Articles | Volume 22, issue 12
https://doi.org/10.5194/acp-22-7959-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-7959-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Continental thunderstorm ground enhancement observed at an exceptionally low altitude
Institute of Atmospheric Physics, Czech Academy of Sciences,
Prague, Czechia
Faculty of Mathematics and Physics, Charles University, Prague,
Czechia
Ondřej Santolík
Institute of Atmospheric Physics, Czech Academy of Sciences,
Prague, Czechia
Faculty of Mathematics and Physics, Charles University, Prague,
Czechia
Jakub Šlegl
Nuclear Physics Institute, Czech Academy of Sciences,
Husinec-Řež, Czechia
Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czechia
Jana Popová
Institute of Atmospheric Physics, Czech Academy of Sciences,
Prague, Czechia
Zbyněk Sokol
Institute of Atmospheric Physics, Czech Academy of Sciences,
Prague, Czechia
Petr Zacharov
Institute of Atmospheric Physics, Czech Academy of Sciences,
Prague, Czechia
Ondřej Ploc
Nuclear Physics Institute, Czech Academy of Sciences,
Husinec-Řež, Czechia
Gerhard Diendorfer
Department of ALDIS, OVE Service GmbH, Vienna, Austria
Ronald Langer
Institute of Experimental Physics, Slovak Academy of Sciences,
Košice, Slovakia
Nuclear Physics Institute, Czech Academy of Sciences,
Husinec-Řež, Czechia
Radek Lán
Institute of Atmospheric Physics, Czech Academy of Sciences,
Prague, Czechia
Igor Strhárský
Institute of Experimental Physics, Slovak Academy of Sciences,
Košice, Slovakia
Related authors
Emiliano D'Aversa, Fabrizio Oliva, Giuseppe Piccioni, François Poulet, Ivana Kolmašová, Alessandra Migliorini, Gianrico Filacchione, Leigh Fletcher, Alessandro Mura, Yves Langevin, Benoît Seignovert, Davide Grassi, Sébastien Rodriguez, Federico Tosi, Nicolas Ligier, Giuseppe Sindoni, Marco Giardino, and Christina Plainaki
EGUsphere, https://doi.org/10.5194/egusphere-2025-6453, https://doi.org/10.5194/egusphere-2025-6453, 2026
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
A terrestrial lightning event has been spectroscopically observed from the JUICE spacecraft during a flyby, maybe for the first time from space. Though not detected by ground sensors, JUICE confirmed neutral atomic oxygen and nitrogen emissions, with energies and temperatures consistent with average lightning. This observation is a benchmark for Jupiter, a primary JUICE target, where simultaneous hydrogen emissions in different wavelength ranges could be used to identify lightning.
Andrea Kolínská, Ivana Kolmašová, Eric Defer, Ondřej Santolík, and Stéphane Pédeboy
Atmos. Chem. Phys., 25, 1791–1803, https://doi.org/10.5194/acp-25-1791-2025, https://doi.org/10.5194/acp-25-1791-2025, 2025
Short summary
Short summary
We contribute to understanding differences in lightning flashes of opposite polarity by explaining distinct in-cloud processes after return strokes. Using data from multiple sensors, including individual Lightning Mapping Array stations, we reveal that positive flashes sustain strong high-frequency radiation due to the recharging of their in-cloud leader; this is in contrast to negative flashes, for which this activity declines rapidly.
Jaroslav Chum, Ronald Langer, Ivana Kolmašová, Ondřej Lhotka, Jan Rusz, and Igor Strhárský
Atmos. Chem. Phys., 24, 9119–9130, https://doi.org/10.5194/acp-24-9119-2024, https://doi.org/10.5194/acp-24-9119-2024, 2024
Short summary
Short summary
Lightning and extreme weather can endanger people and technology. Despite advances in science, not all the factors that lead to the formation of thunderclouds, to their charging and to lightning ignition are known in detail. This paper shows that lightning frequency may, to some extent, be modulated by solar activity and solar wind. Namely, in the region of the South Atlantic Anomaly of the Earth's magnetic field, it correlates with the polarity and intensity of the solar wind.
