all authors. JG and BL designed the research frame-
work. BL and JG conducted the experiment and wrote the paper.
XM, HL, SJ, YM, and WG analyzed the experimental results and
helped work on the manuscript.

Competing interests. The contact author has declared that none
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Financial support. This research has been supported by the Na-
tional Natural Science Foundation of China (grant no. 42001291),
the Fundamental Research Funds for the Central Universities (grant

no. 2042022kf1003), and the Open Grants of the State Key Labora-
tory of Severe Weather (grant no. 2021LASW-B09).

Review statement. This paper was edited by Dantong Liu and
reviewed by three anonymous referees.

References

Abbes, M. and Belhadj, J.: Wind resource estimation and wind
park design in El-Kef region, Tunisia. Energy, 40, 348–357,
https://doi.org/10.1016/j.energy.2012.01.061, 2012.

Akpinar, E. K. and Akpinar, S.: An assessment on seasonal
analysis of wind energy characteristics and wind turbine
characteristics, Energy Convers. Manage., 46, 1848–1867,
https://doi.org/10.1016/j.enconman.2004.08.012, 2005.

Ali, S., Lee, S. M., and Jang, C. M.: Statistical analysis of
wind characteristics using Weibull and Rayleigh distributions in
Deokjeok-do Island–Incheon, South Korea, Renew. Energ., 123,
652–663, https://doi.org/10.1016/j.renene.2018.02.087, 2018.

Allabakash, S., Lim, S., Yasodha, P., Kim, H., and Lee, G.: In-
termittent clutter suppression method based on adaptive har-
monic wavelet transform for L-band radar wind profiler, IEEE
T. Geosci. Remote, 57, 8546–8556, 2019.

Banuelos-Ruedas, F., Angeles-Camacho, C., and Rios-
Marcuello, S.: Analysis and validation of the methodology
used in the extrapolation of wind speed data at differ-
ent heights, Renew. Sustain. Energy Rev., 14, 2383–2391,
https://doi.org/10.1016/j.rser.2010.05.001, 2010.

Breiman, L.: Random forests, Mach. Learn., 45, 5–32, 2001.
Brümmer, B.: Wind shear at tilted inversions, Bound.-Lay. Meteo-

rol. 57, 295–308, 1991.
Chang, T. P.: Performance comparison of six numer-

ical methods in estimating Weibull parameters for
wind energy application, Appl. Energ., 88, 272–282,
https://doi.org/10.1016/j.apenergy.2010.06.018, 2011.

Chen, B., Tan, J., Wang, W., Dai, W., Ao, M., and Chen,
C.: Tomographic Reconstruction of Water Vapor Density
Fields From the Integration of GNSS Observations and
Fengyun-4A Products, IEEE T. Geosci. Remote, 61, 1–12,
https://doi.org/10.1109/TGRS.2023.3239392, 2023.

Chi, Z., Haikun, W., Tingting, Z., Kanjian, Z., and Tianhong, L.:
Comparison of two multi-step ahead forecasting mechanisms for
wind speed based on machine learning models, in: 2015 34th
Chinese control Conference (CCC), IEEE, Hangzhou, China,
28–30 July 2015, 8183–8187, 2015.

Coleman, T. A., Knupp K. R., and Pangle P. T.: The effects of het-
erogeneous surface roughness on boundary-layer kinematics and
wind shear, Electronic J. Severe Storms Meteor., 16, 1–29, 2021.

De Arruda Moreira, G., Sánchez-Hernández, G., Guerrero-
Rascado, J. L., Cazorla, A., and Alados-Arboledas, L.: Estimat-
ing the urban atmospheric boundary layer height from remote
sensing applying machine learning techniques, Atmos. Res., 266,
105962, https://doi.org/10.1016/j.atmosres.2021.105962, 2022.

Debnath, M., Doubrawa, P., Optis, M., Hawbecker, P., and Bodini,
N.: Extreme wind shear events in US offshore wind energy areas
and the role of induced stratification, Wind Energ. Sci., 6, 1043–
1059, https://doi.org/10.5194/wes-6-1043-2021, 2021.

https://doi.org/10.5194/acp-23-3181-2023 Atmos. Chem. Phys., 23, 3181–3193, 2023

http://www.nmic.cn/data/cdcdetail/dataCode/A.0012.0001.html
http://www.nmic.cn/data/cdcdetail/dataCode/B.0011.0001C.html
http://www.nmic.cn/data/cdcdetail/dataCode/B.0011.0001C.html
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://doi.org/10.5194/acp-23-3181-2023-supplement
https://doi.org/10.1016/j.energy.2012.01.061
https://doi.org/10.1016/j.enconman.2004.08.012
https://doi.org/10.1016/j.renene.2018.02.087
https://doi.org/10.1016/j.rser.2010.05.001
https://doi.org/10.1016/j.apenergy.2010.06.018
https://doi.org/10.1109/TGRS.2023.3239392
https://doi.org/10.1016/j.atmosres.2021.105962
https://doi.org/10.5194/wes-6-1043-2021


3192 B. Liu et al.: Estimating hub-height wind speed based on a machine learning algorithm

Durisic, Z. and Mikulovic, J.: Assessment of the wind energy re-
source in the South Banat region, Serbia, Renew. Sust. Energ.
Rev., 16, 3014–3023, https://doi.org/10.1016/j.rser.2012.02.026,
2012.

ECMWF: ERA5 hourly data on single levels from 1959 to present,
ECMWF [data set], https://cds.climate.copernicus.eu/cdsapp#!/
dataset/reanalysis-era5-single-levels?tab=overview (last access:
7 March 2023), 2023.

Fagbenle, R. O., Katende, J., Ajayi, O. O., and Okeniyi, J.
O.: Assessment of wind energy potential of two sites
in North-East, Nigeria, Renew Energ., 36, 1277–1283,
https://doi.org/10.1016/j.renene.2010.10.003, 2011.

Gaertner, E., Rinker, J., Sethuraman, L., Zahle, F., Anderson,
B., Barter, G., Abbas, N., Meng, F., Bortolotti, P., Skrzyp-
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