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Abstract. The relative importance of two processes that help control the concentrations of stratospheric wa-
ter vapor, the Quasi-Biennial Oscillation (QBO) and El Niño–Southern Oscillation (ENSO), are evaluated in
observations and in comprehensive coupled ocean–atmosphere-chemistry models. The possibility of nonlinear
interactions between these two is evaluated both using multiple linear regression (MLR) and three additional
advanced machine learning techniques. The QBO is found to be more important than ENSO; however nonlin-
ear interactions are nonnegligible, and even when ENSO, the QBO, and potential nonlinearities are included,
the fraction of entry water vapor variability explained is still substantially less than what is accounted for by
cold-point temperatures. While the advanced machine learning techniques perform better than an MLR in which
nonlinearities are suppressed, adding nonlinear predictors to the MLR mostly closes the gap in performance with
the advanced machine learning techniques. Comprehensive models suffer from too weak a connection between
entry water and the QBO; however a notable improvement is found relative to previous generations of compre-
hensive models. Models with a stronger QBO in the lower stratosphere systematically simulate a more realistic
connection with entry water.

1 Introduction

Water vapor (WV) provides most of the greenhouse effect in
the atmosphere and of the total water vapor feedback to in-
creasing anthropogenic greenhouse gas emissions; roughly
10% is associated with water vapor in the stratosphere
(Forster and Shine, 1999; Solomon et al., 2010; Dessler et al.,
2013; Wang et al., 2017; Banerjee et al., 2019). The amount
of water vapor that enters the stratosphere is also important
for stratospheric chemistry and specifically the severity of
ozone depletion (Solomon, 1999; Dvortsov and Solomon,
2001; Stenke and Grewe, 2005; Tian et al., 2009; Drdla and

Müller, 2012; Robrecht et al., 2021). Hence, it is important
to understand the factors that control the entry of water va-
por into the stratosphere on all timescales and to consider
whether comprehensive models used for ozone and climate
change assessments represent these factors correctly.

Most of the water vapor in the lower stratosphere tran-
sited from the tropical upper troposphere through the trop-
ical tropopause, and therefore tropical temperatures near the
cold point largely determine lower stratospheric water vapor
concentrations (Mote et al., 1996a; Zhou et al., 2004, 2001;
Fueglistaler and Haynes, 2005a; Fueglistaler et al., 2009;
Randel and Park, 2019). Many processes have been shown
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to modulate these cold-point temperatures, and the goal of
this work is to re-evaluate the influence of these processes,
and in particular their nonlinear interactions, on entry water
vapor. We then consider the ability of comprehensive models
to represent this effect.

The Quasi-Biennial Oscillation (QBO) modulates water
vapor mixing ratios in air entering the stratosphere through
its influence on temperatures in the tropical tropopause re-
gion (Reid and Gage, 1985; Zhou et al., 2001; Niwano et al.,
2003; Zhou et al., 2004; Fujiwara et al., 2010; Liang et al.,
2011; Kawatani et al., 2014; Diallo et al., 2018). Specifi-
cally, warmer cold-point temperatures during the QBO phase
with westerlies near 50 hPa (hereafter wQBO) lead to moist-
ening, and colder temperatures during the QBO phase with
easterlies near 50 hPa (hereafter eQBO) lead to drying of the
stratosphere. Comprehensive climate models typically strug-
gle to capture the downward propagation of the QBO to the
lower stratosphere (Rao et al., 2020a; Richter et al., 2020),
and consistent with this, Smalley et al. (2017) found that the
Chemistry Climate Model Validation Activity 2 (CCMVal2)
models and most of the Chemistry-Climate Model Initiative
(CCMI; Morgenstern et al., 2017) models they considered
struggle to capture an influence of the QBO on entry water.

El Niño (EN), the El Niño–Southern Oscillation (ENSO)
phase with anomalous warming of the tropical eastern Pa-
cific, has been shown to lead to a cooler tropical lower strato-
sphere and warmer tropical troposphere (Free and Seidel,
2009; Randel et al., 2009; Calvo et al., 2010; Simpson et al.,
2011). In addition, EN also forces a Rossby wave response
that extends to the tropopause, whereby anomalously cold
temperatures are present over the central Pacific, and anoma-
lously warm temperatures are present over the Indo-Pacific
warm pool (Yulaeva and Wallace, 1994; Randel et al., 2000;
Zhou et al., 2001; Scherllin-Pirscher et al., 2012; Domeisen
et al., 2019). This zonal dipole in temperature has been
shown to affect water vapor below the cold point: water va-
por decreases in the region with cold anomalies and increases
in the region with warm anomalies by ∼ 25% (Gettelman
et al., 2001; Hatsushika and Yamazaki, 2003; Konopka et al.,
2016).

The net effect of these temperature anomalies on tropical
lower stratospheric water vapor is complex. While the lower
stratosphere clearly was moister following the two largest EN
events in the satellite era (in 1997/1998 and in 2015/2016)
(Fueglistaler and Haynes, 2005a; Avery et al., 2017), moist-
ening also was evident following two of the strongest La
Niña events (in 1998/1999 and 1999/2000). The impact of
more moderate events is less clear, and any net effect is not
statistically significant considering the shortness of the data
record (Garfinkel et al., 2018, 2021). Both La Niña and El
Niño can lead to a moistening if the cold point moves zon-
ally within the tropics (to the central Pacific for El Niño and
to the far western Pacific for La Niña), and even though the
lower stratospheric temperature response is opposite for El
Niño and La Niña, the cold point appears to have warmed

for both strong El Niño and strong La Niña events, explain-
ing the moistening in 1997/1998, 1998/1999, 1999/2000 and
2015/2016 (Garfinkel et al., 2018). There is no consensus
among models as to the sign of the impact of ENSO on water
vapor, with many models predicting a response opposite to
that observed (Garfinkel et al., 2021).