Ivana Kolmašová, Ondřej Santolík, and Kateřina Rosická
Atmos. Chem. Phys., 22, 3379–3389, https://doi.org/10.5194/acp-22-3379-2022, https://doi.org/10.5194/acp-22-3379-2022, 2022
Short summary
Short summary
The 2014–2015 winter brought an enormous number of lightning strokes to northern Europe, about 4 times more than their long-term median over the last decade. This unusual production of lightning, concentrated above the ocean and along the western coastal areas, was probably due to a combination of large-scale climatic events like El Niño and the North Atlantic Oscillation, causing increased sea surface temperatures and updraft strengths, which acted as additional thundercloud-charging drivers.
Emiliano D'Aversa, Fabrizio Oliva, Giuseppe Piccioni, François Poulet, Ivana Kolmašová, Alessandra Migliorini, Gianrico Filacchione, Leigh Fletcher, Alessandro Mura, Yves Langevin, Benoît Seignovert, Davide Grassi, Sébastien Rodriguez, Federico Tosi, Nicolas Ligier, Giuseppe Sindoni, Marco Giardino, and Christina Plainaki
EGUsphere, https://doi.org/10.5194/egusphere-2025-6453, https://doi.org/10.5194/egusphere-2025-6453, 2026
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
A terrestrial lightning event has been spectroscopically observed from the JUICE spacecraft during a flyby, maybe for the first time from space. Though not detected by ground sensors, JUICE confirmed neutral atomic oxygen and nitrogen emissions, with energies and temperatures consistent with average lightning. This observation is a benchmark for Jupiter, a primary JUICE target, where simultaneous hydrogen emissions in different wavelength ranges could be used to identify lightning.
Jakub Šlegl, Zbyněk Sokol, Petr Pešice, Ronald Langer, Igor Strhárský, Jana Popová, Martin Kákona, Iva Ambrožová, and Ondřej Ploc
Atmos. Chem. Phys., 25, 8443–8454, https://doi.org/10.5194/acp-25-8443-2025, https://doi.org/10.5194/acp-25-8443-2025, 2025
Short summary
Short summary
We present the first-ever reported gamma-ray glows from a winter thunderstorm in continental Europe. Although two glows were detected at the same time, only one was ended by a discharge. Using advanced instruments such as the Ka-band vertically oriented Doppler radar and SEVAN detector, we gained new insights into the inner thunderstorm processes even in a cloud only 3 km in height.
Andrea Kolínská, Ivana Kolmašová, Eric Defer, Ondřej Santolík, and Stéphane Pédeboy
Atmos. Chem. Phys., 25, 1791–1803, https://doi.org/10.5194/acp-25-1791-2025, https://doi.org/10.5194/acp-25-1791-2025, 2025
Short summary
Short summary
We contribute to understanding differences in lightning flashes of opposite polarity by explaining distinct in-cloud processes after return strokes. Using data from multiple sensors, including individual Lightning Mapping Array stations, we reveal that positive flashes sustain strong high-frequency radiation due to the recharging of their in-cloud leader; this is in contrast to negative flashes, for which this activity declines rapidly.
Marek Sommer, Tomáš Czakoj, Iva Ambrožová, Martin Kákona, Olena Velychko, and Ondřej Ploc
EGUsphere, https://doi.org/10.5194/egusphere-2024-2789, https://doi.org/10.5194/egusphere-2024-2789, 2024
Short summary
Short summary
This work studies powerful bursts of radiation, called Terrestrial Gamma Ray Flashes, which happen during thunderstorms. It explores the use of planes and weather balloons as platforms for radiation detectors to gather data about this phenomenon. Using computer simulations, it was found that balloons might work better for high-altitude storms, while planes could be useful for lower ones. Moreover, the influence of the Terrestrial Gamma Ray Flash strength and its altitude of origin was revealed.
