Articles | Volume 22, issue 11
https://doi.org/10.5194/acp-22-7489-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-7489-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Distribution and stable carbon isotopic composition of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in fresh and aged biomass burning aerosols
Minxia Shen
State Key Laboratory of Loess and Quaternary Geology, Key Laboratory of
Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese
Academy of Sciences, Xi'an 710061, China
University of Chinese Academy of Sciences, Beijing, China
Kin Fai Ho
The Jockey Club School of Public Health and Primary Care, The Chinese
University of Hong Kong, Hong Kong, China
Shenzhen Municipal Key Laboratory for Health Risk Analysis, Shenzhen
Research Institute, The Chinese University of Hong Kong, Shenzhen, China
Wenting Dai
State Key Laboratory of Loess and Quaternary Geology, Key Laboratory of
Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese
Academy of Sciences, Xi'an 710061, China
Suixin Liu
State Key Laboratory of Loess and Quaternary Geology, Key Laboratory of
Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese
Academy of Sciences, Xi'an 710061, China
Ting Zhang
State Key Laboratory of Loess and Quaternary Geology, Key Laboratory of
Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese
Academy of Sciences, Xi'an 710061, China
Qiyuan Wang
State Key Laboratory of Loess and Quaternary Geology, Key Laboratory of
Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese
Academy of Sciences, Xi'an 710061, China
Jingjing Meng
School of Geography and the Environment, Liaocheng University,
Liaocheng 252000, China
Judith C. Chow
State Key Laboratory of Loess and Quaternary Geology, Key Laboratory of
Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese
Academy of Sciences, Xi'an 710061, China
Division of Atmospheric Sciences, Desert of Research Institute, Reno, Nevada, USA
John G. Watson
State Key Laboratory of Loess and Quaternary Geology, Key Laboratory of
Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese
Academy of Sciences, Xi'an 710061, China
Division of Atmospheric Sciences, Desert of Research Institute, Reno, Nevada, USA
Junji Cao
CORRESPONDING AUTHOR
State Key Laboratory of Loess and Quaternary Geology, Key Laboratory of
Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese
Academy of Sciences, Xi'an 710061, China
State Key Laboratory of Loess and Quaternary Geology, Key Laboratory of
Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese
Academy of Sciences, Xi'an 710061, China
CAS Center for Excellence in Quaternary Science and Global Change,
Xi'an 710061, China
Related authors
Minxia Shen, Weining Qi, Yali Liu, Yifan Zhang, Wenting Dai, Lu Li, Xiao Guo, Yue Cao, Yingkun Jiang, Qian Wang, Shicong Li, Qiyuan Wang, and Jianjun Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-3094, https://doi.org/10.5194/egusphere-2025-3094, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study examines how dust transport modulates oxalic acid formation pathways in aerosols across different elevations of Mount Hua. During dust events, oxalic acid and precursors shift from fine to coarse particles, with concurrent heterogeneous reactions on coarse particle surfaces. The characteristic isotopic fractionation signatures accompanying these transformations yield novel theoretical frameworks for elucidating aerosol aging mechanisms in mountainous environments.
Minxia Shen, Weining Qi, Yali Liu, Yifan Zhang, Wenting Dai, Lu Li, Xiao Guo, Yue Cao, Yingkun Jiang, Qian Wang, Shicong Li, Qiyuan Wang, and Jianjun Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-3094, https://doi.org/10.5194/egusphere-2025-3094, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study examines how dust transport modulates oxalic acid formation pathways in aerosols across different elevations of Mount Hua. During dust events, oxalic acid and precursors shift from fine to coarse particles, with concurrent heterogeneous reactions on coarse particle surfaces. The characteristic isotopic fractionation signatures accompanying these transformations yield novel theoretical frameworks for elucidating aerosol aging mechanisms in mountainous environments.
Jiamao Zhou, Jiarui Wu, Xiaoli Su, Ruonan Wang, Imad EI Haddad, Xia Li, Qian Jiang, Ting Zhang, Wenting Dai, Junji Cao, Andre S. H. Prevot, Xuexi Tie, and Guohui Li
Atmos. Chem. Phys., 25, 7563–7580, https://doi.org/10.5194/acp-25-7563-2025, https://doi.org/10.5194/acp-25-7563-2025, 2025
Short summary
Short summary
Brown carbon (BrC) is a type of airborne particle produced from various combustion sources which is light absorption. Historically, climate models have categorizing organic particles as either non-absorbing or purely reflective. Our study shows that BrC can reduce the usual cooling effect of organic particles. While BrC is often linked to biomass burning, however, BrC from fossil fuels contributes significantly to atmospheric heating.
Jingnan Shi, Zhisheng Zhang, Li Li, Li Liu, Yaqing Zhou, Shuang Han, Shaobin Zhang, Minghua Liang, Linhong Xie, Weikang Ran, Shaowen Zhu, Hanbing Xu, Jiangchuan Tao, Alfred Wiedensohler, Qiaoqiao Wang, Qiyuan Wang, Nan Ma, and Juan Hong
EGUsphere, https://doi.org/10.5194/egusphere-2025-2643, https://doi.org/10.5194/egusphere-2025-2643, 2025
Short summary
Short summary
This study examines aerosol hygroscopicity and mixing states at Mt. Hua (2060 m), a key free-tropospheric site in central China. We found size-dependent hygroscopicity, source-related variations, and humidity-driven processing, distinguishing this region from other high-altitude sites, which may provide key constraints for aerosol-cloud and regional climate models.
Zheng Yang, Qiaoqiao Wang, Qiyuan Wang, Nan Ma, Jie Tian, Yaqing Zhou, Ge Xu, Miao Gao, Xiaoxian Zhou, Yang Zhang, Weikang Ran, Ning Yang, Jiangchuan Tao, Juan Hong, Yunfei Wu, Junji Cao, Hang Su, and Yafang Cheng
EGUsphere, https://doi.org/10.5194/egusphere-2025-1020, https://doi.org/10.5194/egusphere-2025-1020, 2025
Short summary
Short summary
Our results demonstrate that the reduction in mass absorption efficiency from biomass burning is mainly driven by the decline in the imaginary part, with particle size playing a minor role. And light absorption of oxygenated BrC increases significantly with aging, but hydrocarbon-like BrC decrease over time. These results emphasize the necessity to classify BrC into different groups based on their mass absorption efficiency and atmospheric behavior in climate models.
Can Wu, Yubao Chen, Yuwei Sun, Huijun Zhang, Si Zhang, Cong Cao, Jianjun Li, and Gehui Wang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1668, https://doi.org/10.5194/egusphere-2025-1668, 2025
Short summary
Short summary
Biogenic secondary organic aerosol (BSOA), as an important atmospheric component, is prevalent within the boundary layer and can influence air quality and human health. Our observations demonstrate that anthropogenic NOx and the enhanced aerosol water driven by sulfate inhibit BSOA formation in lifting air masses, leading to a moderate reduction in the SOA burden in the upper boundary layer.