Finally, the strength of the Brewer–Dobson circulation
(BDC) has been found to be important in determining entry
water vapor, with a faster circulation associated with cool-
ing of the cold point and dehydration (Randel et al., 2006;
Dessler et al., 2013; Dessler et al., 2014; Ye et al., 2018).

The net response to these various forcings is often quan-
tified using multiple linear regression (e.g., Dessler et al.,
2013; Smalley et al., 2017), which implicitly assumes that
the response to these forcings is linear, i.e., that the response
to a given magnitude El Niño is equal and opposite to that
of a La Niña event of equal magnitude. This technique also
assumes that the response to, e.g., ENSO and QBO, is the
sum of the linear responses to each individual forcing (Diallo
et al., 2018; Brinkop et al., 2016). Recent work has pointed
out two faults of such an assumption. First, Garfinkel et al.
(2018) and Garfinkel et al. (2021) found that the response to
ENSO is nonlinear in observations (and also in some mod-
els), and hence such a methodology may underestimate the
impact of ENSO on stratospheric water vapor. Second, Yuan
et al. (2014) found that the QBO has a larger amplitude and a
longer period during La Niña conditions than during El Niño.
Hence the difference between the warmer cold-point temper-
atures (CPTs) during wQBO and colder CPTs during eQBO
is larger during La Niña than during El Niño. This strength-
ens earlier findings that the greatest dehydration of air enter-
ing the stratosphere from the troposphere occurs during the
winter under La Niña and easterly QBO conditions (Zhou
et al., 2004; Liang et al., 2011). Specifically, Yuan et al.
(2014) argue that the net effect of ENSO and the QBO is not
just a linear superposition of their independent influences but
the net result of their mutual interaction.

The goal of this work is to reconsider the relative impor-
tance of the QBO and ENSO while taking into considera-
tion the possibility for nonlinearity in the response and to
then consider whether the most recent comprehensive mod-
els are capable of simulating the response. After introducing
the data and methodology in Sect. 2, we evaluate the relative
successes of a multiple linear regression (MLR) and of more
advanced machine learning (ML) techniques with ENSO,
QBO, BDC, and mid-tropospheric temperature as predictors,
in an attempt to find the factors that most succinctly explain
observed interannual water vapor variability. We also con-
sider the fraction of interannual entry water vapor variabil-
ity that can be accounted for by variations of the cold-point
temperature as an upper bound on how much water vapor
variability is predictable from large-scale processes. We then
add two nonlinear predictors to the MLR and demonstrate
that they are as important as, e.g., a linear ENSO predictor.
Finally, we consider the ability of comprehensive coupled
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ocean–atmosphere-chemistry models to simulate the connec-
tion between the QBO and entry water.

2 Data and methodology

2.1 Data

The Stratospheric Water and OzOne Satellite Homogenized
data set (SWOOSH) (Davis et al., 2016) features a merged,
gridded, homogenized and filled water vapor product from
various limb sounding and solar occultation satellites over
the previous ∼ 30 years. The measurements are monthly
means comprised of the following instruments: SAGE-II/III,
UARS HALOE, UARS MLS and Aura MLS. We use the
zonal mean product (latitude, pressure) and the 3D (latitude,
longitude, pressure) product as described in Table 1. The for-
mer has a high latitudinal resolution of 2.5◦ and extends to
the HALOE period (1990s), while the latter has a horizontal
resolution of 20◦× 5◦ but relies on the high sampling rates
available with AURA MLS since 2004. While the latter data
set does include some data as early as 1994, there are many
gaps, and filling these gaps in a self-consistent way is out of
the scope of this analysis. Both data sets have a pressure level
range of 300 to 1 hPa, though our focus is on entry water at
82 and 68 hPa. We use the zonal mean product when focusing
on zonal mean entry water and the 3D product when showing
latitude–longitude maps of regression coefficients.

We examine six models participating in the CCMI and
five coupled chemistry–climate models participating in the
sixth phase of the Coupled Model Intercomparison Project
(CMIP6; Eyring et al., 2016). We only include CMIP6 mod-
els with interactive stratospheric chemistry as such a cou-
pled chemistry–climate configuration has been shown to lead
to more robust interannual variability of temperatures in the
lower stratosphere as compared to models with fixed ozone
(Yook et al., 2020). Note that most of the models neverthe-
less simulate too warm a cold point and too little interannual
variability of entry water (Garfinkel et al., 2021).

CCMI phase 1 was jointly launched by the Interna-
tional Global Atmospheric Chemistry (IGAC) and the
Stratosphere-troposphere Processes And their Role in Cli-
mate (SPARC) to better understand chemistry–climate inter-
actions in the recent past and future climate (Eyring et al.,
2013; Morgenstern et al., 2017). We analyze the Ref-C2 sim-
ulations, which span the period 1960–2100, impose ozone-
depleting substances as specified by the World Meteorologi-
cal Organization (2011), and impose greenhouse gases other
than ozone-depleting substances as in Representative Con-
centration Pathway (RCP) 6.0 (Meinshausen et al., 2011).
More details about these simulations are included in Eyring
et al. (2013). We only consider CCMI models with a cou-
pled ocean (though for some models, e.g., EMAC, the ocean
state is taken from a different integration), and we compute
statistics for all available ensemble members separately be-
fore computing the average response for each model. The

CCMI-1 models used in this study are listed in Table 2.
CCMI-2 models are instructed to nudge the QBO rather than
spontaneously simulate it. While this nudging should lead
to an improved ability to capture the temperature response
to the QBO (as discussed in Sect. 4), this improvement is
not because the models themselves are necessarily better,
and nudging is known to interfere with the transport of trace
gases (Orbe et al., 2017, 2018). Hence the water vapor vari-
ability in CCMI-2 models is outside the scope of this study.
Note, however, that three of the CCMI-1 models considered
here nudged the QBO: the NCAR models and EMAC. The
fidelity of the QBO in these models will be discussed in
Sect. 4.