Jaroslav Chum, Ronald Langer, Ivana Kolmašová, Ondřej Lhotka, Jan Rusz, and Igor Strhárský
Atmos. Chem. Phys., 24, 9119–9130, https://doi.org/10.5194/acp-24-9119-2024, https://doi.org/10.5194/acp-24-9119-2024, 2024
Short summary
Short summary
Lightning and extreme weather can endanger people and technology. Despite advances in science, not all the factors that lead to the formation of thunderclouds, to their charging and to lightning ignition are known in detail. This paper shows that lightning frequency may, to some extent, be modulated by solar activity and solar wind. Namely, in the region of the South Atlantic Anomaly of the Earth's magnetic field, it correlates with the polarity and intensity of the solar wind.
Jakub Kákona, Jan Mikeš, Iva Ambrožová, Ondřej Ploc, Olena Velychko, Lembit Sihver, and Martin Kákona
Atmos. Meas. Tech., 16, 547–561, https://doi.org/10.5194/amt-16-547-2023, https://doi.org/10.5194/amt-16-547-2023, 2023
Short summary
Short summary
Storm activity is sometimes associated with the generation of ionizing radiation. Our motivation for performing this research was to understand its origin. Using measuring cars fitted with new instruments, it was found that the duration of lightning is longer than generally thought. In most cases, lightning occurs only inside the cloud; however, rarely, it is also visible outside the cloud. In such cases, the course of emission over time can be used to assume what it looks like inside the cloud.
Ivana Kolmašová, Ondřej Santolík, and Kateřina Rosická
Atmos. Chem. Phys., 22, 3379–3389, https://doi.org/10.5194/acp-22-3379-2022, https://doi.org/10.5194/acp-22-3379-2022, 2022
Short summary
Short summary
The 2014–2015 winter brought an enormous number of lightning strokes to northern Europe, about 4 times more than their long-term median over the last decade. This unusual production of lightning, concentrated above the ocean and along the western coastal areas, was probably due to a combination of large-scale climatic events like El Niño and the North Atlantic Oscillation, causing increased sea surface temperatures and updraft strengths, which acted as additional thundercloud-charging drivers.
Cited articles
Arcanjo, M., Montanyà, J., Urbani, M., Lorenzo, V., and Pineda, N.:
Observations of corona point discharges from grounded rods under
thunderstorms, Atmos. Res., 247, 105238, https://doi.org/10.1016/j.atmosres.2020.105238, 2021.
Bartoli, B., Bernardini, P., Bi, X. J., Cao, Z., Catalanotti, S., Chen, S. Z., Chen, T. L., Cui, S. W., Dai, B. Z., Amone, A. D., Luobu, D., De Mitri, I., Ettorre Piazzoli, B. D., Di Girolamo, T., Di Sciascio, G., Feng, C. F., Feng, Z., Feng, Z., Gao, W., Gou, Q. B., Guo, Y. Q., He, H. H., Hu, H., Hu H., Iacovacci, M., Iuppa, R., Jia, H. Y., Ren, L., Li, H. J., Liu, C., Liu, J., Liu, M. Y., Lu, H., Ma, L. L., Ma, X. H., Mancarella, G., Mari, S. M., Marsella, G., Mastroianni, S., Montini, P., Ning, C. C., Perrone, L., Pistilli, P., Salvini, P., Santonico, R., Shen, P. R., Sheng, X. D., Shi, F., Surdo, A., Tan, Y. H., Vallania, P., Vernetto, S., Vigorito, C., Wang, H., Wu, C. Y., Wu, H. R., Xue, L., Yang, Q. Y., Yang, X. C., Yao, Z. G., Yuan, A. F., Zha, M., Zhang, H. M., Zhang, L., Zhang, X. Y., Zhang, Y., Zhao, J., Ren, Z., Zhu, Z., Zhou, X. X., Zhu, F. R., Zhu, Q. Q., and Alessandro, F. D.: Observation of the thunderstorm-related ground cosmic ray flux variations by ARGO-YBJ, Phys. Rev. D, 97, 042001, https://doi.org/10.1103/PhysRevD.97.042001, 2018.
Biggerstaff, M. I., Zounes, Z., Addison Alford, A., Carrie, G. D., Pilkey, J. T., Uman, M. A., and Jordan, D. M.: Flash propagation and inferred charge structure relative to radar-observed ice alignment signatures in a small Florida mesoscale convective system, Geophys. Res. Lett., 44, 8027–8036, https://doi.org/10.1002/2017GL074610, 2017.