Xin Zhang, Lijuan Li, Jianjun Li, Yue Lin, Yan Cheng, Rui Wang, Shuyan Xing, Chongshu Zhu, Junji Cao, and Yuemei Han
EGUsphere, https://doi.org/10.5194/egusphere-2025-519, https://doi.org/10.5194/egusphere-2025-519, 2025
Short summary
Short summary
The influence of anthropogenic pollution on atmospheric organic composition was studied to explore the chemical processes of anthropogenic–biogenic interactions in the Qinling Mountains region of central China using advanced Orbitrap mass spectrometry. Organic molecular species exhibited distinct seasonal variabilities and were more abundant and chemically diverse in winter. Anthropogenic pollution played key roles in altering their composition and related properties under various conditions.
Meng Wang, Qiyuan Wang, Steven Sai Hang Ho, Jie Tian, Yong Zhang, Shun-cheng Lee, and Junji Cao
Atmos. Chem. Phys., 24, 11175–11189, https://doi.org/10.5194/acp-24-11175-2024, https://doi.org/10.5194/acp-24-11175-2024, 2024
Short summary
Short summary
We studied nitrogen-containing organic compounds (NOCs) in particulate matter <2.5 µm particles on the southeastern Tibetan Plateau. We found that biomass burning and transboundary transport are the main sources of NOCs in the high-altitude area. Understanding these aerosol sources informs how they add to regional and potentially global climate changes. Our findings could help shape effective environmental policies to enhance air quality and address climate impacts in this sensitive region.
Can Wu, Xiaodi Liu, Ke Zhang, Si Zhang, Cong Cao, Jianjun Li, Rui Li, Fan Zhang, and Gehui Wang
Atmos. Chem. Phys., 24, 9263–9275, https://doi.org/10.5194/acp-24-9263-2024, https://doi.org/10.5194/acp-24-9263-2024, 2024
Short summary
Short summary
Brown carbon (BrC) is prevalent in the troposphere and can efficiently absorb solar and terrestrial radiation. Our observations show that the enhanced light absorption of BrC relative to black carbon at the tropopause can be attributed to the formation of nitrogen-containing organic compounds through the aqueous-phase reactions of carbonyls with ammonium.
Xuehong Gong, Zeyu Liu, Jie Tian, Qiyuan Wang, Guohui Li, Zhisheng An, and Yongming Han
EGUsphere, https://doi.org/10.5194/egusphere-2024-1684, https://doi.org/10.5194/egusphere-2024-1684, 2024
Short summary
Short summary
Our study analyzed CO2 emissions from wildfires in China from 2001 to 2022. Cropland and forest fires contributed the most, while grassland fires were the least. Emissions from forest and shrub fires decreased significantly, while cropland fires increased. The highest emissions were in Heilongjiang and Inner Mongolia. China's effective policy management has reduced wildfire-related CO2 emissions, aiding global climate change efforts.
Zhiyuan Li, Kin-Fai Ho, Harry Fung Lee, and Steve Hung Lam Yim
Atmos. Chem. Phys., 24, 649–661, https://doi.org/10.5194/acp-24-649-2024, https://doi.org/10.5194/acp-24-649-2024, 2024
Short summary
Short summary
This study developed an integrated model framework for accurate multi-air-pollutant exposure assessments in high-density and high-rise cities. Following the proposed integrated model framework, we established multi-air-pollutant exposure models for four major PM10 chemical species as well as four criteria air pollutants with R2 values ranging from 0.73 to 0.93. The proposed framework serves as an important tool for combined exposure assessment in epidemiological studies.
Xiaoliang Wang, Hatef Firouzkouhi, Judith C. Chow, John G. Watson, Steven Sai Hang Ho, Warren Carter, and Alexandra S. M. De Vos
Atmos. Chem. Phys., 23, 15375–15393, https://doi.org/10.5194/acp-23-15375-2023, https://doi.org/10.5194/acp-23-15375-2023, 2023
Short summary
Short summary
Open burning of municipal solid waste emits chemicals that are harmful to the environment. This paper reports source profiles and emission factors for PM2.5 species and acidic/alkali gases from laboratory combustion of 10 waste categories (including plastics and biomass) that represent open burning in South Africa. Results will be useful for health and climate impact assessments, speciated emission inventories, source-oriented dispersion models, and receptor-based source apportionment.
Jingjing Meng, Yachen Wang, Yuanyuan Li, Tonglin Huang, Zhifei Wang, Yiqiu Wang, Min Chen, Zhanfang Hou, Houhua Zhou, Keding Lu, Kimitaka Kawamura, and Pingqing Fu
Atmos. Chem. Phys., 23, 14481–14503, https://doi.org/10.5194/acp-23-14481-2023, https://doi.org/10.5194/acp-23-14481-2023, 2023
Short summary
Short summary
This study investigated the effect of COVID-19 lockdown (LCD) measures on the formation and evolutionary process of diacids and related compounds from field observations. Results demonstrate that more aged organic aerosols are observed during the LCD due to the enhanced photochemical oxidation. Our study also found that the reactivity of 13C was higher than that of 12C in the gaseous photochemical oxidation, leading to higher δ13C values of C2 during the LCD than before the LCD.
Li Li, Qiyuan Wang, Jie Tian, Huikun Liu, Yong Zhang, Steven Sai Hang Ho, Weikang Ran, and Junji Cao
Atmos. Chem. Phys., 23, 9597–9612, https://doi.org/10.5194/acp-23-9597-2023, https://doi.org/10.5194/acp-23-9597-2023, 2023
Short summary
Short summary
The Tibetan Plateau has a unique geographical location, but there is a lack of detailed research on the real-time characteristics of full aerosol composition. This study elaborates the changes in chemical characteristics between transport and local fine particles during the pre-monsoon, reveals the size distribution and the mixing states of different individual particles, and highlights the contributions of photooxidation and aqueous reaction to the formation of the secondary species.
Yong Zhang, Jie Tian, Qiyuan Wang, Lu Qi, Manousos Ioannis Manousakas, Yuemei Han, Weikang Ran, Yele Sun, Huikun Liu, Renjian Zhang, Yunfei Wu, Tianqu Cui, Kaspar Rudolf Daellenbach, Jay Gates Slowik, André S. H. Prévôt, and Junji Cao
Atmos. Chem. Phys., 23, 9455–9471, https://doi.org/10.5194/acp-23-9455-2023, https://doi.org/10.5194/acp-23-9455-2023, 2023
Short summary
Short summary
PM2.5 pollution still frequently occurs in northern China during winter, and it is necessary to figure out the causes of air pollution based on intensive real-time measurement. The findings elaborate the chemical characteristics and source contributions of PM2.5 in three pilot cities, reveal potential formation mechanisms of secondary aerosols, and highlight the importance of controlling biomass burning and inhibiting generation of secondary aerosol for air quality improvement.
Xiaoliang Wang, Hatef Firouzkouhi, Judith C. Chow, John G. Watson, Warren Carter, and Alexandra S. M. De Vos
Atmos. Chem. Phys., 23, 8921–8937, https://doi.org/10.5194/acp-23-8921-2023, https://doi.org/10.5194/acp-23-8921-2023, 2023
Short summary
Short summary
Open burning of household and municipal solid waste is a common practice in developing countries and is a significant source of air pollution. However, few studies have measured emissions from open burning of waste. This study determined gas and particulate emissions from open burning of 10 types of household solid-waste materials. These results can improve emission inventories, air quality management, and assessment of the health and climate effects of open burning of household waste.
