Articles | Volume 22, issue 10
https://doi.org/10.5194/acp-22-6523-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-6523-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Joint occurrence of heatwaves and ozone pollution and increased health risks in Beijing, China: role of synoptic weather pattern and urbanization
Lian Zong
Collaborative Innovation Centre on Forecast and Evaluation of
Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of
China Meteorological Administration, School of Atmospheric Physics, Nanjing
University of Information Science & Technology, Nanjing, China
Yuanjian Yang
CORRESPONDING AUTHOR
Collaborative Innovation Centre on Forecast and Evaluation of
Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of
China Meteorological Administration, School of Atmospheric Physics, Nanjing
University of Information Science & Technology, Nanjing, China
Collaborative Innovation Centre on Forecast and Evaluation of
Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of
China Meteorological Administration, School of Atmospheric Physics, Nanjing
University of Information Science & Technology, Nanjing, China
Department of Geography, Hong Kong Baptist University, Hong Kong,
China
Zhaobin Sun
Institute of Urban Meteorology, China Meteorological Administration, Beijing, China
Zuofang Zheng
Institute of Urban Meteorology, China Meteorological Administration, Beijing, China
Xianxiang Li
School of Atmospheric Sciences, Sun Yat-Sen University, Guangzhou,
China
Guicai Ning
Department of Land Surveying and Geo-Informatics, The Hong Kong
Polytechnic University, Hong Kong, China
Yubin Li
Collaborative Innovation Centre on Forecast and Evaluation of
Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of
China Meteorological Administration, School of Atmospheric Physics, Nanjing
University of Information Science & Technology, Nanjing, China
Simone Lolli
CNR-IMAA, Contrada S. Loja, 85050 Tito Scalo (PZ), Italy
Related authors
Xinyan Li, Yuanjian Yang, Jiaqin Mi, Xueyan Bi, You Zhao, Zehao Huang, Chao Liu, Lian Zong, and Wanju Li
Atmos. Meas. Tech., 14, 7007–7023, https://doi.org/10.5194/amt-14-7007-2021, https://doi.org/10.5194/amt-14-7007-2021, 2021
Short summary
Short summary
A random forest (RF) model framework for Fengyun-4A (FY-4A) daytime and nighttime quantitative precipitation estimation (QPE) is established using FY-4A multi-band spectral information, cloud parameters, high-density precipitation observations and physical quantities from reanalysis data. The RF model of FY-4A QPE has a high accuracy in estimating precipitation at the heavy-rain level or below, which has advantages for quantitative estimation of summer precipitation over East Asia in future.
Lian Zong, Yuanjian Yang, Meng Gao, Hong Wang, Peng Wang, Hongliang Zhang, Linlin Wang, Guicai Ning, Chao Liu, Yubin Li, and Zhiqiu Gao
Atmos. Chem. Phys., 21, 9105–9124, https://doi.org/10.5194/acp-21-9105-2021, https://doi.org/10.5194/acp-21-9105-2021, 2021
Short summary
Short summary
In recent years, summer O3 pollution over eastern China has become more serious, and it is even the case that surface O3 and PM2.5 pollution can co-occur. However, the synoptic weather pattern (SWP) related to this compound pollution remains unclear. Regional PM2.5 and O3 compound pollution is characterized by various SWPs with different dominant factors. Our findings provide insights into the regional co-occurring high PM2.5 and O3 levels via the effects of certain meteorological factors.
Tao Shi, Yuanjian Yang, Gaopeng Lu, Zuofang Zheng, Yucheng Zi, Ye Tian, Lei Liu, and Simone Lolli
Atmos. Chem. Phys., 25, 9219–9234, https://doi.org/10.5194/acp-25-9219-2025, https://doi.org/10.5194/acp-25-9219-2025, 2025
Short summary
Short summary
The city significantly influences thunderstorm and lightning activity, yet the potential mechanisms remain largely unexplored. Our study has revealed that both city size and building density play pivotal roles in modulating thunderstorm and lightning activity. This research not only deepens our understanding of urban meteorology but also lays an important foundation for developing accurate and targeted urban thunderstorm risk prediction models.
Jialu Xu, Yingjie Zhang, Yuying Wang, Xing Yan, Bin Zhu, Chunsong Lu, Yuanjian Yang, Yele Sun, Junhui Zhang, Xiaofan Zuo, Zhanghanshu Han, and Rui Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-3184, https://doi.org/10.5194/egusphere-2025-3184, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We conducted a year-long study in Nanjing to explore how the height of the atmospheric boundary layer affects fine particle pollution. We found that low boundary layers in winter trap pollutants like nitrate and primary particles, while higher layers in summer help form secondary pollutants like sulfate and organic aerosols. These findings show that boundary layer dynamics are key to understanding and managing seasonal air pollution.
Zining Yang, Qiuyan Du, Qike Yang, Chun Zhao, Gudongze Li, Zihan Xia, Mingyue Xu, Renmin Yuan, Yubin Li, Kaihui Xia, Jun Gu, and Jiawang Feng
Atmos. Chem. Phys., 25, 8831–8857, https://doi.org/10.5194/acp-25-8831-2025, https://doi.org/10.5194/acp-25-8831-2025, 2025
Short summary
Short summary
This study investigates the impact of turbulent mixing on black carbon (BC) concentrations in urban areas simulated at 25, 5, and 1 km resolutions. Significant variations in BC and turbulent mixing occur mainly at night. Higher resolutions reduce BC overestimation due to enhanced mixing coefficients and vertical wind fluxes. Small-scale eddies at higher resolutions increase the BC lifetime and column concentrations. Land use and terrain variations across multiple resolutions affect turbulent mixing.
Junhui Zhang, Yuying Wang, Jialu Xu, Xiaofan Zuo, Chunsong Lu, Bin Zhu, Yuanjian Yang, Xing Yan, and Yele Sun
EGUsphere, https://doi.org/10.5194/egusphere-2025-3186, https://doi.org/10.5194/egusphere-2025-3186, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We conducted a year-long study in Nanjing to understand how tiny airborne particles take up water, which affects air quality and climate. We found that particle water uptake varies by season and size, with lower values in summer due to more organic materials. Local pollution mainly influences smaller particles, while larger ones are shaped by air mass transport. These findings help improve climate models and support better air pollution control in fast-growing cities.
Tenglong Shi, Jiayao Wang, Daizhou Zhang, Jiecan Cui, Zihang Wang, Yue Zhou, Wei Pu, Yang Bai, Zhigang Han, Meng Liu, Yanbiao Liu, Hongbin Xie, Minghui Yang, Ying Li, Meng Gao, and Xin Wang
The Cryosphere, 19, 2821–2835, https://doi.org/10.5194/tc-19-2821-2025, https://doi.org/10.5194/tc-19-2821-2025, 2025
Short summary
Short summary
This study examines the properties of dust in snow in Changchun, China, using advanced technology to analyze its size, shape, and light absorption. We found that dust composition affects how much heat is absorbed by snow, with certain minerals, such as hematite, making snowmelt faster. Our research highlights the importance of creating clear standards for classifying dust, which could improve climate models and field observations. This work helps better understand dust's role in climate change.
Xiao Lu, Yiming Liu, Jiayin Su, Xiang Weng, Tabish Ansari, Yuqiang Zhang, Guowen He, Yuqi Zhu, Haolin Wang, Ganquan Zeng, Jingyu Li, Cheng He, Shuai Li, Teerachai Amnuaylojaroen, Tim Butler, Qi Fan, Shaojia Fan, Grant L. Forster, Meng Gao, Jianlin Hu, Yugo Kanaya, Mohd Talib Latif, Keding Lu, Philippe Nédélec, Peer Nowack, Bastien Sauvage, Xiaobin Xu, Lin Zhang, Ke Li, Ja-Ho Koo, and Tatsuya Nagashima
Atmos. Chem. Phys., 25, 7991–8028, https://doi.org/10.5194/acp-25-7991-2025, https://doi.org/10.5194/acp-25-7991-2025, 2025
Short summary
Short summary
This study analyzes summertime ozone trends in East and Southeast Asia derived from a comprehensive observational database spanning from 1995 to 2019, incorporating aircraft observations, ozonesonde data, and measurements from 2500 surface sites. Multiple models are applied to attribute to changes in anthropogenic emissions and climate. The results highlight that increases in anthropogenic emissions are the primary driver of ozone increases both in the free troposphere and at the surface.
Tao Shi, Yuanjian Yang, Ping Qi, and Simone Lolli
EGUsphere, https://doi.org/10.5194/egusphere-2025-2785, https://doi.org/10.5194/egusphere-2025-2785, 2025
Short summary
Short summary
Using Beijing’s Fifth Ring Road, the team combined data and models. Heatwave results: canopy heat island was 91.3 % stronger day/52.7 % night. Day heat relied on building coverage, night on sky visibility. Tall buildings block sun by day, trap heat at night. Night ventilation cools, day winds spread heat. Urban design must consider day-night cycles to fight extreme heat, guiding risk reduction.