Boudard, A., Cugnon, J., David, J.-C., Leray, S., and Mancusi, D.: New
potentialities of the Liège intranuclear cascade model for reactions
induced by nucleons and light charged particles, Phys. Rev., C87, 014606,
https://doi.org/10.1103/PhysRevC.87.014606, 2013.
Brunetti, M., Cecchini, S., Galli, M., Giovannini, G., and Pagliarin, A.:
Gamma-ray bursts of atmospheric origin in the MeV energy range, Geophys. Res.
Lett., 27, 1599–1602, https://doi.org/10.1029/2000GL003750, 2000.
Chauzy, S. and Soula, S.: Contribution of the ground corona ions to the
convective charging mechanism, Atmos. Res., 51, 279–300, 1999.
Chilingarian, A., Hovsepyan, G., Arakelyan, K., Chilingaryan, S., Danielyan,
V., Avakyan, K., Yeghikyan, A., Reymers, A., and Tserunyan, S.: Space environmental viewing and analysis network (SEVAN), Earth Moon Planets, 104, 195–210, https://doi.org/10.1007/s11038-008-9288-1, 2009.
Chilingarian, A., Daryan, A., Arakelyan, K., Hovhannisyan, A., Mailyan, B.,
Melkumyan, L., and Hovsepyan, G.: Ground-based observations of thunderstorm
correlated fluxes of high-energy electrons, gamma rays, and neutrons, Phys.
Rev. D, 82, 043009, https://doi.org/10.1103/PhysRevD.82.043009, 2010.
Chilingarian, A., Hovsepyan, G., and Hovhannisyan, A.: Particle bursts from
thunderclouds: Natural particle accelerators above our heads, Phys.
Rev. D, 83, 062001, https://doi.org/10.1103/PhysRevD.83.062001, 2011.
Chilingarian, A., Mailyan, B., and Vanyan, L.: Recovering of the energy
spectra of electrons and gamma rays coming from the thunderclouds,
Atmos. Res., 114–115, 1–16, https://doi.org/10.1016/j.atmosres.2012.05.008, 2012.
Chilingarian, A., Chilingaryan, S., and Reymers, A.: Atmospheric discharges
and particle fluxes, J. Geophys. Res.-Space, 120, 5845–5853,
https://doi.org/10.1002/2015JA021259, 2015.
Chilingarian, A., Hovsepyan, G., and Kozliner, L.: Extensive air showers,
lightning, and hunderstorm ground enhancements, Astropart. Phys., 82,
21–35, https://doi.org/10.1016/j.astropartphys.2016.04.006, 2016.
Chilingarian, A., Chilingaryan, S., Karapetyan, T., Kozliner, L.,
Khanikyants, Y. Hovsepyan, G., Pokhsraryan, D., and Soghomonyan, S.: On the
initiation of lightning in thunderclouds, Sci. Rep., 7, 1371,
https://doi.org/10.1038/s41598-017-01288-0, 2017a.
Chilingarian, A., Khanikyants, Y., Mareev, E., Pokhsraryan, D., Rakov, V. A.,
and Soghomonyan, S.: Types of lightning discharges that abruptly terminate
enhanced fluxes of energetic radiation and particles observed at ground
level, J. Geophys. Res.-Atmos., 122, 7582, https://doi.org/10.1002/2017JD026744, 2017b.
Chilingarian, A., Hovsepyan, G., Soghomonyan, S., Zazyan, M., and Zelenyy,
M.: Structures of the intracloud electric field supporting origin of
long-lasting thunderstorm ground enhancements, Phys. Rev. D, 98, 082001,
https://doi.org/10.1103/PhysRevD.98.082001, 2018.
Chilingarian, A., Soghomonyan, S., Khanikyanc, Y., and Pokhsraryan, D.: On
the origin of particle fluxes from thunderclouds, Astropart. Phys.,
105, 54–62, https://doi.org/10.1016/j.astropartphys.2018.10.004, 2019.