Jie Tian, Qiyuan Wang, Yongyong Ma, Jin Wang, Yongming Han, and Junji Cao
Atmos. Chem. Phys., 23, 1879–1892, https://doi.org/10.5194/acp-23-1879-2023, https://doi.org/10.5194/acp-23-1879-2023, 2023
Short summary
Short summary
We investigated the light absorption properties of brown carbon (BrC) in the Tibetan Plateau (TP). BrC made a substantial contribution to the submicron aerosol absorption, which is related to the cross-border transport of biomass burning emission and secondary aerosol from Southeast Asia. The radiative effect of BrC was half that of black carbon, which can remarkably affect the radiative balance of the TP.
Qian Zhang, Yujie Zhang, Zhichun Wu, Bin Zhang, Yaling Zeng, Jian Sun, Hongmei Xu, Qiyuan Wang, Zhihua Li, Junji Cao, and Zhenxing Shen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-801, https://doi.org/10.5194/acp-2022-801, 2022
Revised manuscript not accepted
Short summary
Short summary
We identified the brown carbon (BrC) molecules and their absorbing abilities on a molecular level from animal dung fuel combustion over the Tibetan Plateau region in China. The ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometer coupled with the partial least squares regression were precisely applied to characterize the molecular absorptions, key molecular markers, and radiative effects of BrC from household combustion scenarios at the high-altitude area.
Can Wu, Cong Cao, Jianjun Li, Shaojun Lv, Jin Li, Xiaodi Liu, Si Zhang, Shijie Liu, Fan Zhang, Jingjing Meng, and Gehui Wang
Atmos. Chem. Phys., 22, 15621–15635, https://doi.org/10.5194/acp-22-15621-2022, https://doi.org/10.5194/acp-22-15621-2022, 2022
Short summary
Short summary
Over the past decade, the relative abundance of NH4NO3 in aerosol has been enhanced in most urban areas of China, which profoundly affects the PM2.5 pollution episodes. Our work finds that fine-particle nitrate and ammonium exhibited distinct, different physicochemical behaviors in the aerosol aging process.
Diwei Wang, Zhenxing Shen, Qian Zhang, Yali Lei, Tian Zhang, Shasha Huang, Jian Sun, Hongmei Xu, and Junji Cao
Atmos. Chem. Phys., 22, 14893–14904, https://doi.org/10.5194/acp-22-14893-2022, https://doi.org/10.5194/acp-22-14893-2022, 2022
Short summary
Short summary
The optical properties and molecular structure of atmospheric brown carbon (BrC) in winter of several megacities in China were analyzed, and the source contribution of brown carbon was improved by using positive matrix factorization coupled with a multilayer perceptron neural network. These results can provide a basis for the more effective control of BrC to reduce its impacts on regional climates and human health.
Meng Wang, Yusen Duan, Wei Xu, Qiyuan Wang, Zhuozhi Zhang, Qi Yuan, Xinwei Li, Shuwen Han, Haijie Tong, Juntao Huo, Jia Chen, Shan Gao, Zhongbiao Wu, Long Cui, Yu Huang, Guangli Xiu, Junji Cao, Qingyan Fu, and Shun-cheng Lee
Atmos. Chem. Phys., 22, 12789–12802, https://doi.org/10.5194/acp-22-12789-2022, https://doi.org/10.5194/acp-22-12789-2022, 2022
Short summary
Short summary
In this study, we report the long-term measurement of organic carbon (OC) and elementary carbon (EC) in PM2.5 with hourly time resolution conducted at a regional site in Shanghai from 2016 to 2020. The results from this study provide critical information about the long-term trend of carbonaceous aerosol, in particular secondary OC, in one of the largest megacities in the world and are helpful for developing pollution control measures from a long-term planning perspective.
Huikun Liu, Qiyuan Wang, Suixin Liu, Bianhong Zhou, Yao Qu, Jie Tian, Ting Zhang, Yongming Han, and Junji Cao
Atmos. Chem. Phys., 22, 11739–11757, https://doi.org/10.5194/acp-22-11739-2022, https://doi.org/10.5194/acp-22-11739-2022, 2022
Short summary
Short summary
Atmospheric motions play an important role in the mass concentration and the direct radiative effect (DRE) of black carbon (BC). The finding from this study elaborated the impacts of different scales of atmospheric motion on source-specific BC and its DREs, which revealed the nonlinear change between BC mass concentration and its DREs and emphasizes the importance of regionally transported BC for potential climatic effects.
Jie Tian, Qiyuan Wang, Huikun Liu, Yongyong Ma, Suixin Liu, Yong Zhang, Weikang Ran, Yongming Han, and Junji Cao
Atmos. Chem. Phys., 22, 8369–8384, https://doi.org/10.5194/acp-22-8369-2022, https://doi.org/10.5194/acp-22-8369-2022, 2022
Short summary
Short summary
We investigated aerosol optical properties and the direct radiative effect (DRE) at an urban site in China before and during the COVID-19 lockdown. The total light extinction coefficient (bext) decreased under emission control measures; however, bext from biomass burning increased due to the undiminished need for residential cooking and heating. Biomass burning, rather than traffic-related emissions, became the largest positive effect contributor to aerosol DRE in the lockdown.
Zhiyuan Li, Kin-Fai Ho, Hsiao-Chi Chuang, and Steve Hung Lam Yim
Atmos. Chem. Phys., 21, 5063–5078, https://doi.org/10.5194/acp-21-5063-2021, https://doi.org/10.5194/acp-21-5063-2021, 2021
Short summary
Short summary
This study established land-use regression (LUR) models using only routine air quality measurement data to support long-term health studies in an Asian metropolitan area. The established LUR models captured the spatial variability in exposure to air pollution with remarkable predictive accuracy. This is the first Asian study to evaluate intercity transferability of LUR models, and it highlights that there exist uncertainties when transferring LUR models between nearby cities.
Mengdi Song, Xin Li, Suding Yang, Xuena Yu, Songxiu Zhou, Yiming Yang, Shiyi Chen, Huabin Dong, Keren Liao, Qi Chen, Keding Lu, Ningning Zhang, Junji Cao, Limin Zeng, and Yuanhang Zhang
Atmos. Chem. Phys., 21, 4939–4958, https://doi.org/10.5194/acp-21-4939-2021, https://doi.org/10.5194/acp-21-4939-2021, 2021
Short summary
Short summary
Due to their lower diffusion capacities and higher conversion capacities, urban areas in Xi’an experienced severe ozone pollution in the summer. In this study, a campaign of comprehensive field observations and VOC grid sampling was conducted in Xi’an from 20 June to 20 July 2019. We found that Xi'an has a strong local emission source of VOCs, and vehicle exhaust was the primary VOC source. In addition, alkenes, aromatics, and oxygenated VOCs played a dominant role in secondary transformations.
Jiarui Wu, Naifang Bei, Yuan Wang, Xia Li, Suixin Liu, Lang Liu, Ruonan Wang, Jiaoyang Yu, Tianhao Le, Min Zuo, Zhenxing Shen, Junji Cao, Xuexi Tie, and Guohui Li
Atmos. Chem. Phys., 21, 2229–2249, https://doi.org/10.5194/acp-21-2229-2021, https://doi.org/10.5194/acp-21-2229-2021, 2021
Short summary
Short summary
A source-oriented version of the WRF-Chem model is developed to conduct source identification of wintertime PM2.5 in the North China Plain. Trans-boundary transport of air pollutants generally dominates the haze pollution in Beijing and Tianjin. The air quality in Hebei, Shandong, and Shanxi is generally controlled by local emissions. Primary aerosol species, such as EC and POA, are generally controlled by local emissions, while secondary aerosol shows evident regional characteristics.
