Articles | Volume 22, issue 8
https://doi.org/10.5194/acp-22-5685-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-5685-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Chemical transformation of α-pinene-derived organosulfate via heterogeneous OH oxidation: implications for sources and environmental fates of atmospheric organosulfates
Rongshuang Xu
Earth System Science Programme, Faculty of Science, The Chinese
University of Hong Kong, Hong Kong, China
Sze In Madeleine Ng
Earth System Science Programme, Faculty of Science, The Chinese
University of Hong Kong, Hong Kong, China
Wing Sze Chow
Department of Chemistry, The Hong Kong University of Science and
Technology, Hong Kong, China
Yee Ka Wong
Division of Environment and Sustainability, The Hong Kong University
of Science and Technology, Hong Kong, China
Yuchen Wang
Department of Chemistry, The Hong Kong University of Science and
Technology, Hong Kong, China
Donger Lai
Earth System Science Programme, Faculty of Science, The Chinese
University of Hong Kong, Hong Kong, China
Zhongping Yao
State Key Laboratory of Chemical Biology and Drug Discovery and
Department of Applied Biology and Chemical Technology, The Hong Kong
Polytechnic University, Hong Kong, China
Pui-Kin So
The University Research Facility in Life Sciences, The Hong Kong
Polytechnic University, Hong Kong, China
Department of Chemistry, The Hong Kong University of Science and
Technology, Hong Kong, China
Man Nin Chan
CORRESPONDING AUTHOR
Earth System Science Programme, Faculty of Science, The Chinese
University of Hong Kong, Hong Kong, China
The Institute of Environment, Energy, and Sustainability, The Chinese
University of Hong Kong, Hong Kong, China
Related authors
Rani Jeong, Joseph Lilek, Andreas Zuend, Rongshuang Xu, Man Nin Chan, Dohyun Kim, Hi Gyu Moon, and Mijung Song
Atmos. Chem. Phys., 22, 8805–8817, https://doi.org/10.5194/acp-22-8805-2022, https://doi.org/10.5194/acp-22-8805-2022, 2022
Short summary
Short summary
In this study, the viscosities of particles of sucrose–H2O, AS–H2O, and sucrose–AS–H2O for OIRs of 4:1, 1:1, and 1:4 for decreasing RH, were quantified by poke-and-flow and bead-mobility techniques at 293 ± 1 K. Based on the viscosity results, the particles of binary and ternary systems ranged from liquid to semisolid, and even the solid state depending on the RH. Moreover, we compared the measured viscosities of ternary systems to the predicted viscosities with excellent agreement.
Hoi Ki Lam, Rongshuang Xu, Jack Choczynski, James F. Davies, Dongwan Ham, Mijung Song, Andreas Zuend, Wentao Li, Ying-Lung Steve Tse, and Man Nin Chan
Atmos. Chem. Phys., 21, 2053–2066, https://doi.org/10.5194/acp-21-2053-2021, https://doi.org/10.5194/acp-21-2053-2021, 2021
Short summary
Short summary
This work demonstrates that organic compounds present at or near the surface of aerosols can be subjected to oxidation initiated by gas-phase oxidants, such as hydroxyl radicals (OH). The heterogeneous reactivity is sensitive to their surface concentrations, which are determined by the phase separation behavior. This results of this work emphasize the effects of phase separation and potentially distinct aerosol morphologies on the chemical transformation of atmospheric aerosols.
Xu Yu, Min Zhou, Shuhui Zhu, Liping Qiao, Jinjian Li, Yingge Ma, Zijing Zhang, Kezheng Liao, Hongli Wang, and Jian Zhen Yu
Atmos. Chem. Phys., 25, 9061–9074, https://doi.org/10.5194/acp-25-9061-2025, https://doi.org/10.5194/acp-25-9061-2025, 2025
Short summary
Short summary
Online measurements of bulk aerosol organic nitrogen (ON), in conjunction with a comprehensive array of source markers, have revealed five emission sources and five potentially significant formation processes of nitrogenous organic aerosols. This study provides a first quantitative source analysis of ON aerosol and valuable observational evidence of secondary ON aerosol formation through NH3 and NOx chemistries.
Xueying Liu, Yeqi Huang, Yao Chen, Xin Feng, Yang Xu, Yi Chen, Dasa Gu, Hao Sun, Zhi Ning, Jianzhen Yu, Wing Sze Chow, Changqing Lin, Yan Xiang, Tianshu Zhang, Claire Granier, Guy Brasseur, Zhe Wang, and Jimmy C. H. Fung
EGUsphere, https://doi.org/10.5194/egusphere-2025-3227, https://doi.org/10.5194/egusphere-2025-3227, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Volatile organic compounds (VOCs) affect ozone formation and air quality. However, our understanding is limited due to insufficient measurements, especially for oxygenated VOCs. This study combines land, ship, and satellite data in Hong Kong, showing that oxygenated VOCs make up a significant portion of total VOCs. Despite their importance, many are underestimated in current models. These findings highlight the need to improve VOC representation in models to enhance air quality management.