Chilingarian, A., Hovsepyan, G., and Sargsyan, B.: Circulation of Radon
progeny in the terrestrial atmosphere during thunderstorms, Geophys.
Res. Lett., 47, e2020GL091155, https://doi.org/10.1029/2020GL091155, 2020a.
Chilingarian, A., Khanikyants, Y., Rakov, V. A., and Soghomonyan, S.:
Termination of thunderstorm-related bursts of energetic radiation and
particles by inverted intracloud and hybrid lightning discharges,
Atmos. Res., 233, 104713, https://doi.org/10.1016/j.atmosres.2019.104713, 2020b.
Chilingarian, A., Karapetyan, T., Zazyan, M., Hovsepyan, G., Sargysan, B., Nikolova, N., Angelov, H., Chum, Jaroslav, and Langer, R.: Maximum strength of the atmospheric electric field, Phys. Rev. D, 103, 043021, https://doi.org/10.1103/PhysRevD.103.043021, 2021.
Chum, J., Langer, R., Baše, J., Kollárik, M., Strhárský, I.,
Diendorfer, G., and Rusz, J.: Significant enhancements of secondary cosmic
rays and electric field at the high mountain peak of Lomnický
Štít in High Tatras during thunderstorms, Earth Planets Space,
72, 28, https://doi.org/10.1186/s40623-020-01155-9, 2020.
Clothiaux, E. E., Miller, M. A., Albrecht, B. A., Ackerman, T. P., Verlinde,
J., Babb, D. M., Peters, R. M., and Syrett, W. J.: An Evaluation of a 94-GHz
Radar for Remote Sensing of Cloud Properties, J. Atmos. Ocean. Technol. 12,
201–229, 1995.
Daidzic, N. E.: A new model for lifting condensation levels estimation,
International Journal of Aviation, Aeronautics, and Aerospace, 6, 1–17,
https://doi.org/10.15394/ijaaa.2019.1341, 2019.
Dwyer J. R. and Uman, M. A.: The physics of lightning, Phys. Rep., 534,
147–241, https://doi.org/10.1016/j.physrep.2013.09.004, 2014.
Dwyer, J. R., Smith, D. M., and Cummer, S. A.: High-energy atmospheric
physics: Terrestrial gamma-ray flashes and related phenomena, Space Sci.
Rev., 173, 133–196,https://doi.org/10.1007/s11214-012-9894-0, 2012.
Eack, K. B., Beasley, W. H., Rust, W. D., Marshall, T. C., and Stolzenburg,
M.: Initial results from simultaneous observation of X-rays and electric
fields in a thunderstorm, J. Geophys. Res., 101, 29637–29640, https://doi.org/10.1029/96JD01705, 1996.
Görsdorf, U., Lehmann, V., Bauer-Pfundstein, M., Peters, G., Vavriv, D.,
Vinogradov, V., and Volkov, V.: A 35-GHz Polarimetric Doppler Radar for
Long-Term Observations of Cloud Parameters – Description of System and Data
Processing, J. Atmos. Ocean. Technol., 32, 675–690, 2015.
Gossard, E. E.: Measurement of Cloud Droplet Size Spectra by Doppler Radar,
J. Atmos. Ocean. Technol., 11, 712–726, 1994.
Gurevich, A. V., Milikh, G. M., and Roussel-Dupre, R.: Runaway electron
mechanism of air breakdown and preconditioning during a thunderstorm, Phys.
Lett. A, 165, 463–468, 1992.
Iida, K., Kohama, A., and Oyamatsu, K.: Formula for Proton–Nucleus Reaction
Cross Section at Intermediate Energies and Its Application, J. Phys. Soc.
Jpn., 76, 044201, https://doi.org/10.1143/JPSJ.76.044201, 2007.
Iudin, D. I., Rakov, V. A., Mareev, E. A., Iudin, F. D., Syssoev, A. A.,
and Davydenko, S. S.: Advanced numerical model of lightning development:
Application to studying the role of LPCR in determining lightning type, J.
Geophys. Res.-Atmos., 122, 6416–6430, https://doi.org/10.1002/2016JD026261, 2017.