Huikun Liu, Qiyuan Wang, Li Xing, Yong Zhang, Ting Zhang, Weikang Ran, and Junji Cao
Atmos. Chem. Phys., 21, 973–987, https://doi.org/10.5194/acp-21-973-2021, https://doi.org/10.5194/acp-21-973-2021, 2021
Short summary
Short summary
We conducted black carbon (BC) source apportionment on the southeastern Tibetan Plateau (TP) by an improved aethalometer model with the site-dependent Ångström exponent and BC mass absorption cross section (MAC). The result shows that the biomass-burning BC on the TP is slightly higher than fossil fuel BC, mainly from cross-border transportation instead of the local region, and the BC radiative effect is lower than that in the southwestern Himalaya but higher than that on the northeastern TP.
Pragati Rai, Jay G. Slowik, Markus Furger, Imad El Haddad, Suzanne Visser, Yandong Tong, Atinderpal Singh, Günther Wehrle, Varun Kumar, Anna K. Tobler, Deepika Bhattu, Liwei Wang, Dilip Ganguly, Neeraj Rastogi, Ru-Jin Huang, Jaroslaw Necki, Junji Cao, Sachchida N. Tripathi, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 21, 717–730, https://doi.org/10.5194/acp-21-717-2021, https://doi.org/10.5194/acp-21-717-2021, 2021
Short summary
Short summary
We present a simple conceptual framework based on elemental size distributions and enrichment factors that allows for a characterization of major sources, site-to-site similarities, and local differences and the identification of key information required for efficient policy development. Absolute concentrations are by far the highest in Delhi, followed by Beijing, and then the European cities.
Haiyan Ni, Ru-Jin Huang, Max M. Cosijn, Lu Yang, Jie Guo, Junji Cao, and Ulrike Dusek
Atmos. Chem. Phys., 20, 16041–16053, https://doi.org/10.5194/acp-20-16041-2020, https://doi.org/10.5194/acp-20-16041-2020, 2020
Short summary
Short summary
We investigated sources of carbonaceous aerosols in Beijing and Xi'an during severe winter haze. Elemental carbon (EC) was dominated by vehicle emissions in Xi’an and coal burning in Beijing. Organic carbon (OC) increment during haze days was driven by the increase in primary and secondary OC (SOC). SOC was more from fossil sources in Beijing than Xi’an, especially during haze days. In Xi’an, no strong day–night differences in EC or OC sources suggest a large accumulation of particles.
Qiyuan Wang, Huikun Liu, Ping Wang, Wenting Dai, Ting Zhang, Youzhi Zhao, Jie Tian, Wenyan Zhang, Yongming Han, and Junji Cao
Atmos. Chem. Phys., 20, 15537–15549, https://doi.org/10.5194/acp-20-15537-2020, https://doi.org/10.5194/acp-20-15537-2020, 2020
Short summary
Short summary
Light-absorbing carbonaceous (LAC) aerosol is an important influencing factor for global climate forcing. In this study, we used a receptor model coupling multi-wavelength absorption with chemical species to explore the source-specific LAC optical properties at a tropical marine monsoon climate zone. The results can improve our understanding of the LAC radiative effects caused by ship emissions.
Qiyuan Wang, Li Li, Jiamao Zhou, Jianhuai Ye, Wenting Dai, Huikun Liu, Yong Zhang, Renjian Zhang, Jie Tian, Yang Chen, Yunfei Wu, Weikang Ran, and Junji Cao
Atmos. Chem. Phys., 20, 15427–15442, https://doi.org/10.5194/acp-20-15427-2020, https://doi.org/10.5194/acp-20-15427-2020, 2020
Short summary
Short summary
Recently, China has promulgated a series of regulations to reduce air pollutants. The decreased black carbon (BC) and co-emitted pollutants could affect the interactions between BC and other aerosols, which in turn results in changes in BC. Herein, we re-assessed the characteristics of BC of a representative pollution site in northern China in the final year of the Chinese
Action Plan for the Prevention and Control of Air Pollution.
Cited articles
Agarwal, S., Aggarwal, S. G., Okuzawa, K., and Kawamura, K.: Size distributions of dicarboxylic acids, ketoacids, α-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols, Atmos. Chem. Phys., 10, 5839–5858, https://doi.org/10.5194/acp-10-5839-2010, 2010.
Aggarwal, S. G. and Kawamura K.: Molecular distributions and stable carbon
isotopic compositions of dicarboxylic acids and related compounds in
aerosols from Sapporo, Japan: Implications for photochemical aging during
long-range atmospheric transport, J. Geophys. Res., 113, D14301,
https://doi.org/10.1029/2007JD009365, 2008.
Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011.
Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from
biomass burning, Global Biogeochem. Cy., 15, 955–966,
https://doi.org/10.1029/2000GB001382, 2001.
Bikkina, S., Kawamura, K., Sakamoto, Y., and Hirokawa, J.: Low molecular
weight dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls as
ozonolysis products of isoprene: Implication for the gaseous-phase formation
of secondary organic aerosols, Sci. Total Environ., 769, 14472,
https://doi.org/10.1016/j.scitotenv.2020.144472, 2021.
Boreddy, S. K. R., Parvin, F., Kawamura, K., Zhu, C. M., and Lee, C. T.:
Influence of forest fires on the formation processes of low molecular weight
dicarboxylic acids, ω-oxocarboxylic acids, pyruvic acid and α-dicarbonyls in springtime fine (PM2.5) aerosols over Southeast Asia,
Atmos. Environ., 246, 118065,
https://doi.org/10.1016/j.atmosenv.2020.118065, 2021.
Borrás, E. and Tortajada-Genaro, L. A.: Secondary organic aerosol
formation from the photo-oxidation of benzene, Atmos. Environ., 47, 154–163,
https://doi.org/10.1016/j.atmosenv.2011.11.020, 2012.
Cao, F., Zhang, S. C., Kawamura, K., Liu, X. Y., Yang, C., Xu, Z. F., Fan,
M. Y., Zhang, W. Q., Bao, M. Y., Chang, Y. H., Song, W. H., Liu, S. D., Lee,
X. H., Li, J., Zhang, G., and Zhang, Y. L.: Chemical characteristics of
dicarboxylic acids and related organic compounds in PM2.5 during
biomass-burning and non-biomass-burning seasons at a rural site of Northeast
China, Environ. Pollut., 231, 654–662,
https://doi.org/10.1016/j.envpol.2017.08.045, 2017.
Cao, J. J., Wang, Q. Y., Li, L., Zhang, Y., Tian, J., Chen, L. W. A., Ho, S.
S. H., Wang, X. L., Chow, J. C., and Watson, J. G.: Evaluation of the
oxidation flow reactor for particulate matter emission limit certification,
Atmos. Environ., 224, 117086,
https://doi.org/10.1016/j.atmosenv.2019.117086, 2020.
Carlton, A. G., Turpin, B. J., Lim, H. J., Altieri, K. E., and Seitzinger,
S.: Link between isoprene and secondary organic aerosol (SOA): Pyruvic acid
oxidation yields low volatility organic acids in clouds, Geophy. Res. Lett.,
33, L06822, https://doi.org/10.1029/2005GL025374, 2006.