Donger Lai, Yanxin Bai, Zijing Zhang, Pui-Kin So, Yong Jie Li, Ying-Lung Steve Tse, Ying-Yeung Yeung, Thomas Schaefer, Hartmut Herrmann, Jian Zhen Yu, Yuchen Wang, and Man Nin Chan
EGUsphere, https://doi.org/10.5194/egusphere-2025-2743, https://doi.org/10.5194/egusphere-2025-2743, 2025
Short summary
Short summary
Aqueous-phase •OH oxidation can potentially act as an important atmospheric sink for α-pinene-derived organosulfates (OSs). Such oxidation can also generate a variety of new OS products, and can be as a potential source for some atmospheric OSs with previously unknown origins.
Shubin Li, Yujue Wang, Yiwen Zhang, Yizhe Yi, Yuchen Wang, Yuqi Guo, Chao Yu, Yue Jiang, Jinhui Shi, Chao Zhang, Jialei Zhu, Wei Hu, Jianzhen Yu, Xiaohong Yao, Huiwang Gao, and Min Hu
EGUsphere, https://doi.org/10.5194/egusphere-2025-2154, https://doi.org/10.5194/egusphere-2025-2154, 2025
Short summary
Short summary
Organosulfates (OSs) are an unrecognized and potentially important component in marine organic aerosols. In this study, we quantified and characterized the OSs over East Asian marginal seas. The chemical nature and spatiotemporal distribution of OSs were modified by the joint influence of marine emissions and transported terrestrial pollutants. The results highlight the vital roles of OSs in shaping organic aerosol formation and sulfur cycle during summer in marine boundary layer.
Taylor D. Edwards, Yee Ka Wong, Cheol-Heon Jeong, Jonathan M. Wang, Yushan Su, and Greg J. Evans
Atmos. Meas. Tech., 18, 2201–2240, https://doi.org/10.5194/amt-18-2201-2025, https://doi.org/10.5194/amt-18-2201-2025, 2025
Short summary
Short summary
We tested a variety of scientific measurements and algorithms for distinguishing the amounts of air pollution that were emitted by a nearby polluter from background pollution that was already in the air. The results show that machine learning and other statistical algorithms produced accurate estimates of this background pollution. These findings help scientists and regulators to understand where pollution comes from and to improve measurements of pollution from sources like traffic.
Vahid Shahabadi, Cassandra Lefort, Hoi Tang Law, Man Nin Chan, and Thomas C. Preston
EGUsphere, https://doi.org/10.5194/egusphere-2025-2170, https://doi.org/10.5194/egusphere-2025-2170, 2025
Short summary
Short summary
This research explores how organosulfate surfactants affect aerosol particles and their response to changes in relative humidity in the atmosphere. Using optical trapping and strong electric fields to investigate single particles, it is found that these surfactants can significantly lower surface tension, even in very small amounts. These findings are important for understanding how such particles influence cloud formation and properties like brightness.
Liyuan Zhou, Qianyun Liu, Christian M. Salvador, Michael Le Breton, Mattias Hallquist, Jian Zhen Yu, Chak K. Chan, and Åsa M. Hallquist
Atmos. Chem. Phys., 24, 11045–11061, https://doi.org/10.5194/acp-24-11045-2024, https://doi.org/10.5194/acp-24-11045-2024, 2024
Short summary
Short summary
Our research on city bus emissions reveals that alternative fuels (compressed natural gas and biofuels) reduce fresh particle emissions compared to diesel. However, all fuels lead to secondary air pollution. Aiming at guiding better environmental policies, we studied 76 buses using advanced emission measurement techniques. This work sheds light on the complex effects of bus fuels on urban air quality, emphasizing the need for comprehensive evaluations of future transportation technologies.
Shan Wang, Kezheng Liao, Zijing Zhang, Yuk Ying Cheng, Qiongqiong Wang, Hanzhe Chen, and Jian Zhen Yu
Atmos. Chem. Phys., 24, 5803–5821, https://doi.org/10.5194/acp-24-5803-2024, https://doi.org/10.5194/acp-24-5803-2024, 2024
Short summary
Short summary
In this work, hourly primary and secondary organic carbon were estimated by a novel Bayesian inference approach in suburban Hong Kong. Their multi-temporal-scale variations and evolution characteristics during PM2.5 episodes were examined. The methodology could serve as a guide for other locations with similar monitoring capabilities. The observation-based results are helpful for understanding the evolving nature of secondary organic aerosols and refining the accuracy of model simulations.