Tao Shi, Yuanjian Yang, Lian Zong, Min Guo, Ping Qi, and Simone Lolli
Atmos. Chem. Phys., 25, 4989–5007, https://doi.org/10.5194/acp-25-4989-2025, https://doi.org/10.5194/acp-25-4989-2025, 2025
Short summary
Short summary
Our study explored the daily temperature patterns in urban areas of the Yangtze River Delta, focusing on how weather and human activities impact these patterns. We found that temperatures were higher at night, and weather patterns had a bigger impact during the day, while human activities mattered more at night. This helps us understand and address urban overheating.
Tianwen Wei, Mengya Wang, Kenan Wu, Jinlong Yuan, Haiyun Xia, and Simone Lolli
Atmos. Meas. Tech., 18, 1841–1857, https://doi.org/10.5194/amt-18-1841-2025, https://doi.org/10.5194/amt-18-1841-2025, 2025
Short summary
Short summary
This study analyzes three years of wind lidar measurements to explore the dynamics of the urban planetary boundary layer in Hefei, China. Results reveal that nocturnal low-level jets are most frequent in spring and intensify in summer, significantly enhancing turbulence and shear near the surface, particularly at night. Additionally, cloud cover raises the mixing layer height by approximately 100 m at night due to the greenhouse effect but reduces it by up to 200 m in the afternoon.
Bo Zheng, Jason Blake Cohen, Lingxiao Lu, Wei Hu, Pravash Tiwari, Simone Lolli, Andrea Garzelli, Hui Su, and Kai Qin
EGUsphere, https://doi.org/10.5194/egusphere-2025-1446, https://doi.org/10.5194/egusphere-2025-1446, 2025
Short summary
Short summary
This study provides TROPOMI with a new methane emission estimation method that can accurately identify emission sources. Our results generate non-negative emission datasets using objective selection and filtering methods. The results include lower minimum emission thresholds for all power grids and fewer false positives. The new method provides more robust emission quantification in the face of data uncertainty, going beyond traditional plume identification and background subtraction.
Zhiheng Liao, Jinqiang Zhang, Meng Gao, and Zhiqiang Ma
EGUsphere, https://doi.org/10.5194/egusphere-2025-15, https://doi.org/10.5194/egusphere-2025-15, 2025
Short summary
Short summary
We present observational evidence for widespread SI influence on surface ozone pollution from western plateaus to eastern plains over China in a deep trough event based on multi-site ozonesondes, nationwide surface ozone measurements, and fully-validate atmospheric ozone reanalsyis. The observational results refine the fundamental understanding of stratospheric ozone intrusion and its contribution to surface ozone pollution in China.
Simone Lolli, Erica K. Dolinar, Jasper R. Lewis, Andreu Salcedo-Bosch, James R. Campbell, and Ellsworth J. Welton
EGUsphere, https://doi.org/10.5194/egusphere-2025-1237, https://doi.org/10.5194/egusphere-2025-1237, 2025
Short summary
Short summary
Clouds strongly influence Earth's climate by changing how sunlight is reflected or absorbed. We studied thin, high-altitude clouds using radar-laser measurements collected over twenty years at NASA GSFC. Our findings show these clouds increasingly trap heat, partly because of shrinking snow and ice cover. This trend could further accelerate warming locally, underlining the need for accurate cloud observations to improve climate forecasts and strategies to respond to climate change.
Fengjiao Chen, Yuanjian Yang, Lu Yu, Yang Li, Weiguang Liu, Yan Liu, and Simone Lolli
Atmos. Chem. Phys., 25, 1587–1601, https://doi.org/10.5194/acp-25-1587-2025, https://doi.org/10.5194/acp-25-1587-2025, 2025
Short summary
Short summary
The microphysical mechanisms of precipitation responsible for the varied impacts of aerosol particles on shallow precipitation remain unclear. This study reveals that coarse aerosol particles invigorate shallow rainfall through enhanced coalescence processes, whereas fine aerosol particles suppress shallow rainfall through intensified microphysical breaks. These impacts are independent of thermodynamic environments but are more significant in low-humidity conditions.
Tao Shi, Yuanjian Yang, Ping Qi, and Simone Lolli
Atmos. Chem. Phys., 24, 12807–12822, https://doi.org/10.5194/acp-24-12807-2024, https://doi.org/10.5194/acp-24-12807-2024, 2024
Short summary
Short summary
This paper explored the formation mechanisms of the amplified canopy urban heat island intensity (ΔCUHII) during heat wave (HW) periods in the megacity of Beijing from the perspectives of mountain–valley breeze and urban morphology. During the mountain breeze phase, high-rise buildings with lower sky view factors (SVFs) had a pronounced effect on the ΔCUHII. During the valley breeze phase, high-rise buildings exerted a dual influence on the ΔCUHII.
Lian Su, Chunsong Lu, Jinlong Yuan, Xiaofei Wang, Qing He, and Haiyun Xia
Atmos. Chem. Phys., 24, 10947–10963, https://doi.org/10.5194/acp-24-10947-2024, https://doi.org/10.5194/acp-24-10947-2024, 2024
Short summary
Short summary
The cold downhill airflow of the Tibetan Plateau leading to the low-level jet weakens the height and intensity of the inversion layer, which reduces the energy demand for the broken inversion layer. The low-level jet causes dust aerosols to accumulate near the ground. The material conditions for the development of the desert atmospheric boundary layer can be quickly transformed into thermal conditions.
Chaman Gul, Shichang Kang, Yuanjian Yang, Xinlei Ge, and Dong Guo
EGUsphere, https://doi.org/10.5194/egusphere-2024-1144, https://doi.org/10.5194/egusphere-2024-1144, 2024
Preprint archived
Short summary
Short summary
Long-term variations in upper atmospheric temperature and water vapor in the selected domains of time and space are presented. The temperature during the past two decades showed a cooling trend and water vapor showed an increasing trend and had an inverse relation with temperature in selected domains of space and time. Seasonal temperature variations are distinct, with a summer minimum and a winter maximum. Our results can be an early warning indication for future climate change.
Zhiheng Liao, Meng Gao, Jinqiang Zhang, Jiaren Sun, Jiannong Quan, Xingcan Jia, Yubing Pan, and Shaojia Fan
Atmos. Chem. Phys., 24, 3541–3557, https://doi.org/10.5194/acp-24-3541-2024, https://doi.org/10.5194/acp-24-3541-2024, 2024
Short summary
Short summary
This study collected 1897 ozonesondes from two Chinese megacities (Beijing and Hong Kong) in 2000–2022 to investigate the climatological vertical heterogeneity of lower-tropospheric ozone distribution with a mixing-layer-height-referenced (h-referenced) vertical coordinate system. This vertical coordinate system highlighted O3 stratification features existing at the mixing layer–free troposphere interface and provided a better understanding of O3 pollution in urban regions.
Cristina Gil-Díaz, Michäel Sicard, Adolfo Comerón, Daniel Camilo Fortunato dos Santos Oliveira, Constantino Muñoz-Porcar, Alejandro Rodríguez-Gómez, Jasper R. Lewis, Ellsworth J. Welton, and Simone Lolli
Atmos. Meas. Tech., 17, 1197–1216, https://doi.org/10.5194/amt-17-1197-2024, https://doi.org/10.5194/amt-17-1197-2024, 2024
Short summary
Short summary
In this paper, a statistical study of cirrus geometrical and optical properties based on 4 years of continuous ground-based lidar measurements with the Barcelona (Spain) Micro Pulse Lidar (MPL) is analysed. The cloud optical depth, effective column lidar ratio and linear cloud depolarisation ratio have been calculated by a new approach to the two-way transmittance method, which is valid for both ground-based and spaceborne lidar systems. Their associated errors are also provided.
Kenan Wu, Tianwen Wei, Jinlong Yuan, Haiyun Xia, Xin Huang, Gaopeng Lu, Yunpeng Zhang, Feifan Liu, Baoyou Zhu, and Weidong Ding
Atmos. Meas. Tech., 16, 5811–5825, https://doi.org/10.5194/amt-16-5811-2023, https://doi.org/10.5194/amt-16-5811-2023, 2023
Short summary
Short summary
A compact all-fiber coherent Doppler wind lidar (CDWL) working at the 1.5 µm wavelength is applied to probe the dynamics and microphysics structure of thunderstorms. It was found that thunderclouds below the 0 ℃ isotherm have significant spectrum broadening and an increase in skewness, and that lightning affects the microphysics structure of the thundercloud. It is proven that the precise spectrum of CDWL is a promising indicator for studying the charge structure of thunderstorms.