Carlton, A. G., Turpin, B. J., Altieri, K. E., Seitzinger, S., Reff, A.,
Lim, H. J., and Ervens, B.: Atmospheric oxalic acid and SOA production from
glyoxal: Results of aqueous photooxidation experiments, Atmos. Environ., 41,
7588–7602, https://doi.org/10.1016/j.atmosenv.2007.05.035,
2007.
Chen, J. M., Li, C. L., Ristovski, Z., Milic, A., Gu, Y. T., Islam, M. S.,
Wang, S. X., Hao, J. M., Zhang, H. F., He, C. R., Guo, H., Fu, H. B.,
Miljevic, B., Morawska, L., Thai, P., Fat LAM, Y., Pereira, G., Ding, A. J.,
Huang, X., and Dumka, U. C.: A review of biomass burning: Emissions and
impacts on air quality, health and climate in China, Sci. Total Environ.,
579, 1000–1034,
https://doi.org/10.1016/j.scitotenv.2016.11.025, 2016.
Cheng, C. L., Wang, G. H., Zhou, B. H., Meng, J. J., Li, J. J., and Cao, J.
J.: Comparison of dicarboxylic acids and related compounds in aerosol
samples collected in Xi'an, China during haze and clean periods, Atmos.
Environ., 81, 443–449,
https://doi.org/10.1016/j.atmosenv.2013.09.013, 2013.
Cheng, C. L., Wang, G. H., Meng, J. J., Wang, Q. Y., Cao, J. J., Li, J. J.,
and Wang, J. Y.: Size-resolved airborne particulate oxalic and related
secondary organic aerosol species in the urban atmosphere of Chengdu, China,
Atmos. Res., 161–162, 134–142,
https://doi.org/10.1016/j.atmosres.2015.04.010, 2015.
Chow, J. C., Cao, J., Antony Chen, L.-W., Wang, X., Wang, Q., Tian, J., Ho, S. S. H., Watts, A. C., Carlson, T. B., Kohl, S. D., and Watson, J. G.: Changes in PM2.5 peat combustion source profiles with atmospheric aging in an oxidation flow reactor, Atmos. Meas. Tech., 12, 5475–5501, https://doi.org/10.5194/amt-12-5475-2019, 2019.
Deshmukh, D. K., Haque, M. M., Kawamura, K. and Kim, Y. W.: Dicarboxylic acids, oxocarboxylic acids and alpha-dicarbonyls in fine aerosols over central Alaska: Implications for sources and atmospheric processes, Atmos. Res., 202, 128–139, https://doi.org/10.1016/j.atmosres.2017.11.003, 2018.
Enami, S., Hoffmann, M. R., and Colussi, A. J.: Stepwise Oxidation of
Aqueous Dicarboxylic Acids by Gas-Phase OH Radicals, J. Phys. Chem. Lett.,
6, 527–534, https://doi.org/10.1021/jz502432j, 2015.
Falkovich, A. H., Graber, E. R., Schkolnik, G., Rudich, Y., Maenhaut, W., and Artaxo, P.: Low molecular weight organic acids in aerosol particles from Rondônia, Brazil, during the biomass-burning, transition and wet periods, Atmos. Chem. Phys., 5, 781–797, https://doi.org/10.5194/acp-5-781-2005, 2005.
Fu, P. Q., Kawamura, K., Usukura, K., and Miura, K.: Dicarboxylic acids,
ketocarboxylic acids and glyoxal in the marine aerosols collected during a
round-the-world cruise, Mar. Chem., 148, 22–32,
https://doi.org/10.1016/j.marchem.2012.11.002, 2013.
Fullerton, D. G., Nigel, B., and Gordon, S. B.: Indoor air pollution from
biomass fuel smoke is a major health concern in the developing world, T.
Roy. Soc. Trop. Med. H., 102, 843–851,
https://doi.org/10.1016/j.trstmh.2008.05.028, 2008.
Gilman, J. B., Lerner, B. M., Kuster, W. C., Goldan, P. D., Warneke, C., Veres, P. R., Roberts, J. M., de Gouw, J. A., Burling, I. R., and Yokelson, R. J.: Biomass burning emissions and potential air quality impacts of volatile organic compounds and other trace gases from fuels common in the US, Atmos. Chem. Phys., 15, 13915–13938, https://doi.org/10.5194/acp-15-13915-2015, 2015.
Hamilton, J. F., Lewis, A. C., Reynolds, J. C., Carpenter, L. J., and Lubben, A.: Investigating the composition of organic aerosol resulting from cyclohexene ozonolysis: low molecular weight and heterogeneous reaction products, Atmos. Chem. Phys., 6, 4973–4984, https://doi.org/10.5194/acp-6-4973-2006, 2006.
Hatakeyama, S., Tanonaka, T., Weng, J., Bandow, H., Takagi, H., and Akimoto,
H.: Ozone-cyclohexene reaction in air: quantitative analysis of particulate
products and the reaction mechanism, Environ. Sci. Technol., 19, 935–942,
https://doi.org/10.1021/es00140a008, 1985.
Hegde, P. and Kawamura, K.: Seasonal variations of water-soluble organic carbon, dicarboxylic acids, ketocarboxylic acids, and α-dicarbonyls in Central Himalayan aerosols, Atmos. Chem. Phys., 12, 6645–6665, https://doi.org/10.5194/acp-12-6645-2012, 2012.
Ho, K. F., Lee, S. C., Cao, J. J., Kawamura, K., Watanabe, T., Cheng, Y.,
and Chow, J. C.: Dicarboxylic acids, ketocarboxylic acids and dicarbonyls in
the urban roadside area of Hong Kong, Atmos. Environ., 40, 3030–3040,
https://doi.org/10.1016/j.atmosenv.2005.11.069, 2006.
Ho, K. F., Cao, J. J., Lee, S. C., Kawamura, K., Zhang, R. J., Chow, J. C.,
and Watson, J. G.: Dicarboxylic acids, ketocarboxylic acids, and dicarbonyls
in the urban atmosphere of China, J. Geophys. Res.-Atmos., 112, D22S27,
https://doi.org/10.1029/2006JD008011, 2007.
Hodshire, A. L., Akherati, A., Alvarado, M. J., Brown-Steiner, B., Jathar,
S. H., Jimenez, J. L., Kreidenweis, S. M., Lonsdale, C. R., Onasch, T. B.,
Ortega, A. M., and Pierce, J. R.: Aging effects on biomass burning aerosol
mass and composition: a critical review of field and laboratory studies,
Environ. Sci. Technol., 53, 10007–10022,
https://doi.org/10.1021/acs.est.9b02588, 2019.
Hoefs, J.: Stable Isotope Geochemistry, Springer, New York, 1997.
Hoque, M., Kawamura, K., Nagayama, T., Kunwar, B., and Gagosian, R. B.:
Molecular characteristics of water-soluble dicarboxylic acids, ω-oxocarboxylic acids, pyruvic acid and α-dicarbonyls in the
aerosols from the eastern North Pacific, Mar. Chem., 224, 103812,
https://doi.org/10.1016/j.marchem.2020.103812, 2020.