Kašpar, M., Müller, M., Crhová, L., E., Polášek, J. F.,
Pop, L., and Valeriánová, A.: Relationship between Czech windstorms
and air temperature, Int. J. Climatol., 37, 11–24, https://doi.org/10.1002/joc.4682,
2017.
Kašpar, P., Santolík, O., and Kolmašová, I.: Unipolar and
bipolar pulses emitted during the development of lightning flashes, Geophys.
Res. Lett., 42, 7206–7213, https://doi.org/10.1002/2015GL064777, 2015.
Kelley, N. A., Smith, D. M., Dwyer, J. R. Splitt M., Lazarus, S.,
Martinez-McKinney, H., Hazelton, B., Grefenstette, B., Lowell, A., and
Rassoul, H. K.: Relativistic electron avalanches as a thunderstorm discharge
competing with lightning, Nat. Commun., 6, 7845, https://doi.org/10.1038/ncomms8845,
2015.
Kochkin, P., van Deursen, A. P. J., Marisaldi, M., Ursi, A., de Boer,
A. I., Bardet, Allasia, C., Boissin, J.-F., Flourens, F., and Østgaard, N.: In-flight observation of gamma ray glows by ILDAS, J. Geophys. Res.-Atmos., 122, 12801–12811, https://doi.org/10.1002/2017JD027405, 2017.
Kochkin, P., Sarria, D., Lehtinen, N., Mezentsev, A., Yang, S., Genov, G.,
Ullaland, K., Marisaldi, M., Østgaard, N., Christian, H. J., Grove, J. E., Quick, M., Al-Nussirat, S., and Wulf, E.: A rapid gamma-ray glow flux reduction observed from 20 km altitude, J. Geophys. Res.-Atmos., 126, e2020JD033467, https://doi.org/10.1029/2020JD033467, 2021.
Kollias, P., Albrecht, B. A., Lhermitte, R., and Savtchenko, A.: Radar
Observations of Updrafts, Downdrafts, and Turbulence in Fair-Weather Cumuli,
J. Atmos. Sci., 58, 1750–1766, 2001.
Kollias, P., Clothiaux, E. E., Miller, M. A., Albrecht, B. A., Stephens, G.
L., and Ackerman, T. P.: Millimeter-Wavelength Radars: New Frontier in
Atmospheric Cloud and Precipitation Research, B. Am. Meteorol. Soc., 88,
1608–1624, 2007.
Kolmašová, I.: data_acp-2022-125, Mendeley Data, V1 [data set], https://doi.org/10.17632/p27tzscvb3.1, 2022.
Kolmašová, I. and Santolík, O.: Properties of unipolar magnetic
field pulse trains generated by lightning discharges, Geophys. Res. Lett.,
40, 1637–1641, https://doi.org/10.1002/grl.50366, 2013.
Kolmašová, I., Santolík, O., Defer, E., Rison, W., Coquillat,
S., Pedeboy, S., Lán, R., Uhlíř, L., Lambert, D., Pinty, J.-P., Prieur, S., and Pont, V.: Lightning initiation: Strong VHF radiation sources accompanying preliminary breakdown pulses during lightning initiation, Sci. Rep., 8, 3650,
https://doi.org/10.1038/s41598-018-21972-z, 2018.
Kolmašová, I., Santolík, O., Defer, E., Kašpar, P.,
Kolínská, A., Pedeboy, S., and Coquillat, S.: Two propagation
scenarios of isolated breakdown lightning processes in failed negative
cloud-to-ground flashes, Geophys. Res. Lett., 47, e2020GL090593,
https://doi.org/10.1029/2020GL090593, 2020.
Kolmašová, I., Soula, S., Santolík, O., Farges, T., Bousquet,
O., Diendorfer, G., Lán, R., and Uhlíř, L.: A frontal thunderstorm with several multi-cell lines found to produce energetic preliminary breakdown, J. Geophys. Res.-Atmos., 127, e2021JD035780, https://doi.org/10.1029/2021JD035780, 2022.