In addition to the CCMI-1 models, we also consider five
Earth system models with coupled chemistry that are par-
ticipating in CMIP6: CESM2-WACCM (Gettelman et al.,
2019), GFDL-ESM4 (Dunne et al., 2020), CNRM-ESM2-1
(Séférian et al., 2019), MRI-ESM2-0 (Yukimoto et al., 2019)
and UKESM1-0-LL (Sellar et al., 2019). The climatology
and seasonal cycle of stratospheric water vapor in these mod-
els are documented in Keeble et al. (2021). All six models
spontaneously represent the QBO (Rao et al., 2020a; Richter
et al., 2020; Rao et al., 2020b), though as discussed in Sect. 4
the quality of the simulation varies. For all CMIP6 models
we focus on the historical integrations of the period 1850 to
2014. Note that standard CMIP6 output includes the 70 and
100 hPa levels but unfortunately no level in between, and so
our ability to diagnose physical processes near the cold point
is limited (in contrast, CCMI output is available both near 80
and 90 hPa). All data are deseasonalized by subtracting the
long-term monthly means for that specific data product.

2.2 Target variables and indices

The target variable for all data sources is entry water, de-
fined as water vapor at 82 hPa for SWOOSH, the closest
archived level to 82 hPa for CCMI (for nearly all models this
is 80 hPa), and 70 hPa for CMIP6. The Quasi-Biennial Os-
cillation index is derived from the 50 mb zonal wind data
in the NCEP/NCAR Reanalysis Climate Data Assimilation
System (Climate Prediction Center, 2012). While including
levels lower than 50 hPa may lead to a slight improvement of
the fit in observational data, many of the CCMI/CMIP6 mod-
els struggle to capture any remnant of the QBO below 50 hPa
(Rao et al., 2020a; Richter et al., 2020; Rao et al., 2020b), and
hence we use 50 hPa only throughout this paper. The lagged
correlation of the QBO with near 82 hPa entry water area av-
eraged between 15◦ S and 15◦ N is shown in Fig. 1a, and it
is clear that a lag of 2 to 5 months maximizes the relation-
ship in observations and in models. In Sect. 3 we use a lag of
5 months, and in Sect. 4 we use a lag of 2 months for CCMI
and 5 months for CMIP6, though results are similar if the lag
is changed by a few months. A later lag for the QBO is used
for CMIP6 due to the difference in available pressure levels
used to define entry water.
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Table 1. Description of the target used in this analysis.

Target field SWOOSH field name SWOOSH file name Years used

Zonal mean combinedanomfillanomh2oq swoosh-v02.6-198401-201912-latpress-2.5deg-L31 1994–2019
3D combinedanomh2oq swoosh-v02.6-198401-201912-lonlatpress-20deg-5deg-L31 2005–2019

Table 2. The data sources used in this study. For CMIP6 models we focus on the historical integrations of the period 1850 to 2014 and for
CCMI phase 1 the Ref-C2 simulations spanning the years 1960 to 2100. The CCMI-1 models CESM1 WACCM, CESM1 CAM4-chem and
EMAC-L47MA nudge the QBO; the rest spontaneously generate the QBO.

Data source Ensemble members Reference

Obs SWOOSH v2.6 1 Davis et al. (2016)
ERA-5 1 Hersbach et al. (2020)

CCMI-1 NIWA-UKCA 5 Morgenstern et al. (2009)
CESM1 WACCM 3 Garcia et al. (2017)
CESM1 CAM4-chem 3 Tilmes et al. (2016)
HadGEM3-ES 1 Hardiman et al. (2017)
MRI-ESM1r1 1 Yukimoto et al. (2012)
EMAC-L47MA 1 Jöckel et al. (2016)

CMIP6 CESM2-WACCM 1 Gettelman et al. (2019)
GFDL-ESM4 1 Dunne et al. (2020)
CNRM-ESM2-1 1 Séférian et al. (2019)
MRI-ESM2-0 1 Yukimoto et al. (2019)
UKESM1-0-LL 1 Sellar et al. (2019)

The El Niño–Southern Oscillation is tracked using the
Niño 3.4 index (5◦ N–5◦ S, 170–120◦W), sourced with
ERSSTv5 data with a 1981–2010 base period. The data are
taken from NOAA (Climate Prediction Center, 2012).

The CCMI and CMIP6 integrations include both long-
term changes due to climate change and interannual variabil-
ity. In order to maintain focus on the latter, the analyses in
Sect. 4 include, in addition to the QBO regressor, a regressor
to track greenhouse gas concentrations (the equivalent CO2
from the RCP6.0 scenario and historical CO2 concentrations
for historical simulations; Meinshausen et al., 2011). For the
observational analysis, we do not include a CO2 regressor
but instead detrend all time series, for two reasons: first, the
regression coefficient for CO2 in an MLR is extremely sen-
sitive to whether we include the HALOE period or not, and,
second, the ML methods are more stable when provided with
fewer predictors on which to train the model. Both of these
effects likely arise because of the short duration of the obser-
vational data record.

The T500 index is the air temperature at 500 hPa averaged
over the tropics (20◦ S to 20◦ N) taken from the ERA5.1 re-
analysis (Hersbach et al., 2018; Hersbach et al., 2020). The
BDC (Brewer–Dobson circulation) index is the ERA5.1 vari-
able “mean temperature tendency due to parametrizations” at
70 hPa averaged over the tropics (20◦ S to 20◦ N). In the trop-
ical stratosphere, the dominant contribution to the mean tem-

perature tendency due to parametrizations is radiative heat-
ing.