Jung, J. S., Tsatsral, B., Kim, Y. J., and Kawamura, K.: Organic and
inorganic aerosol compositions in Ulaanbaatar, Mongolia, during the cold
winter of 2007 to 2008 : Dicarboxylic acids, ketocarboxylic acids, and
α-dicarbonyls, J. Geophys. Res.-Atmos., 115, D22203,
https://doi.org/10.1029/2010JD014339, 2010.
Kalogridis, A. C., Popovicheva, O. B., Engling, G., Diapouli, E., Kawamura,
K., Tachibana, E., Ono, K., Kozlov, V. S., and Eleftheriadis, K.: Smoke
aerosol chemistry and aging of Siberian biomass burning emissions in a large
aerosol chamber, Atmos. Environ., 185, 15–28,
https://doi.org/10.1016/j.atmosenv.2018.04.033, 2018.
Kang, E., Root, M. J., Toohey, D. W., and Brune, W. H.: Introducing the concept of Potential Aerosol Mass (PAM), Atmos. Chem. Phys., 7, 5727–5744, https://doi.org/10.5194/acp-7-5727-2007, 2007.
Kawamura, K. and Usukura, K.: Distributions of low molecular weight
dicarboxylic acids in the North Pacific aerosol samples, J. Oceanogr., 49,
271–283, https://doi.org/10.1007/BF02269565, 1993.
Kawamura, K. and Bikkina, S.: A review of dicarboxylic acids and related
compounds in atmospheric aerosols: Molecular distributions, sources and
transformation, Atmos. Res., 170, 140–160,
https://doi.org/10.1016/j.atmosres.2015.11.018, 2016.
Kawamura, K. and Gagosian, R. B.: Implications of ω-oxocarboxylic
acids in the remote marine atmosphere for photo-oxidation of unsaturated
fatty acids, Nature, 325, 330–332, 1987.
Kawamura, K. and Ikushima, K.: Seasonal changes in the distribution of
dicarboxylic acids in the urban atmosphere, Environ. Sci. Technol., 27,
2227–2235, https://doi.org/10.1021/es00047a033, 1993.
Kawamura, K. and Kaplan, I. R.: Motor exhaust emissions as a primary source
for dicarboxylic acids in Los Angeles ambient air, Environ. Sci. Technol.,
21, 105–110, https://doi.org/10.1021/es00155a014, 1987.
Kawamura, K. and Sakaguchi, F.: Molecular distributions of water soluble
dicarboxylic acids in marine aerosols over the Pacific Ocean including
tropics, J. Geophys. Res.-Atmos., 104, 3501–3509,
https://doi.org/10.1029/1998JD100041, 1999.
Kawamura, K. and Watanabe, T.: Determination of stable carbon isotopic
compositions of low molecular weight dicarboxylic acids and ketocarboxylic
acids in atmospheric aerosol and snow samples, Anal. Chem., 76, 5762–5768,
https://doi.org/10.1021/ac049491m, 2004.
Kawamura, K. and Yasui, O.: Diurnal changes in the distribution of dicarboxylic acids, ketocarboxylic acids and dicarbonyls in the urban Tokyo atmosphere, Atmos. Environ., 39, 1945–1960, https://doi.org/10.1016/j.atmosenv.2004.12.014, 2005.
Kawamura, K., Kasukabe, H., and Barrie, L. A.: Source and reaction pathways
of dicarboxylic acids, ketoacids and dicarbonyls in arctic aerosols: one
year of observations, Atmos. Environ., 30, 1709–1722,
https://doi.org/10.1016/1352-2310(95)00395-9, 1996a.
Kawamura, K., Sempéré, R., Imai, Y., Fujii, Y., and Hayashi, M.:
Water soluble dicarboxylic acids and related compounds in Antarctic
aerosols, J. Geophys. Res.-Atmos., 101, 18721–18728,
https://doi.org/10.1029/96JD01541, 1996b.
Kawamura, K., Yokoyama, K., Fujii, Y., and Watanabe, O.: A Greenland ice
core record of low molecular weight dicarboxylic acids, ketocarboxylic
acids, and α-dicarbonyls: A trend from Little Ice Age to the present
(1540 to 1989 A.D.), J. Geophys. Res.-Atmos., 106, 1331–1345,
https://doi.org/10.1029/2000JD900465, 2001.
Kawamura, K., Ono, K., Tachibana, E., Charriére, B., and Sempéré, R.: Distributions of low molecular weight dicarboxylic acids, ketoacids and α-dicarbonyls in the marine aerosols collected over the Arctic Ocean during late summer, Biogeosciences, 9, 4725–4737, https://doi.org/10.5194/bg-9-4725-2012, 2012.
Kawamura, K., Tachibana, E., Okuzawa, K., Aggarwal, S. G., Kanaya, Y., and Wang, Z. F.: High abundances of water-soluble dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in the mountaintop aerosols over the North China Plain during wheat burning season, Atmos. Chem. Phys., 13, 8285–8302, https://doi.org/10.5194/acp-13-8285-2013, 2013.
Kerminen, V. M., Ojanen, C., Pakkanen, T., Hillamo, R., Aurela, M., and
Meriläinen, J.: Low-molecular-weight dicarboxylic acids in an urban and
rural atmosphere, J. Aerosol Sci., 31, 349–362,
https://doi.org/10.1016/S0021-8502(99)00063-4, 2000.
Kundu, S., Kawamura, K., Andreae, T. W., Hoffer, A., and Andreae, M. O.: Molecular distributions of dicarboxylic acids, ketocarboxylic acids and α-dicarbonyls in biomass burning aerosols: implications for photochemical production and degradation in smoke layers, Atmos. Chem. Phys., 10, 2209–2225, https://doi.org/10.5194/acp-10-2209-2010, 2010.
Kunwar, B. and Kawamura, K.: Seasonal distributions and sources of low
molecular weight dicarboxylic acids, v-oxocarboxylic acids, pyruvic acid,
a-dicarbonyls and fatty acids in ambient aerosols from subtropical Okinawa
in the western Pacific Rim, Environ. Chem., 11, 673–689,
https://doi.org/10.1071/EN14097, 2014.
Kunwar, B., Kawamura, K., Fujiwara, S., Fu, P. Q., Miyazaki, Y., and
Pokhrel, A.: Dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in atmospheric aerosols from Mt. Fuji, Japan: Implication for
primary emission versus secondary formation, Atmos. Res., 221, 58–71,
https://doi.org/10.1016/j.atmosres.2019.01.021, 2019.
Legrand, M. and De Angelis, M.: Light carboxylic acids in Greenland ice: A
record of past forest fires and vegetation emissions from the boreal zone,
J. Geophys. Res.-Atmos., 101, 4129–4145,
https://doi.org/10.1029/95JD03296, 1996.
Legrand, M., Preunkert, S., Oliveira, T., Pio, C. A., Hammer, S.,
Gelencsér, A., And, K. G., and Laj, P.: Origin of C2–C5 dicarboxylic
acids in the European atmosphere inferred from year-round aerosol study
conducted at a west-east transect, J. Geophys. Res.-Atmos., 112, D23S07,
https://doi.org/10.1029/2006JD008019, 2007.
Li, J. J., Li, J., Wang, G. H., Zhang, T., Dai, W. T., Ho, K. F., Wang, Q.,
Shao, Y., Wu, C., and Li, L.: Molecular characteristics of organic
compositions in fresh and aged biomass burning aerosols, Sci. Total
Environ., 741, 140247,
https://doi.org/10.1016/j.scitotenv.2020.140247, 2020.