Shaohui Zhou, Chloe Yuchao Gao, Zexia Duan, Xingya Xi, and Yubin Li
Geosci. Model Dev., 16, 6247–6266, https://doi.org/10.5194/gmd-16-6247-2023, https://doi.org/10.5194/gmd-16-6247-2023, 2023
Short summary
Short summary
The proposed wind speed correction model (VMD-PCA-RF) demonstrates the highest prediction accuracy and stability in the five southern provinces in nearly a year and at different heights. VMD-PCA-RF evaluation indices for 13 months remain relatively stable: the forecasting accuracy rate FA is above 85 %. In future research, the proposed VMD-PCA-RF algorithm can be extrapolated to the 3 km grid points of the five southern provinces to generate a 3 km grid-corrected wind speed product.
Jianbin Zhang, Zhiqiu Gao, Yubin Li, and Yuncong Jiang
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-187, https://doi.org/10.5194/gmd-2023-187, 2023
Preprint withdrawn
Short summary
Short summary
This study developed a deep learning model called CNN-BiLSTM-AM for convective weather forecasting. The results showed that the CNN-BiLSTM-AM model outperformed traditional machine learning algorithms in predicting convective weather, with higher accuracy as the forecast lead time increased. When compared to subjective forecasts by forecasters, the objective approach of the CNN-BiLSTM-AM model also demonstrated advantages in various metrics.
Simone Lolli, Michaël Sicard, Francesco Amato, Adolfo Comeron, Cristina Gíl-Diaz, Tony C. Landi, Constantino Munoz-Porcar, Daniel Oliveira, Federico Dios Otin, Francesc Rocadenbosch, Alejandro Rodriguez-Gomez, Andrés Alastuey, Xavier Querol, and Cristina Reche
Atmos. Chem. Phys., 23, 12887–12906, https://doi.org/10.5194/acp-23-12887-2023, https://doi.org/10.5194/acp-23-12887-2023, 2023
Short summary
Short summary
We evaluated the long-term trends and seasonal variability of the vertically resolved aerosol properties over the past 17 years in Barcelona. Results shows that air quality is improved, with a consistent drop in PM concentrations at the surface, as well as the column aerosol optical depth. The results also show that natural dust outbreaks are more likely in summer, with aerosols reaching an altitude of 5 km, while in winter, aerosols decay as an exponential with a scale height of 600 m.
Naifu Shao, Chunsong Lu, Xingcan Jia, Yuan Wang, Yubin Li, Yan Yin, Bin Zhu, Tianliang Zhao, Duanyang Liu, Shengjie Niu, Shuxian Fan, Shuqi Yan, and Jingjing Lv
Atmos. Chem. Phys., 23, 9873–9890, https://doi.org/10.5194/acp-23-9873-2023, https://doi.org/10.5194/acp-23-9873-2023, 2023
Short summary
Short summary
Fog is an important meteorological phenomenon that affects visibility. Aerosols and the planetary boundary layer (PBL) play critical roles in the fog life cycle. In this study, aerosol-induced changes in fog properties become more remarkable in the second fog (Fog2) than in the first fog (Fog1). The reason is that aerosol–cloud interaction (ACI) delays Fog1 dissipation, leading to the PBL meteorological conditions being more conducive to Fog2 formation and to stronger ACI in Fog2.
Yuan Wang, Qiangqiang Yuan, Tongwen Li, Yuanjian Yang, Siqin Zhou, and Liangpei Zhang
Earth Syst. Sci. Data, 15, 3597–3622, https://doi.org/10.5194/essd-15-3597-2023, https://doi.org/10.5194/essd-15-3597-2023, 2023
Short summary
Short summary
We propose a novel spatiotemporally self-supervised fusion method to establish long-term daily seamless global XCO2 and XCH4 products. Results show that the proposed method achieves a satisfactory accuracy that distinctly exceeds that of CAMS-EGG4 and is superior or close to those of GOSAT and OCO-2. In particular, our fusion method can effectively correct the large biases in CAMS-EGG4 due to the issues from assimilation data, such as the unadjusted anthropogenic emission for COVID-19.
Lei Kong, Xiao Tang, Jiang Zhu, Zifa Wang, Yele Sun, Pingqing Fu, Meng Gao, Huangjian Wu, Miaomiao Lu, Qian Wu, Shuyuan Huang, Wenxuan Sui, Jie Li, Xiaole Pan, Lin Wu, Hajime Akimoto, and Gregory R. Carmichael
Atmos. Chem. Phys., 23, 6217–6240, https://doi.org/10.5194/acp-23-6217-2023, https://doi.org/10.5194/acp-23-6217-2023, 2023
Short summary
Short summary
A multi-air-pollutant inversion system has been developed in this study to estimate emission changes in China during COVID-19 lockdown. The results demonstrate that the lockdown is largely a nationwide road traffic control measure with NOx emissions decreasing by ~40 %. Emissions of other species only decreased by ~10 % due to smaller effects of lockdown on other sectors. Assessment results further indicate that the lockdown only had limited effects on the control of PM2.5 and O3 in China.
Jianbin Zhang, Zexia Duan, Shaohui Zhou, Yubin Li, and Zhiqiu Gao
Atmos. Meas. Tech., 16, 2197–2207, https://doi.org/10.5194/amt-16-2197-2023, https://doi.org/10.5194/amt-16-2197-2023, 2023
Short summary
Short summary
In this paper, we used a random forest model to fill the observation gaps of the fluxes measured during 2015–2019. We found that the net radiation was the most important input variable. And we justified the reliability of the model. Further, it was revealed that the model performed better after relative humidity was removed from the input. Lastly, we compared the results of the model with those of three other machine learning models, and we found that the model outperformed all of them.
Yilin Chen, Yuanjian Yang, and Meng Gao
Atmos. Meas. Tech., 16, 1279–1294, https://doi.org/10.5194/amt-16-1279-2023, https://doi.org/10.5194/amt-16-1279-2023, 2023
Short summary
Short summary
The Guangdong–Hong Kong–Macao Greater Bay Area suffers from summertime air pollution events related to typhoons. The present study leverages machine learning to predict typhoon-associated air quality over the area. The model evaluation shows that the model performs excellently. Moreover, the change in meteorological drivers of air quality on typhoon days and non-typhoon days suggests that air pollution control strategies should have different focuses on typhoon days and non-typhoon days.
Peng Wang, Ruhan Zhang, Shida Sun, Meng Gao, Bo Zheng, Dan Zhang, Yanli Zhang, Gregory R. Carmichael, and Hongliang Zhang
Atmos. Chem. Phys., 23, 2983–2996, https://doi.org/10.5194/acp-23-2983-2023, https://doi.org/10.5194/acp-23-2983-2023, 2023
Short summary
Short summary
In China, the number of vehicles has jumped significantly in the last decade. This caused severe traffic congestion and aggravated air pollution. In this study, we developed a new temporal allocation approach to quantify the impacts of traffic congestion. We found that traffic congestion worsens air quality and the health burden across China, especially in the urban clusters. More effective and comprehensive vehicle emission control policies should be implemented to improve air quality in China.
Hui Zhang, Ming Luo, Yongquan Zhao, Lijie Lin, Erjia Ge, Yuanjian Yang, Guicai Ning, Jing Cong, Zhaoliang Zeng, Ke Gui, Jing Li, Ting On Chan, Xiang Li, Sijia Wu, Peng Wang, and Xiaoyu Wang
Earth Syst. Sci. Data, 15, 359–381, https://doi.org/10.5194/essd-15-359-2023, https://doi.org/10.5194/essd-15-359-2023, 2023
Short summary
Short summary
We generate the first monthly high-resolution (1 km) human thermal index collection (HiTIC-Monthly) in China over 2003–2020, in which 12 human-perceived temperature indices are generated by LightGBM. The HiTIC-Monthly dataset has a high accuracy (R2 = 0.996, RMSE = 0.693 °C, MAE = 0.512 °C) and describes explicit spatial variations for fine-scale studies. It is freely available at https://zenodo.org/record/6895533 and https://data.tpdc.ac.cn/disallow/036e67b7-7a3a-4229-956f-40b8cd11871d.
Haolin Wang, Xiao Lu, Daniel J. Jacob, Owen R. Cooper, Kai-Lan Chang, Ke Li, Meng Gao, Yiming Liu, Bosi Sheng, Kai Wu, Tongwen Wu, Jie Zhang, Bastien Sauvage, Philippe Nédélec, Romain Blot, and Shaojia Fan
Atmos. Chem. Phys., 22, 13753–13782, https://doi.org/10.5194/acp-22-13753-2022, https://doi.org/10.5194/acp-22-13753-2022, 2022
Short summary
Short summary
We report significant global tropospheric ozone increases in 1995–2017 based on extensive aircraft and ozonesonde observations. Using GEOS-Chem (Goddard Earth Observing System chemistry model) multi-decadal global simulations, we find that changes in global anthropogenic emissions, in particular the rapid increases in aircraft emissions, contribute significantly to the increases in tropospheric ozone and resulting radiative impact.