The cold-point temperature (CPT) index is calculated as in
Randel and Park (2019), who use air temperature data from
three equatorial radiosonde stations, Nairobi (1◦ S, 37◦ E),
Manaus (3◦ S, 60◦W) and Majuro (7◦ N, 171◦ E), sourced
from the Integrated Global Radiosonde Archive (IGRA)
(Durre et al., 2006). The radiosonde data were resampled to
monthly means, and their seasonal cycle was removed.

Note that the correlation of the BDC with the QBO is
−0.66 (Fig. 2), and hence including both in a single regres-
sion or ML model can lead to erroneous model interpretation.
If the BDC is defined at 82 hPa (instead of at 70 hPa), the cor-
relation with the QBO drops, but then the correlation of the
BDC with cold-point temperatures reaches −0.72 over the
period since 2005. Hence there is again the potential for mis-
leading results if both are included, and if only the BDC is in-
cluded, there is ambiguity as to whether a signal is due to the
BDC or rather actually is associated with CPT but appears
in the BDC regression coefficient because of the tight rela-
tionship between the CPT and BDC. Finally, the correlation
between T500 and ENSO is 0.52, and if we high-pass-filter
the data to focus on interannual timescales, the correlation
increases further. Hence there is a similar risk of misleading
results if both are included in a MLR and similar ambiguity
if only one is included.
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Figure 1. Lagged correlation between the QBO at 50 hPa and tropical water vapor at (a) 80 hPa in CCMI models and (b) 70 hPa in CMIP6
models (entry water is lagged after the QBO). The lagged correlation for observations (SWOOSH data) is also included as a thick black line.
The combinedanomfillanomh2oq product of swoosh-v02.6-198401-201912-latpress-2.5deg-L31 is used for observations from 1994 to 2019.
Note that the WACCM, CAM4Chem and EMAC-L47MA models in panel (a) nudge the QBO; in all other models, the QBO is spontaneously
generated.

Figure 2. A correlation heat map for the predictors used in the anal-
ysis. The time span is from 1994 to 2019.

All indices are deseasonalized by removing the long-term
monthly means. We do not consider seasonality in this work
in order to maximize the degrees of freedom, though we
certainly acknowledge that the regression coefficients for,
say, ENSO change sign between midwinter and late spring
(Garfinkel et al., 2018, 2021). For all of these predictor time
series, we divide by the standard deviation before construct-
ing a MLR or ML model.

As discussed in Randel and Park (2019), cold-point tem-
peratures are highly correlated with entry water vapor (cor-
relation of ∼ 0.8 from 1993–2017 for 60◦ S–60◦ N averaged
entry water vapor). This result is reproduced here over the pe-
riod 2005–2019, but showing the latitude vs. longitude dis-
tribution, in Fig. 3a. We allow the CPT to lead entry water
vapor by up to 5 months. Correlations peak above 0.8, and,
more generally, 75 % (i.e., the maximum R2 on Fig. 3a) of
the cold-point temperature and entry water variability are lin-
early related. We treat this 0.8 correlation as an upper bound
on the effect that large-scale, monthly mean dynamics can
have on entry water vapor (with the remaining 25% due to
processes on smaller spatial scales or shorter timescales).
The aim of this paper is to understand the 75% of the vari-
ability that is due to large-scale processes. In particular, to
what extent can this 75% of the variability in turn be ex-
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plained by large-scale processes remote to the cold point
such as the QBO and ENSO?

2.3 Machine learning (ML) models

As discussed in the Introduction, the connection between
the QBO, ENSO, and entry water is not necessarily lin-
ear. Accordingly, we pick three popular types of ML mod-
els which we use in a supervised learning regression: sup-
port vector machines (SVMs), random forest (RF) and mul-
tilayer perceptron (MLP), and these ML models are applied
in Sect. 3 only. All the models here are implemented through
the Scikit-learn Python package (Pedregosa et al., 2011). All
use an optimization scheme in order to reduce the error be-
tween the predicted and the observed target variable. How-
ever, each of the models’ approach to the regression task is
different.

The SVM model, in a classification task, uses a linear hy-
perplane in order to separate each sample class (Boser et al.,
1992). By applying the kernel trick, the input variables are
nonlinearly transformed into a high dimensional space where
the type of the kernel, e.g., radial basis function, can be de-
termined by hyperparameter tuning (Vapnik et al., 1995). In
regression tasks, now named SVR (support vector regres-
sion), more flexibility is allowed where an error parameter
is added (ε), which measures the constraint on the residu-
als. Let us consider the objective function in OLS (ordinary
least-squares) which is used in MLRs:

MIN
n∑
i=1

(yi −wi · xi)2, (1)

where yi is the target, wi is the coefficient and xi is the pre-
dictor. The objective function in the SVR is used to minimize
the coefficients (specifically the l2 norm) and not the squared
error as in the OLS. The constraints handle the error term
(ε) where it can be tuned to gain the desired accuracy of our
model. Thus, SVR’s objective function and constraints are as
follows:

MIN
1
2

∣∣ | w | ∣∣2 (2)

|yi −wi · xi | ≤ ε. (3)

Other improvements to the SVR’s objective function are
added as additional hyperparameters, e.g., to deal with points
that reside beyond the margin defined by ε.

The RF model operates very differently than SVM as it
is based on an ensemble of decision trees which in our case
solve a regression task. A regression tree algorithm is a way
of splitting the data set by selecting certain points that mini-
mize the mean squared error (MSE), defined as follows:

MSE=
1
n

n∑
i=1

(yi − ŷ)2, (4)

where y is the observation, and ŷ is the prediction. These
points are selected through an iterative process of calculating
the MSE for all the splits and choosing the split that mini-
mizes the MSE. Regression trees are prone to overfitting, and
while there are hyperparameters which can help with that,
much better algorithms were developed on top of regression
trees which address this issue adequately. One of these algo-
rithms is the RF model (Breiman, 2001), which is outlined as
follows:

1. Pick k data points at random from the training set.

2. Build a regression tree associated with these k data
points.

3. Choose N trees to build and repeat steps 1 and 2.

4. For a new data point, iterate over the N built trees, eval-
uate their prediction for the data point and assign their
mean prediction to this point.