Li, J. J., Li, J., Wang, G. H., Ho, K. F., Dai, W. T., Zhang, T., Wang, Q.,
Wu, C., Li, L., Li, L., and Zhang, Q.: Effects of atmospheric aging
processes on in vitro induced oxidative stress and chemical composition of
biomass burning aerosols, J. Hazard. Mater., 401, 123750,
https://doi.org/10.1016/j.jhazmat.2020.123750, 2021.
Lim, C. Y., Hagan, D. H., Coggon, M. M., Koss, A. R., Sekimoto, K., de Gouw, J., Warneke, C., Cappa, C. D., and Kroll, J. H.: Secondary organic aerosol formation from the laboratory oxidation of biomass burning emissions, Atmos. Chem. Phys., 19, 12797–12809, https://doi.org/10.5194/acp-19-12797-2019, 2019.
Lim, Y. B., Tan, Y., and Turpin, B. J.: Chemical insights, explicit chemistry, and yields of secondary organic aerosol from OH radical oxidation of methylglyoxal and glyoxal in the aqueous phase, Atmos. Chem. Phys., 13, 8651–8667, https://doi.org/10.5194/acp-13-8651-2013, 2013.
Mao, J., Ren, X., Brune, W. H., Olson, J. R., Crawford, J. H., Fried, A., Huey, L. G., Cohen, R. C., Heikes, B., Singh, H. B., Blake, D. R., Sachse, G. W., Diskin, G. S., Hall, S. R., and Shetter, R. E.: Airborne measurement of OH reactivity during INTEX-B, Atmos. Chem. Phys., 9, 163–173, https://doi.org/10.5194/acp-9-163-2009, 2009.
Meng, J., Wang, G., Hou, Z., Liu, X., Wei, B., Wu, C., Cao, C., Wang, J., Li, J., Cao, J., Zhang, E., Dong, J., Liu, J., Ge, S., and Xie, Y.: Molecular distribution and stable carbon isotopic compositions of dicarboxylic acids and related SOA from biogenic sources in the summertime atmosphere of Mt. Tai in the North China Plain, Atmos. Chem. Phys., 18, 15069–15086, https://doi.org/10.5194/acp-18-15069-2018, 2018.
Meng, J. J., Wang, G. H., Li, J. J., Cheng, C. L., Ren, Y. Q., Huang, Y.,
Cheng, Y. T., Cao, J. J., and Zhang, T.: Seasonal characteristics of oxalic
acid and related SOA in the free troposphere of Mt. Hua, central China:
Implications for sources and formation mechanisms, Sci. Total Environ., 493,
1088–1097, https://doi.org/10.1016/j.scitotenv.2014.04.086,
2014.
Meng, J. J., Liu, X. D., Hou, Z. F., Yi, Y. N., Yan, L., Li, Z., Cao, J. J.,
Li, J. J., and Wang, G. H.: Molecular characteristics and stable carbon
isotope compositions of dicarboxylic acids and related compounds in the
urban atmosphere of the North China Plain: Implications for aqueous phase
formation of SOA during the haze periods, Sci. Total Environ., 705, 135256,
https://doi.org/10.1016/j.scitotenv.2019.135256, 2020.
Miyazaki, Y., Kimitaka, K., and Sawano, M.: Size distributions and chemical
characterization of water-soluble organic aerosols over the western North
Pacific in summer, J. Geophys. Res.-Atmos., 115, D23210,
https://doi.org/10.1029/2010JD014439, 2010.
Mkoma, S. L. and Kawamura, K.: Molecular composition of dicarboxylic acids, ketocarboxylic acids, α-dicarbonyls and fatty acids in atmospheric aerosols from Tanzania, East Africa during wet and dry seasons, Atmos. Chem. Phys., 13, 2235–2251, https://doi.org/10.5194/acp-13-2235-2013, 2013.
Myriokefalitakis, S., Tsigaridis, K., Mihalopoulos, N., Sciare, J., Nenes, A., Kawamura, K., Segers, A., and Kanakidou, M.: In-cloud oxalate formation in the global troposphere: a 3-D modeling study, Atmos. Chem. Phys., 11, 5761–5782, https://doi.org/10.5194/acp-11-5761-2011, 2011.
Narukawa, M., Kawamura, K., Takeuchi, N., and Nakajima, T.: Distribution of
dicarboxylic acids and carbon isotopic compositions in aerosols from 1997
Indonesian forest fires, Geophys. Res. Lett., 26, 3101–3104,
https://doi.org/10.1029/1999GL010810, 1999.
Narukawa, M., Kawamura, K., Li, S. M., and Bottenheim, J. W.: Dicarboxylic
acids in the arctic aerosols and snowpacks collected during ALERT 2000,
Atmos. Environ., 36, 2491–2499,
https://doi.org/10.1016/S1352-2310(02)00126-7, 2002.
Narukawa, M., Kawamura, K., Anlauf, K. G., and Barrie, L. A.: Fine and
coarse modes of dicarboxylic acids in the Arctic aerosols collected during
the Polar Sunrise Experiment 1997, J. Geophy. Res.-Atomos., 108, 4575,
https://doi.org/10.1029/2003JD003646, 2003.
Niu, X. Y., Li, J. J., Wang, Q. Y., Ho, S. S. H., Sun, J., Li, L., Cao, J.
J., and Ho, K. F.: Characteristics of fresh and aged volatile organic
compounds from open burning of crop residues, Sci. Total Environ., 726,
138545, https://doi.org/10.1016/j.scitotenv.2020.138545, 2020.
Pavuluri, C. M. and Kawamura, K.: Enrichment of 13C in diacids and related
compounds during photochemical processing of aqueous aerosols: New proxy for
organic aerosols aging, Sci. Rep.-UK, 6, 36467,
https://doi.org/10.1038/srep36467, 2016.
Pavuluri, C. M., Kawamura, K., and Swaminathan, T.: Water-soluble organic
carbon, dicarboxylic acids, ketoacids, and α-dicarbonyls in the
tropical Indian aerosols, J. Geophy. Res.-Atomos., 115, D11302,
https://doi.org/10.1029/2009JD012661, 2010.
Reid, J. S., Eck, T. F., Christopher, S. A., Koppmann, R., Dubovik, O., Eleuterio, D. P., Holben, B. N., Reid, E. A., and Zhang, J.: A review of biomass burning emissions part III: intensive optical properties of biomass burning particles, Atmos. Chem. Phys., 5, 827–849, https://doi.org/10.5194/acp-5-827-2005, 2005.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit,
B. R.: Sources of fine organic aerosol. 1. Charbroilers and meat cooking
operations, Environ. Sci. Technol., 25, 1112–1125,
https://doi.org/10.1021/es00018a015, 1991.
Rogge, W. F., Hildemann, L. M., Mazurek, M. A., Cass, G. R., and Simoneit,
B. R.: Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped
automobiles and heavy-duty diesel trucks, Environ. Sci. Technol., 27,
636–651, https://doi.org/10.1021/es00041a007, 1993.
Rogge, W. F., Hildemann, L. M., and Mazurek, M. A.: Sources of fine oganic
aerosol. 6. Cigarette-smoke in the urban atmosphere, Environ. Sci. Technol.,
28, 1375–1388, https://doi.org/10.1021/Es00056a030, 1994.