Kudela, K., Chum, J., Kollárik, M., Langer, R., Strhárský, I.,
and Baše, J.: Correlations between secondary cosmic ray rates and
strong electric fields at Lomnický štít, J. Geophys. Res.-Atmos., 122, 10700–10710, https://doi.org/10.1002/2016JD026439, 2017.
Kuroda, Y., Oguri, S., Kato, Y., Nakata, R., Inoue, Y., Ito, C., and Minowa,
M.: Observation of gamma ray bursts at ground level under the thunderclouds,
Phys. Lett. B, 758, 286–291, https://doi.org/10.1016/j.physletb.2016.05.029, 2016.
Lawrence, M. G.: The Relationship between Relative Humidity and the Dew
point Temperature in Moist Air: A Simple Conversion and Applications,
B. Am. Meteorol. Soc., 86, 225–234, https://doi.org/10.1175/BAMS-86-2-225, 2005.
Nag, A. and Rakov, V. A.: Some inferences on the role of lower positive
chargé region in facilitating different types of lightning, Geophys.
Res. Lett., 36, L05815, https://doi.org/10.1029/2008GL036783, 2009.
Novák, P.: The Czech Hydrometeorological Institute's severe storm
nowcasting systém, Atmos. Res., 83, 450–457,
https://doi.org/10.1016/j.atmosres.2005.09.014, 2007.
Novak, P. and Kyznarova, H.: Long-term characteristics of convective storms
in terms of radar data and lightning detection data, Meteorological
bulletin, Vol. 73, Czech Hydrometeorological Institute, Press and Information Department, ISSN 0026-1173, 2020.
Østgaard, N., Christian, H. J., Grove, J. E., Sarria, D., Mezentsev, A.,
Kochkin, P., Lehtinen, N., Quick, M., Al-Nussirat, S., Wulf, E., Genov, G., Ullaland, K., Marisaldi, M., Yang, S., and Blakeslee, R. J.: Gamma ray glow observations at 20-km altitude, J. Geophys. Res.-Atmos., 124, 7236–7254, https://doi.org/10.1029/2019JD030312, 2019.
Parks, G., Mauk, K. B. H., Spiger, R, and Chin, J.: X-ray enhancements
detected during thunderstorm and lightning activities, Geophys. Res. Lett.,
8, 1176–1179, 1981.
Rakov, V. A.: Fundamentals of Lightning, Cambridge University Press,
Cambridge, UK, ISBN 978-1-107-07223-7, 2016.
Rakov, V. A. and Uman, M. A.: Lightning – Physics and effects, Cambridge
University Press, ISBN 9780521583275, 2003.
Rakov, V. A., Thottappillil, R., and Uman, M. A.: Electric field pulses in K
and M changes of lightning ground flashes, J. Geophys. Res., 97, 9935–9950,
1992.
Ryzhkov, A. V. and Zrnic, D. S.: Radar Polarimetry for Weather Observations,
Springer, Berlin/Heidelberg, Germany, vol. 486, ISBN 978-3-030-05093-1, 2019.
Sato, T.: Analytical Model for Estimating Terrestrial Cosmic Ray Fluxes
Nearly Anytime and Anywhere in the World: Extension of PARMA/EXPACS, PLOS
ONE, 10, e0144679, https://doi.org/10.1371/journal.pone.0144679, 2015.
Sato, T.: Analytical Model for Estimating the Zenith Angle Dependence of
Terrestrial Cosmic Ray Fluxes, PLOS ONE, 11, e0160390, https://doi.org/10.1371/journal.pone.0160390, 2016.
Sato, T., Iwamoto, Y., Hashimoto, S., Ogawa, T., Furuta, T., Abe, S., Kai, T., Tsai, P.-E., Matsuda, N., Iwase, H., Shigyo, N., Sihver, L., and Niita, K.: Features of Particle and Heavy Ion Transport code System (PHITS) version 3.02, J. Nucl. Sci. Technol., 55, 684–690, https://doi.org/10.1080/00223131.2017.1419890, 2018.
Schwalt, L., Pack, S., and Schulz, W.: Ground truth data of atmospheric
discharges in correlation with LLS detections, Electr. Pow. Syst.