Fan Wang, Gregory R. Carmichael, Jing Wang, Bin Chen, Bo Huang, Yuguo Li, Yuanjian Yang, and Meng Gao
Atmos. Chem. Phys., 22, 13341–13353, https://doi.org/10.5194/acp-22-13341-2022, https://doi.org/10.5194/acp-22-13341-2022, 2022
Short summary
Short summary
Unprecedented urbanization in China has led to serious urban heat island (UHI) issues, exerting intense heat stress on urban residents. We find diverse influences of aerosol pollution on urban heat island intensity (UHII) under different circulations. Our results also highlight the role of black carbon in aggravating UHI, especially during nighttime. It could thus be targeted for cooperative management of heat islands and aerosol pollution.
Zexia Duan, Zhiqiu Gao, Qing Xu, Shaohui Zhou, Kai Qin, and Yuanjian Yang
Earth Syst. Sci. Data, 14, 4153–4169, https://doi.org/10.5194/essd-14-4153-2022, https://doi.org/10.5194/essd-14-4153-2022, 2022
Short summary
Short summary
Land–atmosphere interactions over the Yangtze River Delta (YRD) in China are becoming more varied and complex, as the area is experiencing rapid land use changes. In this paper, we describe a dataset of microclimate and eddy covariance variables at four sites in the YRD. This dataset has potential use cases in multiple research fields, such as boundary layer parametrization schemes, evaluation of remote sensing algorithms, and development of climate models in typical East Asian monsoon regions.
Bo Li, Cheng Liu, Qihou Hu, Mingzhai Sun, Chengxin Zhang, Shulin Zhang, Yizhi Zhu, Ting Liu, Yike Guo, Gregory R. Carmichael, and Meng Gao
EGUsphere, https://doi.org/10.5194/egusphere-2022-578, https://doi.org/10.5194/egusphere-2022-578, 2022
Preprint archived
Short summary
Short summary
Ambient particles have an important impact on human health, meteorology and climate change. By building a deep spatiotemporal neural network model we have overcome the long-standing limitations and get the full time and space coverage ground PM2.5 concentrations. We open the neural network black box data model by using sensitivity analysis and visualization techniques. This research will help improve health effects studies, climate effects of aerosols, and air quality prediction.
Chenhong Zhou, Fan Wang, Yike Guo, Cheng Liu, Dongsheng Ji, Yuesi Wang, Xiaobin Xu, Xiao Lu, Yan Wang, Gregory Carmichael, and Meng Gao
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-187, https://doi.org/10.5194/essd-2022-187, 2022
Manuscript not accepted for further review
Short summary
Short summary
We develop an eXtreme Gradient Boosting (XGBoost) model integrating high-resolution meteorological data, satellite retrievals of trace gases, etc. to provide reconstructed daily ground-level O3 over 2005–2021 in China. It can facilitate climatological, ecological, and health research. The dataset is freely available at Zenodo (https://zenodo.org/record/6507706#.Yo8hKujP13g; Zhou, 2022).
Dawei Tang, Tianwen Wei, Jinlong Yuan, Haiyun Xia, and Xiankang Dou
Atmos. Meas. Tech., 15, 2819–2838, https://doi.org/10.5194/amt-15-2819-2022, https://doi.org/10.5194/amt-15-2819-2022, 2022
Short summary
Short summary
During 11–20 March 2020, three aerosol transport events were investigated by a lidar system and an online bioaerosol detection system in Hefei, China.
Observation results reveal that the events not only contributed to high particulate matter pollution but also to the transport of external bioaerosols, resulting in changes in the fraction of fluorescent biological aerosol particles.
This detection method improved the time resolution and provided more parameters for aerosol detection.
Shaohui Zhou, Yuanjian Yang, Zhiqiu Gao, Xingya Xi, Zexia Duan, and Yubin Li
Atmos. Meas. Tech., 15, 757–773, https://doi.org/10.5194/amt-15-757-2022, https://doi.org/10.5194/amt-15-757-2022, 2022
Short summary
Short summary
Our research has determined the possible relationship between Weibull natural wind mesoscale parameter c and shape factor k with height under the conditions of a desert steppe terrain in northern China, which has great potential in wind power generation. We have gained an enhanced understanding of the seasonal changes in the surface roughness of the desert grassland and the changes in the incoming wind direction.
Shihan Chen, Yuanjian Yang, Fei Deng, Yanhao Zhang, Duanyang Liu, Chao Liu, and Zhiqiu Gao
Atmos. Meas. Tech., 15, 735–756, https://doi.org/10.5194/amt-15-735-2022, https://doi.org/10.5194/amt-15-735-2022, 2022
Short summary
Short summary
This paper proposes a method for evaluating canopy UHI intensity (CUHII) at high resolution by using remote sensing data and machine learning with a random forest (RF) model. The spatial distribution of CUHII was evaluated at 30 m resolution based on the output of the RF model. The present RF model framework for real-time monitoring and assessment of high-resolution CUHII provides scientific support for studying the changes and causes of CUHII.
Pu Jiang, Jinlong Yuan, Kenan Wu, Lu Wang, and Haiyun Xia
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-288, https://doi.org/10.5194/amt-2021-288, 2021
Revised manuscript not accepted
Short summary
Short summary
To analyse the atmospheric turbulence in high resolution, we proposed a new method by combining the advantages of two remote sensing instruments. A contrastive experiment was conducted horizontally to verify the method. Based on the result, we obtained and analyzed the continuous Cn2 and other turbulence profiles with high temporal and spatial resolution simultaneously. It is significant for studying the complex and fast-changing atmospheric environment.
Xinyan Li, Yuanjian Yang, Jiaqin Mi, Xueyan Bi, You Zhao, Zehao Huang, Chao Liu, Lian Zong, and Wanju Li
Atmos. Meas. Tech., 14, 7007–7023, https://doi.org/10.5194/amt-14-7007-2021, https://doi.org/10.5194/amt-14-7007-2021, 2021
Short summary
Short summary
A random forest (RF) model framework for Fengyun-4A (FY-4A) daytime and nighttime quantitative precipitation estimation (QPE) is established using FY-4A multi-band spectral information, cloud parameters, high-density precipitation observations and physical quantities from reanalysis data. The RF model of FY-4A QPE has a high accuracy in estimating precipitation at the heavy-rain level or below, which has advantages for quantitative estimation of summer precipitation over East Asia in future.
Chengzhi Xing, Cheng Liu, Hongyu Wu, Jinan Lin, Fan Wang, Shuntian Wang, and Meng Gao
Earth Syst. Sci. Data, 13, 4897–4912, https://doi.org/10.5194/essd-13-4897-2021, https://doi.org/10.5194/essd-13-4897-2021, 2021
Short summary
Short summary
Observations of atmospheric composition, especially vertical profile observations, remain sparse and rare on the Tibetan Plateau (TP), due to extremely high altitude, topographical heterogeneity and the grinding environment. This paper introduces a high-time-resolution (~ 15 min) vertical profile observational dataset of atmospheric composition (aerosols, NO2, HCHO and HONO) on the TP for more than 1 year (2017–2019) using a passive remote sensing technique.
Yixiong Lu, Tongwen Wu, Yubin Li, and Ben Yang
Geosci. Model Dev., 14, 5183–5204, https://doi.org/10.5194/gmd-14-5183-2021, https://doi.org/10.5194/gmd-14-5183-2021, 2021
Short summary
Short summary
The spurious precipitation in the tropical southeastern Pacific and southern Atlantic is one of the most prominent systematic biases in coupled atmosphere–ocean general circulation models. This study significantly promotes the marine stratus simulation and largely alleviates the excessive precipitation biases through improving parameterizations of boundary-layer turbulence and shallow convection, providing an effective solution to the long-standing bias in the tropical precipitation simulation.
Meng Gao, Yang Yang, Hong Liao, Bin Zhu, Yuxuan Zhang, Zirui Liu, Xiao Lu, Chen Wang, Qiming Zhou, Yuesi Wang, Qiang Zhang, Gregory R. Carmichael, and Jianlin Hu
Atmos. Chem. Phys., 21, 11405–11421, https://doi.org/10.5194/acp-21-11405-2021, https://doi.org/10.5194/acp-21-11405-2021, 2021
Short summary
Short summary
Light absorption and radiative forcing of black carbon (BC) is influenced by both BC itself and its interactions with other aerosol chemical compositions. In this study, we used the online coupled WRF-Chem model to examine how emission control measures during the Asian-Pacific Economic Cooperation (APEC) conference affect the mixing state and light absorption of BC and the associated implications for BC-PBL interactions.