Sakugawa, H. and Kaplan, I. R.: Stable carbon isotope measurements of
atmospheric organic acids in Los Angeles, California, Geophy. Res. Lett.,
22, 1509–1512, https://doi.org/10.1029/95GL01359, 1995.
Samy, S. and Zielinska, B.: Secondary organic aerosol production from modern diesel engine emissions, Atmos. Chem. Phys., 10, 609–625, https://doi.org/10.5194/acp-10-609-2010, 2010.
Sato, K., Hatakeyama, S., and Imamura, T.: Secondary organic aerosol
formation during the photooxidation of toluene: NOx dependence of chemical
composition, J. Phys. Chem. A, 111, 9796–9808,
https://doi.org/10.1021/jp071419f, 2007.
Schauer, J. J., Kleeman, M. J., Cass, G. R., and Simoneit, B. R. T.:
Measurement of emissions from air pollution sources.3. C1–C29 organic
compounds from fireplace combustion of wood, Environ. Sci. Technol., 35,
1716–1728, https://doi.org/10.1021/es001331e, 2001.
Song, J. W., Zhao, Y., Zhang, Y. Y., Fu, P. Q., Zheng, L. S., Yuan, Q.,
Wang, S., Huang, X. F., Xu, W. H., Cao, Z. X., Gromov, S., and Lai, S.:
Influence of biomass burning on atmospheric aerosols over the western South
China Sea: Insights from ions, carbonaceous fractions and stable carbon
isotope ratios, Environ. Pollut., 242, 1800–1809,
https://doi.org/10.1016/j.envpol.2018.07.088, 2018.
Sorathia, F., Rajput, P., and Gupta, T.: Dicarboxylic acids and levoglucosan
in aerosols from Indo-Gangetic Plain: Inferences from day night variability
during wintertime, Sci. Total Environ., 624, 451–460,
https://doi.org/10.1016/j.scitotenv.2017.12.124, 2018.
Sorooshian, A., Ng, N. L., Chan, A. W. H., Feingold, G., Flagan, R. C., and
Seinfeld, J. H.: Particulate organic acids and overall water-soluble aerosol
composition measurements from the 2006 Gulf of Mexico Atmospheric
Composition and Climate Study (GoMACCS), J Geophy. Res.-Atmos., 112, D13201,
https://doi.org/10.1029/2007JD008537, 2007.
Tao, S., Ru, M. Y., Du, W., Zhu, X., Zhong, Q. R., Li, B. G., Shen, G. F.,
Pan, X. L., Meng, W. J., Chen, Y. L., Shen, H. Z., Lin, N., Su, S., Zhuo, S.
J., Huang, T. B., Xu, Y., Yun, X., Liu, J. F., Wang, X. L., Liu, W. X.,
Cheng, H. F., and Zhu, D. Q.: Quantifying the rural residential energy
transition in China from 1992 to 2012 through a representative national
survey, Nat. Energy, 3, 567–573,
https://doi.org/10.1038/s41560-018-0158-4, 2018.
Tian, J., Watson, J. G., Han, Y. M., Ni, H. Y., Chen, L. W. A., Wang, X. L.,
Huang, R. J., Moosmüller, H., Chow, J. C., and Cao, J.
J.: A biomass combustion chamber: Design, evaluation, and a case study of
wheat straw combustion emission tests, Aerosol Air Qual. Res., 15,
2104–2114, https://doi.org/10.4209/aaqr.2015.03.0167, 2015.
Wang, G. H., Niu, S. L., Liu, C., and Wang, L. S.: Identification of
dicarboxylic acids and aldehydes of PM10 and PM2.5 aerosols in
Nanjing, China, Atmos. Environ., 36, 1941–1950,
https://doi.org/10.1016/S1352-2310(02)00180-2, 2002.
Wang, G. H., Kawamura, K., Watanabe, T., Lee, S. C., Ho, K. F., and Cao, J.
J.: High loadings and source strengths of organic aerosols in China,
Geophys. Res. Lett., 33, L22801,
https://doi.org/10.1029/2006GL027624, 2006.
Wang, G. H., Kawamura, K., Cheng, C. L., Li, J. J., Cao, J. J., Zhang, R.,
Zhang, T., Liu, S. X., and Zhao, Z. Z.: Molecular distribution and stable
carbon isotopic composition of dicarboxylic acids, ketocarboxylic acids, and
alpha-dicarbonyls in size-resolved atmospheric particles from Xi'an City,
China, Environ. Sci. Technol., 46, 4783–4791,
https://doi.org/10.1021/es204322c, 2012.
Wang, H. B. and Kawamura, K.: Stable carbon isotopic composition of
low-molecular-weight dicarboxylic acids and ketoacids in remote marine
aerosols, J. Geophys. Res.-Atomos., 111, D07304,
https://doi.org/10.1029/2005JD006466, 2006.
Warneck, P.: In-cloud chemistry opens pathway to the formation of oxalic
acid in the marine atmosphere, Atmos. Environ., 37, 2423–2427,
https://doi.org/10.1016/S1352-2310(03)00136-5, 2003.
Watson, J. G., Cao, J., Chen, L.-W. A., Wang, Q., Tian, J., Wang, X., Gronstal, S., Ho, S. S. H., Watts, A. C., and Chow, J. C.: Gaseous, PM2.5 mass, and speciated emission factors from laboratory chamber peat combustion, Atmos. Chem. Phys., 19, 14173–14193, https://doi.org/10.5194/acp-19-14173-2019, 2019.
Yasmeen, F., Sauret, N., Gal, J.-F., Maria, P.-C., Massi, L., Maenhaut, W., and Claeys, M.: Characterization of oligomers from methylglyoxal under dark conditions: a pathway to produce secondary organic aerosol through cloud processing during nighttime, Atmos. Chem. Phys., 10, 3803–3812, https://doi.org/10.5194/acp-10-3803-2010, 2010.
Zhang, Y. L., Kawamura, K., Cao, F., and Lee, M.: Stable carbon isotopic
compositions of low-molecular-weight dicarboxylic acids, oxocarboxylic
acids, α-dicarbonyls, and fatty acids, J. Geophys. Res.-Atmos.,
3707–3717, https://doi.org/10.1002/2015JD024081, 2016.
Zhao, W., Kawamura, K., Yue, S., Wei, L., Ren, H., Yan, Y., Kang, M., Li, L., Ren, L., Lai, S., Li, J., Sun, Y., Wang, Z., and Fu, P.: Molecular distribution and compound-specific stable carbon isotopic composition of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls in PM2.5 from Beijing, China, Atmos. Chem. Phys., 18, 2749–2767, https://doi.org/10.5194/acp-18-2749-2018, 2018.
Short summary
Looking at characteristics and δ13C compositions of dicarboxylic acids and related compounds in BB aerosols, we used a combined combustion and aging system to generate fresh and aged aerosols from burning straw. The results showed the emission factors (EFaged) of total diacids of aging experiments were around an order of magnitude higher than EFfresh. This meant that dicarboxylic acids are involved with secondary photochemical processes in the atmosphere rather than primary emissions from BB.
Looking at characteristics and δ13C compositions of dicarboxylic acids and related compounds in...
Altmetrics
Final-revised paper
Preprint