Here, overfitting is also an issue though a smaller one than
individual regression trees and can be dealt with by adjusting
the model complexity via the various hyperparameters. The
RF model uses many independent decision trees on random-
ized selections of the trained data subsets. The final output
is produced by averaging all of the individual decision tree
outputs.

The MLP is an artificial neural network that includes mul-
tilayered nodes with weights (Hinton, 1989). Typically, the
network architecture includes an input layer, any number
of hidden layers and an output layer, where each layer’s
nodes are connected via activation functions (a so-called
feed-forward propagation). During the learning process, the
weights are re-evaluated using the back-propagation iterative
algorithm (Orr and Müller, 2003) in order to decrease the
cost function. Typically, the number of hidden layers in the
MLP architecture is determined in the hyperparameter tun-
ing step and in our case was one hidden layer with 10 hidden
units.

Finally, we use multiple linear regression (MLR), a well-
known and often used technique in the field (e.g., Dessler
et al., 2013; Diallo et al., 2018). When applied to latitude–
longitude entry water vapor data, the model yields

χH2O(t,φ,λ)= α(φ,λ)+βi(φ,λ) · ηi(t)+ ε(t,φ,λ), (5)

where χH2O is the reconstructed water vapor anomaly field,
and t , φ and λ are the time, latitude and longitude respec-
tively. α and βi are the intercept and the beta coefficients
of the MLR solution, ε is the residual field and η denotes
the predictors used in the analysis. Note that this MLR has
been computed separately for each grid cell using the 3D
SWOOSH data since 2005. We have also performed an MLR
using the tropical mean entry water since 1994, where we
average the latitude range between 15◦ S and 15◦ N, and the
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Figure 3. The R2 of the MLR between water vapor anomalies at the 82.54 hPa level with the four groups of predictors: (a) cold-point
temperatures, (b) QBO and ENSO, (c) as in (b) but adding in ENSO2 and QBO×ENSO, and (d) as in (b) but adding in T500 hPa and the
BDC. This MLR spans from 2005 to 2019 and uses the 3D SWOOSH product. The regression is reconstructed directly from all predictors,
i.e., in-sample.

predictors are QBO and ENSO. Thus, a much simpler linear
model is formulated as follows:

χH2O(t)= α+βi · ηi(t)+ ε(t). (6)

The validation and testing procedures of the ML models
are done in two stages using a 5-fold cross-validation (CV)
technique for each model separately. First, for the valida-
tion stage, we randomly select 80 % of the samples and split
them into five random groups called folds. Second, we train
each model on four folds and test its performance (R2) on
the remaining fold. Third, we repeat this process five times
(hence 5-fold CV) while iterating over all the folds. These
three steps are repeated for all possible combinations of the
hyperparameters, and we then choose best hyperparameters
which maximize the out-of-sample R2. (This step is skipped
for MLR since it does not have hyperparameters.) Then, for
evaluating the models’ performance, we traditionally would
test the models once on the remaining data (i.e., the test set);
however, since our data set is quite short (312 samples at
most), we would like to gain understanding of the models’
performance distributions. Thus, we use a similar 5-fold CV
on all the samples: we randomly divide the data by 5, train
each model on four folds and test its performance (R2) on the
remaining fold; these steps are cycled through all five folds.
This random division of the data into five folds and subse-
quent cycling is performed 20 times, and so we end up with
100 R2 scores per each model.

In the spirit of reproducible science, we encourage the in-
terested reader to explore the Python repository hosted on
GitHub (https://github.com/ZiskinZiv/Stratospheric_water_
vapor_ML, last access: 25 May 2022) that includes the pro-

cessed data (except SWOOSH data sets) and procedures of
this paper’s analysis.

3 Re-evaluation of the importance of ENSO and the
QBO in the observational record

We begin with the reconstructed entry water vapor time series
in Fig. 4 as computed by four different techniques, with the
QBO and ENSO used as predictors. As discussed in Sect. 2.3,
we use out-of-sample testing to reduce as much as possible
overfitting. Specifically, Fig. 4 shows the mean of the pre-
dicted out-of-sample water vapor from the 5-fold cross vali-
dation scheme (see Sect. 2).

All four methods capture much of the variability of entry
water present, but there are noticeably more forecast busts
than if cold-point temperatures are used (see Randel and
Park, 2019). Three examples of forecast busts are evident
in late 2010, late 2015 and late 2016 (indicated by vertical
lines), when all four techniques struggle to account for the
observed change1.

The ability of each of the four techniques is quantified in
Fig. 5a–d, which shows a histogram of the R2 between the
predicted and actual entry water vapor for each of the indi-
vidual out-of-sample tests performed. Figure 5 also indicates
the mean, median and standard deviation of the histogram of
out-of-sample tests and also the R2 if we compute the fit us-
ing all data instead of applying an out-of-sample test. For all

1Note that the bust in late 2010 may be improved if the extension
of the QBO to the lowermost stratosphere is taken into considera-
tion (Davis et al., 2013); however the QBO in many CMIP models
cannot be defined any lower than 50 hPa.
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Figure 4. Out-of-sample model predictions of deseasonalized and standardized water vapor anomalies at 82.54 hPa, averaged between 15◦ S
and 15◦ N. The various models are RF (blue), SVM (orange), MLP (green), MLR (red) and MLR2 (pink). The MLR2 model is the same as
the MLR model but with ENSO2 and ENSO×QBO predictors. The observations are from SWOOSH (bold purple). Note the three forecast
busts: 2010-D-2011-JFM, 2015-OND and 2016-OND.