Lian Zong, Yuanjian Yang, Meng Gao, Hong Wang, Peng Wang, Hongliang Zhang, Linlin Wang, Guicai Ning, Chao Liu, Yubin Li, and Zhiqiu Gao
Atmos. Chem. Phys., 21, 9105–9124, https://doi.org/10.5194/acp-21-9105-2021, https://doi.org/10.5194/acp-21-9105-2021, 2021
Short summary
Short summary
In recent years, summer O3 pollution over eastern China has become more serious, and it is even the case that surface O3 and PM2.5 pollution can co-occur. However, the synoptic weather pattern (SWP) related to this compound pollution remains unclear. Regional PM2.5 and O3 compound pollution is characterized by various SWPs with different dominant factors. Our findings provide insights into the regional co-occurring high PM2.5 and O3 levels via the effects of certain meteorological factors.
Yan Zhang, Yu Zhao, Meng Gao, Xin Bo, and Chris P. Nielsen
Atmos. Chem. Phys., 21, 6411–6430, https://doi.org/10.5194/acp-21-6411-2021, https://doi.org/10.5194/acp-21-6411-2021, 2021
Short summary
Short summary
We combined air quality and exposure response models to analyze the benefits for air quality and human health of China’s ultra-low emission policy in one of its most developed regions. Atmospheric observations and the air quality model were also used to demonstrate improvement of emission inventories incorporating online emission monitoring data. With implementation of the policy in both power and industrial sectors, the attributable deaths due to PM2.5 exposure are estimated to decrease 5.5 %.
Gemine Vivone, Giuseppe D'Amico, Donato Summa, Simone Lolli, Aldo Amodeo, Daniele Bortoli, and Gelsomina Pappalardo
Atmos. Chem. Phys., 21, 4249–4265, https://doi.org/10.5194/acp-21-4249-2021, https://doi.org/10.5194/acp-21-4249-2021, 2021
Short summary
Short summary
We developed a methodology to retrieve the atmospheric boundary layer height from elastic and multi-wavelength lidar observations that uses a new approach based on morphological image processing techniques. The intercomparison with other state-of-the-art algorithms shows on average 30 % improved performance. The algorithm also shows excellent performance with respect to the running time, i.e., just few seconds to execute the whole signal processing chain over 72 h of continuous measurements.
Peter Sherman, Meng Gao, Shaojie Song, Alex T. Archibald, Nathan Luke Abraham, Jean-François Lamarque, Drew Shindell, Gregory Faluvegi, and Michael B. McElroy
Atmos. Chem. Phys., 21, 3593–3605, https://doi.org/10.5194/acp-21-3593-2021, https://doi.org/10.5194/acp-21-3593-2021, 2021
Short summary
Short summary
The aims here are to assess the role of aerosols in India's monsoon precipitation and to determine the relative contributions from Chinese and Indian emissions using CMIP6 models. We find that increased sulfur emissions reduce precipitation, which is primarily dynamically driven due to spatial shifts in convection over the region. A significant increase in precipitation (up to ~ 20 %) is found only when both Indian and Chinese sulfate emissions are regulated.
Shaojie Song, Tao Ma, Yuzhong Zhang, Lu Shen, Pengfei Liu, Ke Li, Shixian Zhai, Haotian Zheng, Meng Gao, Jonathan M. Moch, Fengkui Duan, Kebin He, and Michael B. McElroy
Atmos. Chem. Phys., 21, 457–481, https://doi.org/10.5194/acp-21-457-2021, https://doi.org/10.5194/acp-21-457-2021, 2021
Short summary
Short summary
We simulate the atmospheric chemical processes of an important sulfur-containing organic aerosol species, which is produced by the reaction between sulfur dioxide and formaldehyde. We can predict its distribution on a global scale. We find it is particularly rich in East Asia. This aerosol species is more abundant in the colder season partly because of weaker sunlight.
Ju Li, Zhaobin Sun, Donald H. Lenschow, Mingyu Zhou, Youjun Dou, Zhigang Cheng, Yaoting Wang, and Qingchun Li
Atmos. Chem. Phys., 20, 15793–15809, https://doi.org/10.5194/acp-20-15793-2020, https://doi.org/10.5194/acp-20-15793-2020, 2020
Short summary
Short summary
We analyzed a haze front event involving warm–dry downslope flow in December 2015 in Beijing, China. The haze front was formed by the collision between a clean warm–dry air mass flowing from a nearby mountainous region and a polluted cold–wet air mass over an urban area. We found that the polluted air advanced toward the clean air, resulting in a severe air pollution event. Our study highlights the need to further investigate the warm–dry downslope and its impacts on air pollution.
Jasper R. Lewis, James R. Campbell, Sebastian A. Stewart, Ivy Tan, Ellsworth J. Welton, and Simone Lolli
Atmos. Meas. Tech., 13, 6901–6913, https://doi.org/10.5194/amt-13-6901-2020, https://doi.org/10.5194/amt-13-6901-2020, 2020
Short summary
Short summary
In this work, the authors describe a process to determine the thermodynamic cloud phase using the Micro Pulse Lidar Network volume depolarization ratio measurements and temperature profiles from the Global Modeling and Assimilation Office GEOS-5 model. A multi-year analysis and comparisons to supercooled liquid water fractions derived from CALIPSO satellite measurements are used to demonstrate the efficacy of the method.
Cited articles
Abbas, E.-Z. and Mylene, T.: On the association between high
temperature and mortality in warm climates, Sci. Total Environ., 343,
273–275, https://doi.org/10.1016/j.scitotenv.2004.12.024, 2005.
Atkinson, R. W., Yu, D., Armstrong, B. G., Pattenden, S., Wilkinson, P.,
Doherty, R. M., Heal, M. R., and Anderson, H. R.: Results from Five Urban and
Five Rural U . K . Populations, Environ. Health Perspect., 120,
1411–1417, 2012.
Bai, L., Woodward, A., Cirendunzhu, and Liu, Q.: County-level heat
vulnerability of urban and rural residents in Tibet, China, Environ. Heal.,
15, 3, https://doi.org/10.1186/s12940-015-0081-0, 2016.
Cao, R., Wang, Y., Huang, J., Zeng, Q., Pan, X., Li, G., and He, T.: The
construction of the air quality health index (AQHI) and a validity
comparison based on three different methods, Environ. Res., 197,
110987, https://doi.org/10.1016/j.envres.2021.110987, 2021.
Chen, R., Yin, P., Wang, L., Liu, C., Niu, Y., Wang, W., Jiang, Y., Liu, Y.,
Liu, J., Qi, J., You, J., Kan, H., and Zhou, M.: Association between ambient
temperature and mortality risk and burden: Time series study in 272 main
Chinese cities, The British Medical Journal, 363, k4306, https://doi.org/10.1136/bmj.k4306, 2018.
Chen, S., Yang, Y., Deng, F., Zhang, Y., Liu, D., Liu, C., and Gao, Z.: A high-resolution monitoring approach of canopy urban heat island using a random forest model and multi-platform observations, Atmos. Meas. Tech., 15, 735–756, https://doi.org/10.5194/amt-15-735-2022, 2022.
Chew, L. W., Liu, X., Li, X. X., and Norford, L. K.: Interaction between heat
wave and urban heat island: A case study in a tropical coastal city,
Singapore, Atmos. Res., 247, 105134,
https://doi.org/10.1016/j.atmosres.2020.105134, 2021.
Clarke, J. F.: Some effects of the urban structure on heat mortality,
Environ. Res., 5, 93–104, https://doi.org/10.1016/0013-9351(72)90023-0, 1972.
CMA: The hourly meteorological data can be obtained from the National Meteorological Information Center of the China Meteorological
Administration, CMA [data set], http://data.cma.cn/en/, 2021.
Colvile, R. N., Hutchinson, E. J., Mindell, J. S., and Warren, R. F.: The
transport sector as a source of air pollution, Atmos. Environ., 35,
1537–1565, https://doi.org/10.1016/S1352-2310(00)00551-3, 2001.
Conti, S., Meli, P., Minelli, G., Solimini, R., Toccaceli, V., Vichi, M.,
Beltrano, C., and Perini, L.: Epidemiologic study of mortality during the
Summer 2003 heat wave in Italy, Environ. Res., 98, 390–399,
https://doi.org/10.1016/j.envres.2004.10.009, 2005.
Du, X., Chen, R., Meng, X., Liu, C., Niu, Y., Wang, W., Li, S., Kan, H., and
Zhou, M.: The establishment of National Air Quality Health Index in China,
Environ. Int., 138, 105594, https://doi.org/10.1016/j.envint.2020.105594, 2020.
ECMWF: ERA5 hourly data on pressure levels from 1979 to present, ECMWF [data set], https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.bd0915c6?tab=overview, last access: 20 November 2021.