Res., 180, 106065, https://doi.org/10.1016/j.epsr.2019.106065, 2020.
Shepetov, A., Antonova, V., Kalikulov, O. Kryakunova, O., Karashtin, A.,
Lutsenko, V., Mamina, S., Mukashev, K., Piscal, V., Ptitsyn, M., Ryabov, V.,
Sadykov, T., Saduev, N. Salikhov, N., Shlyugaev, Y., Vildanova, L., Zhukov,
V., and Gurevich, A.: The prolonged gamma ray enhancement and the short radiation burst events observed in thunderstorms at Tien Shan, Atmos. Res.,
248, 105266, https://doi.org/10.1016/j.atmosres.2020.105266, 2021.
Shupe, M. D., Kollias, P., Matrosov, S. Y., and Schneider, T. L.: Deriving
Mixed-Phase Cloud Properties from Doppler Radar Spectra, J. Atmos. Ocean.
Technol. 21, 660–670, 2004.
Šlegl, J., Minářová, J., Kuča, P., Kolmašová,
I., Santolík, O., Sokol, Z., Reitz, G., Ambrožová, I., and Ploc, O.: Response of the Czech RMN network to thunderstorm activity, Radiat. Prot. Dosim., 186, 215–218, 2019.
Soghomonyan, S., Chilingarian, A., and Khanikyants, Y.: Dataset for Thunderstorm Ground Enhancements terminated by lightning discharges, Mendeley Data, V1 [data set], https://doi.org/10.17632/p25bb7jrfp.1, 2021.
Sokol, Z., Minářová, J., and Novák, P.: Classification of
Hydrometeors Using Measurements of the Ka-Band Cloud Radar Installed at the
Milešovka Mountain (Central Europe), Remote Sens., 10, 1674,
https://doi.org/10.3390/rs10111674, 2018.
Sokol, Z., Minářová, J., and Fišer, O.: Hydrometeor
Distribution and Linear Depolarization Ratio in Thunderstorms, Remote
Sens., 12, 2144, https://doi.org/10.3390/rs12132144, 2020.
Takahashi, T.: Riming Electrification as a Charge Generation Mechanism in
Thunderstorms, J. Atmos. Sci., 35, 1536–1548,
https://doi.org/10.1175/1520-0469(1978)035<1536:REAACG>2.0.CO;2, 1978.
Torii, T., Sugita, T., Tanabe, S., Kimura, Y., Kamogawa, M., Yajima, K., and
Yasuda, H.: Gradual increase of energetic radiation associated with
thunderstorm activity at the top of Mt. Fuji, Geophys. Res. Lett., 36,
L13804, https://doi.org/10.1029/2008GL037105, 2009.
Tsuchiya, H., Enoto, T., Yamada, S., Yuasa, T., Nakazawa, K., Kitaguchi,
T., Kawaharada, M., Kokubun, M., Kato, H., Okano, M., and Makishima, K.: Long duration γ ray emissions from 2007 and 2008 winter thunderstorms, J. Geophys. Res., 116, D09113, https://doi.org/10.1029/2010JD015161, 2011.
Wilson, C. T. R.: The acceleration of particles in strong electric fields
such as those of thunderclouds, Proc. Cambridge Philos. Soc., 22, 534–538,
1925.
Zhou, X. X., Wang, X. J., Huang, D. H., and Jia, H. Y.: Effect of near-earth
thunderstorms electric field on the intensity of ground cosmic ray
positrons/electrons in Tibet, Astropart. Phys., 84, 107–114,
https://doi.org/10.1016/j.astropartphys.2016.08.004, 2016.
Short summary
Gamma ray radiation related to thunderstorms was previously observed at the high-altitude mountain observatories or on the western coast of Japan, usually being terminated by lightning discharges. We show unusual observations of gamma rays at an altitude below 1000 m, coinciding with peculiar rapid variations in the vertical electric field, which are linked to inverted intracloud lightning discharges. This indicates that a strong, lower positive-charge region was present inside the thundercloud.
Gamma ray radiation related to thunderstorms was previously observed at the high-altitude...
Altmetrics
Final-revised paper
Preprint