Figure 5. Out-of-sample model performance and distribution of R2

scores of deseasonalized and standardized water vapor at 82 hPa,
averaged between 15◦ S and 15◦ N. The various models are RF
(blue), SVM (orange), MLP (green), MLR (red) and MLR2 (pink).
The MLR2 model is the same as the MLR model but with ENSO2

and ENSO×QBO predictors. The mean, median and standard de-
viation (SD) are noted for each distribution in a yellow text box,
along with the in-sample R2 score.

four techniques, there is a wide range of R2 values among
the 100 different out-of-sample tests, and the in-sample R2

always exceeds the median of the 100 out-of-sample tests.
This highlights the need to perform an out-of-sample test to
minimize overfitting. If the three ML techniques are com-
pared to MLR, the MLR is the least successful, both when
applied in-sample and out-of-sample, and the three advanced
ML techniques all are similarly skillful (with MLP slightly
worse than SVM or RF).

This comparison of MLR in Fig. 5d to the ML techniques
in Fig. 5a–c may lead to an underestimate of the abilities of

MLR to account for entry water vapor, as the ML techniques
allow for nonlinearity but MLR does not. As discussed in the
Introduction, there are at least two nonlinear processes that
have been argued to exist when accounting for entry water
vapor variability due to ENSO and the QBO: ENSO2 and a
ENSO×QBO predictor. We therefore add these two predic-
tors to the MLR and repeat the calculation in Fig. 5e. While
the in-sample result is still lower than that of the ML tech-
niques (likely because of additional nonlinear effects that are
not included in the MLR), the out-of-sample results are now
similar to those of the ML techniques. Further, the busts in
Fig. 4 are not any worse in MLR2 than in the ML techniques.
In other words, adding these two nonlinear processes can ex-
plain most of the additional advantage of the ML techniques
when the data are tested out of sample to mitigate overfitting.

Even though these nonlinear processes help, the resulting
R2 is still much less than that explained by CPT (Fig. 3a).
Specifically, Fig. 3b shows that a MLR with just QBO and
ENSO can lead to an R2 ranging around 0.3; however this is
only half of the R2 when the actual cold-point temperatures
are included (Fig. 3a). Adding the two nonlinear predictors
(Fig. 3c) leads to an increase of R2 by around 0.1 as com-
pared to Fig. 3b, but this is still much less than the R2 in
Fig. 3a.

At least two of the techniques considered allow for a clear
diagnosis of the relative importance of ENSO vs the QBO:
MLR and SHapley Additive exPlanations (SHAP), as em-
ployed in the RF model. The relative importance of each of
the predictors in the MLR of Fig. 5e is shown in Fig. 6, which
shows a latitude vs longitude map of the regression coeffi-
cients when the regression is performed for water vapor at
each grid point separately (the MLR of Fig. 5e is performed
on the tropical mean water vapor.) The QBO is clearly more
important than any of the other processes for accounting for
entry water and thus accounts for the biennial nature of the fit
in Fig. 4 with a peak-to-peak amplitude of around 0.4 ppmv.
Interestingly, the map for ENSO indicates a zonally asym-
metric structure (Fig. 6b), and as discussed in Yulaeva and
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Wallace (1994) and Garfinkel et al. (2013), the temperature
response to ENSO is characterized by zonal structure, even
in the lower stratosphere, with relatively warm temperatures
in the Indian Ocean sector and colder temperatures in the Pa-
cific sector. This zonal temperature dipole is thus apparently
leading to a similar dipole in entry water, with moistening
occurring in warm regions and drying in cold regions. The
ENSO2 predictor is more important than ENSO for zonal
mean entry water vapor (Fig. 6b, d). The ENSO×QBO pre-
dictor is comparatively unimportant (Fig. 6c).

The SHAP technique also allows for quantification of the
relative impact of ENSO versus QBO. SHAP (Lundberg
et al., 2020) implements a concept borrowed from game the-
ory, where a prediction can be explained by assuming that
each predictor’s value is a “player” in a game where the pre-
diction is the payout. The Shapley values (as computed by,
e.g., SHAP) indicate how to fairly distribute the “payout”
among the predictors (Lundberg and Lee, 2017). The payout
in our problem is the standardized entry water; thus the com-
puted Shapley values are measuring the mean effect ENSO or
QBO have on standardized H2O anomalies. For an in-depth
explanation of the SHAP technique, we encourage the inter-
ested reader to explore the SHAP chapter of the online book
on explainable AI methods (Molnar, 2019).

We calculated the mean SHAP values for the predictors
as trained by the RF model. QBO has a mean effect of
0.42 SD on H2O anomalies, while ENSO has a mean effect
of −0.23 SD on H2O anomalies since it is negatively corre-
lated with H2O. Only when considering spring entry water is
ENSO positively correlated (Garfinkel et al., 2018), though
even in spring the QBO dominates. In absolute values, QBO
is almost twice as important as ENSO for entry water as di-
agnosed by SHAP. The relative primacy of the QBO is con-
sistent with Diallo et al. (2018) and Tian et al. (2019).

Additional evidence as to the importance of the ENSO2

predictor is provided in Fig. 7, where we form an MLR using
QBO and ENSO but compute the ENSO regression coeffi-
cient separately for each ENSO phase. The important point
is that the regression coefficient changes sign between EN
and LN (Fig. 7b vs. Fig. 7c); in other words, a more positive
ENSO state during EN leads to more water vapor but so does
a more negative ENSO state during LN. A naive MLR misses
this effect and would imply a limited impact of ENSO on en-
try water vapor. Only upon considering nonlinear effects is
the full impact of ENSO revealed.