Fouillet, A., Rey, G., Laurent, F., Pavillon, G., Bellec, S.,
Guihenneuc-Jouyaux, C., Clavel, J., Jougla, E., and Hémon, D.: Excess
mortality related to the August 2003 heat wave in France, Int. Arch. Occup.
Environ. Health, 80, 16–24, https://doi.org/10.1007/s00420-006-0089-4, 2006.
Gao, L., Yue, X., Meng, X., Du, L., Lei, Y., Tian, C., and Qiu, L.:
Comparison of Ozone and PM2.5 Concentrations over Urban, Suburban, and
Background Sites in China, Adv. Atmos. Sci., 37, 1297–1309,
https://doi.org/10.1007/s00376-020-0054-2, 2020.
Goggins, W. B., Chan, E. Y. Y., Ng, E., Ren, C., and Chen, L.: Effect
modification of the association between short-term meteorological factors
and mortality by urban heat islands in Hong Kong, PLoS One, 7, e38511,
https://doi.org/10.1371/journal.pone.0038551, 2012.
Gu, Y., Wong, T. W., Law, C. K., Dong, G. H., Ho, K. F., Yang, Y., and Yim,
S. H. L.: Impacts of sectoral emissions in China and the implications: Air
quality, public health, crop production, and economic costs, Environ. Res.
Lett., 13, 084008, https://doi.org/10.1088/1748-9326/aad138, 2018.
Heaviside, C., Macintyre, H., and Vardoulakis, S.: The Urban Heat Island:
Implications for Health in a Changing Environment, Curr. Environ. Heal.
Reports, 4, 296–305, https://doi.org/10.1007/s40572-017-0150-3, 2017.
Hertig, E., Russo, A., and Trigo, R. M.: Heat and ozone pollution waves in
central and south Europe – characteristics, weather types, and association
with mortality, Atmosphere, 11, 1–18,
https://doi.org/10.3390/atmos11121271, 2020.
Hu, K., Guo, Y., Hochrainer-Stigler, S., Liu, W., See, L., Yang, X., Zhong,
J., Fei, F., Chen, F., Zhang, Y., Zhao, Q., Chen, G., Chen, Q., Zhang, Y.,
Ye, T., Ma, L., Li, S., and Qi, J.: Evidence for urban–rural disparity in
temperature–mortality relationships in Zhejiang Province, China, Environ.
Health Perspect., 127, 1–11, https://doi.org/10.1289/EHP3556, 2019.
Huang, Z., Lin, H., Liu, Y., Zhou, M., Liu, T., Xiao, J., Zeng, W., Li, X.,
Zhang, Y., Ebi, K. L., Tong, S., Ma, W., and Wang, L.: Individual-level and
community-level effect modifiers of the temperature-mortality relationship
in 66 Chinese communities, BMJ Open, 5, e009172, https://doi.org/10.1136/bmjopen-2015-009172,
2015.
Huth, R.: A circulation classification scheme applicable in GCM studies,
Theor. Appl. Climatol., 67, 1–18, https://doi.org/10.1007/s007040070012, 2000.
Huth, R., Beck, C., Philipp, A., Demuzere, M., Ustrnul, Z., Cahynová,
M., Kyselý, J., and Tveito, O. E.: Classifications of atmospheric
circulation patterns: Recent advances and applications, Ann. N. Y. Acad.
Sci., 1146, 105–152, https://doi.org/10.1196/annals.1446.019, 2008.
Jiang, S., Lee, X., Wang, J., and Wang, K.: Amplified Urban Heat Islands
during Heat Wave Periods, J. Geophys. Res.-Atmos., 124, 7797–7812,
https://doi.org/10.1029/2018JD030230, 2019.
Katsouyanni, K., Pantazopoulou, A., Touloumi, G., Tselepidaki, I., and
Moustris, K.: Archives of Environmental Health: An International Evidence
for Interaction between Air Pollution and High Temperature in the Causation
of Excess Mortality Evidence for Interaction between Air Pollution and High
Temperature in the Causation of Excess Mor, Arch. Environ. Heal. An Int. J.,
48, 235–242, https://doi.org/10.1080/00039896.1993.9940365, 1993.
Kovach, M. M., Konrad, C. E., and Fuhrmann, C. M.: Area-level risk factors
for heat-related illness in rural and urban locations across North Carolina,
USA, Appl. Geogr., 60, 175–183, https://doi.org/10.1016/j.apgeog.2015.03.012, 2015.
Lee, J. D., Lewis, A. C., Monks, P. S., Jacob, M., Hamilton, J. F., Hopkins,
J. R., Watson, N. M., Saxton, J. E., Ennis, C., Carpenter, L. J., Carslaw,
N., Fleming, Z., Bandy, B. J., Oram, D. E., Penkett, S. A., Slemr, J.,
Norton, E., Rickard, A. R., K Whalley, L., Heard, D. E., Bloss, W. J.,
Gravestock, T., Smith, S. C., Stanton, J., Pilling, M. J., and Jenkin, M. E.:
Ozone photochemistry and elevated isoprene during the UK heatwave of august
2003, Atmos. Environ., 40, 7598–7613,
https://doi.org/10.1016/j.atmosenv.2006.06.057, 2006.
Lehner, F., Deser, C., and Sanderson, B. M.: Future risk of record-breaking
summer temperatures and its mitigation, Clim. Change, 146, 363–375,
https://doi.org/10.1007/s10584-016-1616-2, 2018.
Li, D., Sun, T., Liu, M., Wang, L., and Gao, Z.: Changes in wind speed under
heat waves enhance urban heat islands in the Beijing metropolitan area, J.
Appl. Meteorol. Climatol., 55, 2369–2375, https://doi.org/10.1175/JAMC-D-16-0102.1,
2016.
Li, Y., Odame, E. A., Silver, K., and Zheng, S.: Comparing Urban and Rural
Vulnerability to Heat-Related Mortality: A Systematic Review and
Meta-analysis, J. Global Epidemiol. Environ. Heal., 1, 9–15,
https://doi.org/10.29199/geeh.101016, 2017.
Li, Y., Schubert, S., Kropp, J. P., and Rybski, D.: On the influence of
density and morphology on the Urban Heat Island intensity, Nat. Commun.,
11, 1–9, https://doi.org/10.1038/s41467-020-16461-9, 2020.
Liu, J., Ai, S., Qi, J., Wang, L., Zhou, M., Wang, C., Yin, P., and Lin, H.:
Defining region-specific heatwave in China based on a novel concept of
“avoidable mortality for each temperature unit decrease,” Adv. Clim.
Chang. Res., 12, 611–618, https://doi.org/10.1016/j.accre.2021.08.002, 2021.
Liu, N., Zhou, S., Liu, C., and Guo, J.: Synoptic circulation pattern and
boundary layer structure associated with PM2.5 during wintertime haze
pollution episodes in Shanghai, Atmos. Res., 228, 186–195,
https://doi.org/10.1016/j.atmosres.2019.06.001, 2019.
Lolli, S., Bilal, M., Alparone, L., Garzelli, A., and Vivone, G.:
High-resolution satellite aerosol optical depth retrieval and its
variability over highly industrialized hotspots in the Po Valley, Italy,
Remote Sens. Clouds Atmos. XXIII, 1078606, https://doi.org/10.1117/12.2325853, 2018a.
Lolli, S., D'Adderio, L. P., Campbell, J. R., Sicard, M., Welton, E. J.,
Binci, A., Rea, A., Tokay, A., Comerón, A., Barragan, R., Baldasano, J.
M., Gonzalez, S., Bech, J., Afflitto, N., Lewis, J. R., and Madonna, F.:
Vertically resolved precipitation intensity retrieved through a synergy
between the ground-based NASA MPLNET lidar network measurements, surface
disdrometer datasets and an analytical model solution, Remote Sens., 10,
1102, https://doi.org/10.3390/rs10071102, 2018b.
Luo, M. and Lau, N. C.: Increasing Heat Stress in Urban Areas of Eastern
China: Acceleration by Urbanization, Geophys. Res. Lett., 45,
13060–13069, https://doi.org/10.1029/2018GL080306, 2018.
Luo, M. and Lau, N. C.: Urban Expansion and Drying Climate in an Urban
Agglomeration of East China, Geophys. Res. Lett., 46, 6868–6877,
https://doi.org/10.1029/2019GL082736, 2019.
Ma, F. and Yuan, X.: More Persistent Summer Compound Hot Extremes Caused by
Global Urbanization, Geophys. Res. Lett., 48, 1–12,
https://doi.org/10.1029/2021GL093721, 2021.
Ma, M., Gao, Y., Wang, Y., Zhang, S., Leung, L. R., Liu, C., Wang, S., Zhao, B., Chang, X., Su, H., Zhang, T., Sheng, L., Yao, X., and Gao, H.: Substantial ozone enhancement over the North China Plain from increased biogenic emissions due to heat waves and land cover in summer 2017, Atmos. Chem. Phys., 19, 12195–12207, https://doi.org/10.5194/acp-19-12195-2019, 2019.
