Articles | Volume 22, issue 11
https://doi.org/10.5194/acp-22-7523-2022
https://doi.org/10.5194/acp-22-7523-2022
Research article
 | 
10 Jun 2022
Research article |  | 10 Jun 2022

The roles of the Quasi-Biennial Oscillation and El Niño for entry stratospheric water vapor in observations and coupled chemistry–ocean CCMI and CMIP6 models

Shlomi Ziskin Ziv, Chaim I. Garfinkel, Sean Davis, and Antara Banerjee

Related authors

Influence of the El Niño–Southern Oscillation on entry stratospheric water vapor in coupled chemistry–ocean CCMI and CMIP6 models
Chaim I. Garfinkel, Ohad Harari, Shlomi Ziskin Ziv, Jian Rao, Olaf Morgenstern, Guang Zeng, Simone Tilmes, Douglas Kinnison, Fiona M. O'Connor, Neal Butchart, Makoto Deushi, Patrick Jöckel, Andrea Pozzer, and Sean Davis
Atmos. Chem. Phys., 21, 3725–3740, https://doi.org/10.5194/acp-21-3725-2021,https://doi.org/10.5194/acp-21-3725-2021, 2021
Short summary
Influence of Arctic stratospheric ozone on surface climate in CCMI models
Ohad Harari, Chaim I. Garfinkel, Shlomi Ziskin Ziv, Olaf Morgenstern, Guang Zeng, Simone Tilmes, Douglas Kinnison, Makoto Deushi, Patrick Jöckel, Andrea Pozzer, Fiona M. O'Connor, and Sean Davis
Atmos. Chem. Phys., 19, 9253–9268, https://doi.org/10.5194/acp-19-9253-2019,https://doi.org/10.5194/acp-19-9253-2019, 2019
Short summary
The Matsuno baroclinic wave test case
Ofer Shamir, Itamar Yacoby, Shlomi Ziskin Ziv, and Nathan Paldor
Geosci. Model Dev., 12, 2181–2193, https://doi.org/10.5194/gmd-12-2181-2019,https://doi.org/10.5194/gmd-12-2181-2019, 2019
Short summary

Related subject area

Subject: Gases | Research Activity: Atmospheric Modelling and Data Analysis | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Analytical approximation of the definite Chapman integral for arbitrary zenith angles
Dongxiao Yue
Atmos. Chem. Phys., 24, 5093–5097, https://doi.org/10.5194/acp-24-5093-2024,https://doi.org/10.5194/acp-24-5093-2024, 2024
Short summary
Moist bias in the Pacific upper troposphere and lower stratosphere (UTLS) in climate models affects regional circulation patterns
Felix Ploeger, Thomas Birner, Edward Charlesworth, Paul Konopka, and Rolf Müller
Atmos. Chem. Phys., 24, 2033–2043, https://doi.org/10.5194/acp-24-2033-2024,https://doi.org/10.5194/acp-24-2033-2024, 2024
Short summary
Evaluation of vertical transport in ERA5 and ERA-Interim reanalysis using high-altitude aircraft measurements in the Asian summer monsoon 2017
Bärbel Vogel, C. Michael Volk, Johannes Wintel, Valentin Lauther, Jan Clemens, Jens-Uwe Grooß, Gebhard Günther, Lars Hoffmann, Johannes C. Laube, Rolf Müller, Felix Ploeger, and Fred Stroh
Atmos. Chem. Phys., 24, 317–343, https://doi.org/10.5194/acp-24-317-2024,https://doi.org/10.5194/acp-24-317-2024, 2024
Short summary
Injection strategy – a driver of atmospheric circulation and ozone response to stratospheric aerosol geoengineering
Ewa M. Bednarz, Amy H. Butler, Daniele Visioni, Yan Zhang, Ben Kravitz, and Douglas G. MacMartin
Atmos. Chem. Phys., 23, 13665–13684, https://doi.org/10.5194/acp-23-13665-2023,https://doi.org/10.5194/acp-23-13665-2023, 2023
Short summary
Quantifying stratospheric ozone trends over 1984–2020: a comparison of ordinary and regularized multivariate regression models
Yajuan Li, Sandip S. Dhomse, Martyn P. Chipperfield, Wuhu Feng, Jianchun Bian, Yuan Xia, and Dong Guo
Atmos. Chem. Phys., 23, 13029–13047, https://doi.org/10.5194/acp-23-13029-2023,https://doi.org/10.5194/acp-23-13029-2023, 2023
Short summary

Cited articles

Avery, M. A., Davis, S. M., Rosenlof, K. H., Ye, H., and Dessler, A. E.: Large anomalies in lower stratospheric water vapour and ice during the 2015–2016 El Niño, Nat. Geosci., 10, 405–409, 2017. a
Banerjee, A., Chiodo, G., Previdi, M., Ponater, M., Conley, A. J., and Polvani, L. M.: Stratospheric water vapor: an important climate feedback, Clim. Dynam., 53, 1697–1710, 2019. a, b
Boser, B. E., Guyon, I. M., and Vapnik, V. N.: A training algorithm for optimal margin classifiers, in: Proceedings of the fifth annual workshop on Computational learning theory (COLT '92), Association for Computing Machinery, New York, NY, USA, 144–152, https://doi.org/10.1145/130385.130401, 1992. a
Breiman, L.: Random forests, Machine Learning, 45, 5–32, 2001. a
Brinkop, S., Dameris, M., Jöckel, P., Garny, H., Lossow, S., and Stiller, G.: The millennium water vapour drop in chemistry–climate model simulations, Atmos. Chem. Phys., 16, 8125–8140, https://doi.org/10.5194/acp-16-8125-2016, 2016. a
Download
Short summary
Stratospheric water vapor is important for Earth's overall greenhouse effect and for ozone chemistry; however the factors governing its variability on interannual timescales are not fully known, and previous modeling studies have indicated that models struggle to capture this interannual variability. We demonstrate that nonlinear interactions are important for determining overall water vapor concentrations and also that models have improved in their ability to capture these connections.
Altmetrics
Final-revised paper
Preprint