Finally, some previous work has focused on using the
BDC or mid-tropospheric temperatures as predictors in MLR
models that attempt to explain entry water (e.g., Dessler
et al., 2014). We show the R2 of an MLR with these pre-
dictors in Fig. 3d. Adding T500 and the BDC clearly leads
to an improved fit as compared to an MLR with only QBO
and ENSO (Fig. 3b vs. Fig. 3d); however the improvement is
similar to the effect of the nonlinear regressors in Fig. 3c. As
discussed in Sect. 2, there is a significant correlation between
the BDC at 70 hPa and the QBO at 50 hPa, and hence includ-

ing both in a ML model does not lead to significant improve-
ment. Including the BDC at 82 hPa instead leads to a larger
improvement; however the BDC at 82 hPa is significantly
correlated with the cold-point temperatures, and hence there
is ambiguity if the BDC is defined at 82 hPa instead. There
is some added value to using T500 as compared to ENSO,
though as shown in Fig. 6, an ENSO predictor is much less
useful than an ENSO2 predictor in any event. That is, most of
the improvement upon adding the nonlinear predictors comes
about via the ENSO2 predictor (Garfinkel et al., 2018).

4 Ability of CMIP6 and CCMI models to represent
the QBO modulation

Section 3, and specifically Fig. 6, indicated that the QBO is
the most important single predictor of any considered in this
paper barring the cold-point temperatures themselves. We
now consider the ability of CMIP6 and CCMI models to rep-
resent this connection, and for simplicity we focus on a sim-
ple regression of the QBO with entry water. (The ability of
these models to represent the connection between ENSO and
entry water vapor was considered in Garfinkel et al., 2021, in
detail.)

The lagged correlation of the QBO with entry water is
shown in Fig. 1a for the CCMI models and in Fig. 1b for the
CMIP6 models. While all models capture the sign of the de-
pendence of entry water on the QBO (an apparent improve-
ment from Smalley et al., 2017), there is a wide range in
the amplitude of the correlation. The two NCAR models in
CCMI simulate the strongest relationship, but these models
nudge their QBO, and the corresponding CMIP6 run with
a spontaneous QBO simulates a weaker connection. Other
models simulate a connection similar to (HadGEM3, EMAC-
L47MA) or weaker than (NIWA-UKCA, MRI-ESM) that ob-
served. Note that Smalley et al. (2017) considered these latter
two CCMI models and also found a nearly nonexistent con-
nection between entry water and the QBO.

An alternate perspective on the ability of models to cap-
ture the relationship between the QBO and entry water is the
regression coefficient from a MLR. Figure 8a shows these re-
gression coefficients, and the observed regression coefficient
is shown with a horizontal black line. The two NCAR models
in CCMI (both of whom nudge the QBO) are the only mod-
els with a regression coefficient approaching that observed.
The models which do not nudge uniformly underestimate the
regression coefficients, and hence the relatively more realis-
tic correlation coefficients from Fig. 1 (which are repeated
in Fig. 8c) are due to biases either in the standard deviation
of entry water vapor or in the standard deviation of the QBO
itself. Garfinkel et al. (2021) already demonstrated that 10 of
these models (with NIWA the lone exception) underestimate
entry water variability. For example, EMAC-L47MA, which
nudges the QBO, simulates a reasonable correlation of en-
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Figure 6. The in-sample β coefficients for the MLR analysis of water vapor at the 82.54 hPa level from 2005 to 2019, performed using the
3D SWOOSH data.

Figure 7. The in-sample β coefficients for the MLR analysis of water vapor at the 82.54 hPa level from 2005 to 2019. The ENSO predictor
was separated into three parts, where EN represents the El Niño events (ENSO≥ 0.5), LN represents the La Niña events (ENSO≤−0.5) and
neutENSO the rest of the ENSO regressor.

try water with the QBO but a severely deficient regression
coefficient due to poor interannual variability of entry water.

The models which do not nudge the QBO also mostly
underestimate variability of the QBO, as shown in Fig. 8b.
While, e.g., the UK Met Office model does a good job at cap-
turing the QBO (and recall the NCAR and EMAC-L47MA
CCMI models have a nudged QBO), most other models
struggle. A notable improvement is evident from the MRI
contribution to CCMI to the MRI contribution to CMIP6.
The net effect of too weak an internal variability of the QBO
or of entry water is that the regression coefficient of a model

will be lower than that in observations, even if the correlation
is generally realistic.

Do models with a better QBO perform better at captur-
ing the relationship between entry water and the QBO? Fig-
ure 8d compares for each model the standard deviation of the
QBO (x axis) with the correlation between entry water and
the QBO (y axis), and it is evident that the two are linked.
The correlation coefficient across all models is statistically
significant at the 95 % level. Hence, an improved QBO leads
to an improved representation of interannual variability of
entry water.
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Figure 8. Relationship between the QBO and entry water vapor in CCMI and CMIP6 models. (a) Regression coefficient, (b) standard
deviation of the QBO at 50 hPa, (c) correlation coefficient and (d) relationship between the correlation coefficient (panel c) and standard
deviation (panel b), with the color of markers corresponding to the color used in panel (b) and (c). For (d), diamonds are CCMI models,
and stars are CMIP6 models. A solid black line in panels (a)–(c) is for reanalysis. Note that entry water is defined near 80 hPa for CCMI
models and at 70 hPa for CMIP6 models; hence the solid black reanalysis line differs for each. Note that the WACCM, CAM4Chem and
EMAC-L47MA models included in CCMI (the first, second and sixth models in panels a, b and c; green, red and cyan) nudge the QBO; in
all other models the QBO is spontaneously generated.