Ma, W., Zeng, W., Zhou, M., Wang, L., Rutherford, S., Lin, H., Liu, T.,
Zhang, Y., Xiao, J., Zhang, Y., Wang, X., Gu, X., and Chu, C.: The short-term
effect of heat waves on mortality and its modifiers in China: An analysis
from 66 communities, Environ. Int., 75, 103–109,
https://doi.org/10.1016/j.envint.2014.11.004, 2015.
Meehl, G. A. and Tebaldi, C.: More Intense , More Frequent , and Longer
Lasting Heat Waves in the 21st Century, Science, 80, 305,
994–997, https://doi.org/10.1126/science.1098704, 2004.
Meehl, G. A., Arblaster, J. M., and Tebaldi, C.: Contributions of natural and
anthropogenic forcing to changes in temperature extremes over the United
States, Geophys. Res. Lett., 34, 1–5, https://doi.org/10.1029/2007GL030948,
2007.
Miao, Y., Liu, S., and Huang, S.: Synoptic pattern and planetary boundary
layer structure associated with aerosol pollution during winter in Beijing,
China, Sci. Total Environ., 682, 464–474,
https://doi.org/10.1016/j.scitotenv.2019.05.199, 2019.
Murphy, J. G., Day, D. A., Cleary, P. A., Wooldridge, P. J., Millet, D. B., Goldstein, A. H., and Cohen, R. C.: The weekend effect within and downwind of Sacramento – Part 1: Observations of ozone, nitrogen oxides, and VOC reactivity, Atmos. Chem. Phys., 7, 5327–5339, https://doi.org/10.5194/acp-7-5327-2007, 2007.
Ngarambe, J., Nganyiyimana, J., Kim, I., Santamouris, M., and Young Yun, G.:
Synergies between urban heat island and heat waves in Seoul: The role of
wind speed and land use characteristics, PLoS One, 15, e0243571,
https://doi.org/10.1371/journal.pone.0243571, 2020.
Ning, G., Yim, S. H. L., Yang, Y., Gu, Y., and Dong, G.: Modulations of
synoptic and climatic changes on ozone pollution and its health risks in
mountain-basin areas, Atmos. Environ., 240, 117808,
https://doi.org/10.1016/j.atmosenv.2020.117808, 2020.
Pattenden, S., Armstrong, B., Milojevic, A., Heal, M. R., Chalabi, Z.,
Doherty, R., Barratt, B., Kovats, R. S., and Wilkinson, P.: Ozone, heat and
mortality: acute effects in 15 British conurbations, Occup. Environ. Med.,
67, 699–707, https://doi.org/10.1136/oem.2009.051714, 2010.
Patz, J. A., Campbell-Lendrum, D., Holloway, T., and Foley, J. A.: Impact of
regional climate change on human health, Nature, 438, 310–317,
https://doi.org/10.1038/nature04188, 2005.
Pope, R. J., Butt, E. W., Chipperfield, M. P., Doherty, R. M., Fenech, S.,
Schmidt, A., Arnold, S. R., and Savage, N. H.: The impact of synoptic weather
on UK surface ozone and implications for premature mortality, Environ. Res.
Lett., 11, 124004, https://doi.org/10.1088/1748-9326/11/12/124004, 2016.
Pu, X., Wang, T. J., Huang, X., Melas, D., Zanis, P., Papanastasiou, D. K.,
and Poupkou, A.: Enhanced surface ozone during the heat wave of 2013 in
Yangtze River Delta region, China, Sci. Total Environ., 603–604, 807–816,
https://doi.org/10.1016/j.scitotenv.2017.03.056, 2017.
Rastogi, D.: Revisiting Recent U.S. Heat Waves in a Warmer and More Humid
Climate, Geophys. Res. Lett., 47, 1–11, https://doi.org/10.1029/2019GL086736, 2020.
Ren, G. Y., Chu, Z. Y., Chen, Z. H., and Ren, Y. Y.: Implications of temporal
change in urban heat island intensity observed at Beijing and Wuhan
stations, Geophys. Res. Lett., 34, 1–5, https://doi.org/10.1029/2006GL027927, 2007.
Roth, M.: Review of urban climate research in (sub)tropical regions, Int. J.
Climatol., 27, 1859–1837, https://doi.org/10.1002/joc.1591, 2007.
Rothfusz, L.: The heat index equation, Natl. Weather Serv. Tech. Attach.,
SR:23-90, https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml (last access: 13 May 2022), 1990.
Sartor, F., Rene, S., Claude, D., and Denise, W.: Temperature, ambient ozone
levels, and mortality during summer, 1994, in Belgium, Environ. Res., 70,
105–113, https://doi.org/10.1006/enrs.1995.1054, 1995.
Sillman, S.: The relation between ozone, NOx and hydrocarbons in urban and
polluted rural environments, Dev. Environ. Sci., 33, 1821–1845,
https://doi.org/10.1016/S1474-8177(02)80015-8, 1999.
Stewart, I. D. and Oke, T. R.: Local climate zones for urban temperature
studies, Bull. Am. Meteorol. Soc., 93, 1879–1900,
https://doi.org/10.1175/BAMS-D-11-00019.1, 2012.
Sun, W., Hess, P., and Liu, C.: The impact of meteorological persistence on
the distribution and extremes of ozone, Geophys. Res. Lett., 44,
1545–1553, https://doi.org/10.1002/2016GL071731, 2017.
Tan, J., Zheng, Y., Tang, X., Guo, C., Li, L., Song, G., Zhen, X., Yuan, D.,
Kalkstein, A. J., Li, F., and Chen, H.: The urban heat island and its impact
on heat waves and human health in Shanghai, Int. J. Biometeorol., 54,
75–84, https://doi.org/10.1007/s00484-009-0256-x, 2010.
Thunis, P., Clappier, A., de Meij, A., Pisoni, E., Bessagnet, B., and Tarrason, L.: Why is the city's responsibility for its air pollution often underestimated? A focus on PM2.5, Atmos. Chem. Phys., 21, 18195–18212, https://doi.org/10.5194/acp-21-18195-2021, 2021.
Trainer, M., Williams, E., Parrish, D., Buhr, M., Allwine, E., Westberg, H.,
Fehsenfeld, F., and Liu, S.: Models and observations of the impact of natural
hydrocarbons on rural ozone, Nature, 329, 705–707,
https://doi.org/10.1038/329705a0, 1987.
Vautard, R., Honoré, C., Beekmann, M., and Rouil, L.: Simulation of ozone
during the August 2003 heat wave and emission control scenarios, Atmos.
Environ., 39, 2957–2967, https://doi.org/10.1016/j.atmosenv.2005.01.039, 2005.
Vautard, R., Beekmann, M., Desplat, J., Hodzic, A., and Morel, S.: Air
quality in Europe during the summer of 2003 as a prototype of air quality in
a warmer climate, Comptes Rendus – Geosci., 339, 747–763,
https://doi.org/10.1016/j.crte.2007.08.003, 2007.
Wang, H., Wu, K., Liu, Y., Sheng, B., Lu, X., He, Y., Xie, J., Wang, H., and
Fan, S.: Role of Heat Wave-Induced Biogenic VOC Enhancements in Persistent
Ozone Episodes Formation in Pearl River Delta, J. Geophys. Res.-Atmos.,
126, 1–19, https://doi.org/10.1029/2020JD034317, 2021a.
Wang, J., Chen, Y., Liao, W., He, G., Tett, S. F. B., Yan, Z., Zhai, P.,
Feng, J., Ma, W., Huang, C., and Hu, Y.: Anthropogenic emissions and
urbanization increase risk of compound hot extremes in cities, Nat. Clim.
Chang., 11, 1084–1089, https://doi.org/10.1038/s41558-021-01196-2, 2021b.
Wang, K., Wang, J., Wang, P., Sparrow, M., Yang, J., and Chen, H.: Influences
of urbanization on surface characteristics as derived from the
Moderate-Resolution Imaging Spectroradiometer: A case study for the Beijing
metropolitan area, J. Geophys. Res.-Atmos., 112, 1–12,
https://doi.org/10.1029/2006JD007997, 2007.
Wang, K., Jiang, S., Wang, J., Zhou, C., Wang, X., and Lee, X.: Comparing the
diurnal and seasonal variabilities of atmospheric and surface urban heat
islands based on the Beijing urban meteorological network, J. Geophys. Res.,
122, 2131–2154, https://doi.org/10.1002/2016JD025304, 2017.