5 Discussion

Stratospheric water vapor plays a crucial role in the climate
system, both as a greenhouse gas that modulates the Earth’s
radiative budget and as a trace gas that regulates the severity
of ozone depletion (Solomon et al., 1986; Forster and Shine,
1999; Solomon et al., 2010; Dessler et al., 2013; Wang et al.,
2017; Banerjee et al., 2019). This study aims to understand
the importance of nonlinearity for two processes – ENSO
and the QBO – that have been shown to regulate water va-
por concentrations on interannual timescales and to consider
whether comprehensive models used for climate change as-
sessments represent these factors correctly.

Both the QBO and ENSO are important for entry water
vapor; however a simple linear perspective would lead to the
mistaken conclusion that the effect of ENSO on zonal mean
entry water vapor is minimal (Fig. 6b). Rather, ENSO2 is the
more important contributor (Fig. 6d), though even ENSO2 is
less important than the QBO (Fig. 6a). A multiple linear re-

gression model that includes ENSO and the QBO performs
notably worse than machine learning techniques that do not
assume linearity (Fig. 5a–d); however adding an ENSO2 pre-
dictor to a multiple linear regression model fills the gap in
performance (Fig. 5e), and the added value from the more
complicated machine learning techniques is small. The phys-
ical motivation for such an ENSO2 predictor was already pre-
sented in Garfinkel et al. (2018).

Most of the comprehensive models considered here un-
derestimate the strength of the connection between the QBO
and entry water vapor (Figs. 1 and 8), with the only excep-
tion models which nudge the QBO rather than spontaneously
generate it. While this result is disappointing, a notable im-
provement is evident from the CCMVal2 and the early CCMI
data analyzed by Smalley et al. (2017). We find that models
in which the QBO reaches the lower stratosphere tend to per-
form better at capturing the relationship between entry water
and the QBO (consistent with Geller et al., 2016), and QBO
propagation into the lowermost stratosphere is also crucial
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Figure 9. (a) Deseasonalized and standardized water vapor at 82.54 hPa averaged between 15◦ S and 15◦ N (purple) and their MLR recon-
struction (red) and residuals, spanning from 1994 to 2019. This MLR analysis was carried out with the Randel and Park (2019) CPT as the
only predictor but after detrending the data. The MLR model was trained on the MLS portion of SWOOSH (2005 to 2019; correlation= 0.68)
and was reconstructed on the full time span (1994–2019; correlation= 0.59). (b) The residuals from the MLR reconstruction.

for QBO teleconnections to the subtropical jet, to the Arctic
stratosphere and to tropical convection (Garfinkel and Hart-
mann, 2011; Garfinkel et al., 2012; Martin et al., 2021).

When considering the total variance of entry water vapor
in Fig. 5, the out-of-sample R2 was always less than the in-
sample R2. The importance of out-of-sample testing is fur-
ther illustrated in Fig. 9. Figure 9a shows the time series of
zonal mean water vapor from SWOOSH and the MLR re-
construction if the detrended Randel and Park (2019) CPT is
used as the sole predictor for detrended entry water and the
model is trained over the period 2005 to 2019 only. While
the MLR model does a reasonable job of explaining the ob-
served variability over the period used for training the MLR
model, the MLR fails when applied out-of-sample to the pre-
MLS period (Fig. 9b), as reflected by the generally larger
values of the residuals. In other words, the model is overfit
to the training data and is not generalizing well to out-of-
sample data. This kind of overfitting can be minimized by
appropriately tuning the hyperparameters for the ML tech-
niques, though for MLR the only remedy is to perform out-
of-sample testing. Hence we strongly recommend that future
studies using MLR or similar techniques use some variant of
out-of-sample testing to minimize overfitting.

While the ENSO predictor is only weakly related to zonal
mean entry water vapor, ENSO is associated with zonal
structure in water vapor in the lower stratosphere. Figure 6b
shows that water vapor is enhanced over the Indian Ocean
sector and reduced over the eastern Pacific sector (see also
Figs. 4 and 11 of Konopka et al., 2016, for a similar fea-
ture at θ = 390 K). This zonal dipole resembles the zonal
dipole of temperature in the tropical tropopause layer (TTL;
e.g., Garfinkel et al., 2013, 2018), with locally warm TTL
conditions associated with moistening and locally cold TTL
conditions associated with drying. Note that higher in the
stratosphere, this zonal dipole goes away. However this result
suggests that up to 82 hPa horizontal motion is still not fast
enough to fully homogenize tropical water vapor, as might be
expected if the tape recorder mechanism were the only rele-

vant mechanism (Mote et al., 1996b). Future work should
consider whether other factors (e.g., sea surface tempera-
ture (SST) patterns not related to ENSO) may also lead to
zonal structure of water vapor in the lower stratosphere. Fu-
ture work should also consider additional novel means of in-
terpreting the improvements of the ML fits as compared to
MLR, in order to bridge the gap between an improved fit
and an understanding of how and why the improvement came
about.

Finally, cold-point temperatures (CPTs) control around
75% of the variance of entry water vapor over the historical
record. None of the large-scale predictors, neither individu-
ally nor in combination, come even close to explaining such a
large fraction of the variance (Fig. 3). This gap in explainable
variance highlights the need to better understand CPT vari-
ability on interannual timescales and perhaps even to build
predictive models for the CPT itself.

Code and data availability. The CCMI model output was re-
trieved from the Centre for Environmental Data Analysis (CEDA),
the Natural Environment Research Council’s Data Repository for
Atmospheric Science and Earth Observation (https://data.ceda.
ac.uk/badc/wcrp-ccmi/data/CCMI-1/output, Hegglin and Lamar-
que, 2015) and NCAR’s Climate Data Gateway (https://www.
earthsystemgrid.org/project/CCMI1.html, National Centre for At-
mospheric Research, 2021). All the nonlinear ML models and the
MLRs are implemented through the Scikit-learn Python package
(Pedregosa et al., 2011).
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