Wang, Y., Wild, O., Chen, X., Wu, Q., Gao, M., Chen, H., Qi, Y., and Wang,
Z.: Health impacts of long-term ozone exposure in China over 2013–2017,
Environ. Int., 144, 106030, https://doi.org/10.1016/j.envint.2020.106030, 2020.
Werner, C., Fasbender, L., Romek, K. M., Yáñez-Serrano, A. M., and
Kreuzwieser, J.: Heat Waves Change Plant Carbon Allocation Among Primary and
Secondary Metabolism Altering CO2 Assimilation, Respiration, and VOC
Emissions, Front. Plant Sci., 11, 1–17,
https://doi.org/10.3389/fpls.2020.01242, 2020.
WHO: Ambient (outdoor) air pollution,
https://www.who.int/en/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health (last access: 13 May 2022),
2021.
Williams, S., Bi, P., Newbury, J., Robinson, G., Pisaniello, D., Saniotis,
A., and Hansen, A.: Extreme heat and health: Perspectives from health service
providers in rural and remote communities in South Australia, Int. J.
Environ. Res. Public Health, 10, 5565–5583, https://doi.org/10.3390/ijerph10115565,
2013.
Wong, T. W., Tam, W. W. S., Yu, I. T. S., Lau, A. K. H., Pang, S. W., and
Wong, A. H. S.: Developing a risk-based air quality health index, Atmos.
Environ., 76, 52–58, https://doi.org/10.1016/j.atmosenv.2012.06.071, 2013.
Xing, Q., Sun, Z. Bin, Tao, Y., Zhang, X., Miao, S., Zheng, C., and Tong, S.:
Impacts of urbanization on the temperature-cardiovascular mortality
relationship in Beijing, China, Environ. Res., 191, 110234,
https://doi.org/10.1016/j.envres.2020.110234, 2020.
Xu, Z., Fitzgerald, G., Guo, Y., Jalaludin, B., and Tong, S.: Impact of
heatwave on mortality under different heatwave definitions: A systematic
review and meta-analysis, Environ. Int., 89–90, 193–203,
https://doi.org/10.1016/j.envint.2016.02.007, 2016.
Yang, P., Ren, G., and Liu, W.: Spatial and temporal characteristics of
Beijing urban heat island intensity, J. Appl. Meteorol. Climatol., 52,
1803–1816, https://doi.org/10.1175/JAMC-D-12-0125.1, 2013.
Yang, X., Ruby Leung, L., Zhao, N., Zhao, C., Qian, Y., Hu, K., Liu, X., and
Chen, B.: Contribution of urbanization to the increase of extreme heat
events in an urban agglomeration in east China, Geophys. Res. Lett., 44,
6940–6950, https://doi.org/10.1002/2017GL074084, 2017.
Yang, Y., Zheng, X., Gao, Z., Wang, H., Wang, T., Li, Y., Lau, G. N. C., and
Yim, S. H. L.: Long-Term Trends of Persistent Synoptic Circulation Events in
Planetary Boundary Layer and Their Relationships With Haze Pollution in
Winter Half Year Over Eastern China, J. Geophys. Res.-Atmos., 123,
10991–11007, https://doi.org/10.1029/2018JD028982, 2018.
Yang, Y., Zheng, Z., Yim, S. Y. L., Roth, M., Ren, G., Gao, Z., Wang, T.,
Li, Q., Shi, C., Ning, G., and Li, Y.: PM2.5 Pollution Modulates Wintertime
Urban Heat Island Intensity in the Beijing-Tianjin-Hebei Megalopolis, China,
Geophys. Res. Lett., 47, 0–3, https://doi.org/10.1029/2019GL084288, 2020.
Yang, Y., Wang, R., Chen, F., Liu, C., Bi, X., and Huang, M.: Synoptic
weather patterns modulate the frequency, type and vertical structure of
summer precipitation over Eastern China: A perspective from GPM
observations, Atmos. Res., 249, 105342, https://doi.org/10.1016/j.atmosres.2020.105342, 2021.
Yang, Y., Guo, M., Ren, G., Liu, S., Zong, L., Zhang, Y., Zheng, Z., Miao,
Y., and Zhang, Y.: Modulation of wintertime canopy Urban Heat Island (CUHI)
intensity in Beijing by synoptic weather pattern in planetary boundary
layer, J. Geophys. Res.-Atmos., 127, e2021JD035988,
https://doi.org/10.1029/2021jd035988, 2022.
Yim, S. H. L., Wang, M., Gu, Y., Yang, Y., Dong, G., and Li, Q.: Effect of
Urbanization on Ozone and Resultant Health Effects in the Pearl River Delta
Region of China, J. Geophys. Res.-Atmos., 124, 11568–11579,
https://doi.org/10.1029/2019JD030562, 2019.
Yin, P., Chen, R., Wang, L., Meng, X., Liu, C., Niu, Y., Lin, Z., Liu, Y.,
Liu, J., Qi, J., You, J., Zhou, M., and Kan, H.: Ambient ozone pollution and
daily mortality: A nationwide study in 272 Chinese cities, Environ. Health
Perspect., 125, 1–7, https://doi.org/10.1289/EHP1849, 2017.
Yu, S., Yin, S., Zhang, R., Wang, L., Su, F., Zhang, Y., and Yang, J.:
Spatiotemporal characterization and regional contributions of O3 and NO2: An
investigation of two years of monitoring data in Henan, China, J. Environ.
Sci., 90, 29–40, https://doi.org/10.1016/j.jes.2019.10.012, 2020.
Zanis, P., Monks, P. S., Schuepbach, E., Carpenter, L. J., Green, T. J.,
Mills, G. P., Bauguitte, S., and Penkett, S. A.: In situ ozone production
under free tropospheric conditions during FREETEX '98 in the Swiss Alps, J.
Geophys. Res.-Atmos., 105, 24223–24234, 2000.
Zhang, W. and Villarini, G.: On the weather types that shape the
precipitation patterns across the U.S. Midwest, Clim. Dynam., 53,
4217–4232, https://doi.org/10.1007/s00382-019-04783-4, 2019.
Zhang, Y., Yu, C., Bao, J., and Li, X.: Impact of temperature on mortality in
Hubei, China: A multi-county time series analysis, Sci. Rep., 7, 45093,
https://doi.org/10.1038/srep45093, 2017.
Zhang, Z., Zhang, X., Gong, D., Quan, W., Zhao, X., Ma, Z., and Kim, S. J.:
Evolution of surface O3 and PM2.5 concentrations and their relationships
with meteorological conditions over the last decade in Beijing, Atmos.
Environ., 108, 67–75, https://doi.org/10.1016/j.atmosenv.2015.02.071, 2015.
Zhao, L., Lee, X., Smith, R. B., and Oleson, K.: Strong contributions of
local background climate to urban heat islands, Nature, 511, 216–219,
https://doi.org/10.1038/nature13462, 2014.
Zhao, Z. and Wang, Y.: Influence of the West Pacific subtropical high on
surface ozone daily variability in summertime over eastern China, Atmos.
Environ., 170, 197–204, https://doi.org/10.1016/j.atmosenv.2017.09.024, 2017.
Zheng, Z., Zhao, C., Lolli, S., Wang, X., Wang, Y., Ma, X., Li, Q., and Yang,
Y.: Diurnal variation of summer precipitation modulated by air pollution:
Observational evidences in the beijing metropolitan area, Environ. Res.
Lett., 15, 094053, https://doi.org/10.1088/1748-9326/ab99fc, 2020.
Zong, L.: Ozone data set, Zenodo [data set], https://doi.org/10.5281/zenodo.5703735, 2021.
Zong, L., Yang, Y., Gao, M., Wang, H., Wang, P., Zhang, H., Wang, L., Ning, G., Liu, C., Li, Y., and Gao, Z.: Large-scale synoptic drivers of co-occurring summertime ozone and PM2.5 pollution in eastern China, Atmos. Chem. Phys., 21, 9105–9124, https://doi.org/10.5194/acp-21-9105-2021, 2021a.
Zong, L., Liu, S., Yang, Y., Ren, G., Yu, M., Zhang, Y., and Li, Y.:
Synergistic Influence of Local Climate Zones and Wind Speeds on the Urban
Heat Island and Heat Waves in the Megacity of Beijing, China, Front. Earth
Sci., 9, 458, https://doi.org/10.3389/feart.2021.673786, 2021b.
Short summary
Heatwaves (HWs) paired with higher ozone (O3) concentration at surface level pose a serious threat to human health. Taking Beijing as an example, three unfavorable synoptic weather patterns were identified to dominate the compound HW and O3 pollution events. Under the synergistic stress of HWs and O3 pollution, public mortality risk increased, and synoptic patterns and urbanization enhanced the compound risk of events in Beijing by 33.09 % and 18.95 %, respectively.
Heatwaves (HWs) paired with higher ozone (O3) concentration at surface level pose a serious...
Altmetrics
Final-revised paper
Preprint