Qiongqiong Wang, Shuhui Zhu, Shan Wang, Cheng Huang, Yusen Duan, and Jian Zhen Yu
Atmos. Chem. Phys., 24, 475–486, https://doi.org/10.5194/acp-24-475-2024, https://doi.org/10.5194/acp-24-475-2024, 2024
Short summary
Short summary
We investigated short-term source apportionment of PM2.5 utilizing rolling positive matrix factorization (PMF) and online PM chemical speciation data, which included source-specific organic tracers collected over a period of 37 d during the winter of 2019–2020 in suburban Shanghai, China. The findings highlight that by imposing constraints on the primary source profiles, short-term PMF analysis successfully replicated both the individual primary sources and the total secondary sources.
Ting Yang, Yu Xu, Qing Ye, Yi-Jia Ma, Yu-Chen Wang, Jian-Zhen Yu, Yu-Sen Duan, Chen-Xi Li, Hong-Wei Xiao, Zi-Yue Li, Yue Zhao, and Hua-Yun Xiao
Atmos. Chem. Phys., 23, 13433–13450, https://doi.org/10.5194/acp-23-13433-2023, https://doi.org/10.5194/acp-23-13433-2023, 2023
Short summary
Short summary
In this study, 130 OS species were quantified in ambient fine particulate matter (PM2.5) collected in urban and suburban Shanghai (East China) in the summer of 2021. The daytime OS formation was concretized based on the interactions among OSs, ultraviolet (UV), ozone (O3), and sulfate. Our finding provides field evidence for the influence of photochemical process and anthropogenic sulfate on OS formation and has important implications for the mitigation of organic particulate pollution.
Shuhui Zhu, Min Zhou, Liping Qiao, Dan Dan Huang, Qiongqiong Wang, Shan Wang, Yaqin Gao, Shengao Jing, Qian Wang, Hongli Wang, Changhong Chen, Cheng Huang, and Jian Zhen Yu
Atmos. Chem. Phys., 23, 7551–7568, https://doi.org/10.5194/acp-23-7551-2023, https://doi.org/10.5194/acp-23-7551-2023, 2023
Short summary
Short summary
Organic aerosol (OA) is increasingly important in urban PM2.5 pollution as inorganic ions are becoming lower. We investigated the chemical characteristics of OA during nine episodes in Shanghai. The availability of bi-hourly measured molecular markers revealed that the control of local urban sources such as vehicular and cooking emissions lessened the severity of local episodes. Regional control of precursors and biomass burning would reduce PM2.5 episodes influenced by regional transport.
Rui Li, Kun Zhang, Qing Li, Liumei Yang, Shunyao Wang, Zhiqiang Liu, Xiaojuan Zhang, Hui Chen, Yanan Yi, Jialiang Feng, Qiongqiong Wang, Ling Huang, Wu Wang, Yangjun Wang, Jian Zhen Yu, and Li Li
Atmos. Chem. Phys., 23, 3065–3081, https://doi.org/10.5194/acp-23-3065-2023, https://doi.org/10.5194/acp-23-3065-2023, 2023
Short summary
Short summary
Molecular markers in organic aerosol (OA) provide specific source information on PM2.5, and the contribution of cooking emissions to OA is significant, especially in urban environments. This study investigates the variation in concentrations and oxidative degradation of fatty acids and corresponding oxidation products in ambient air, which can be a guide for the refinement of aerosol source apportionment and provide scientific support for the development of emission source control policies.
Wing Sze Chow, Kezheng Liao, X. H. Hilda Huang, Ka Fung Leung, Alexis K. H. Lau, and Jian Zhen Yu
Atmos. Chem. Phys., 22, 11557–11577, https://doi.org/10.5194/acp-22-11557-2022, https://doi.org/10.5194/acp-22-11557-2022, 2022
Short summary
Short summary
Long-term monitoring data of PM2.5 chemical composition provide essential information for evaluation and planning of control measures. Here we present a 10-year (2008–2017) time series of PM2.5, its major components, and select source markers in an urban site in Hong Kong. The dataset verified the success of local vehicular emission control measures as well as reduction of sulfate and regional sources such as industrial and coal combustion and crop residue burning emissions over the decade.
Qiongqiong Wang, Shan Wang, Yuk Ying Cheng, Hanzhe Chen, Zijing Zhang, Jinjian Li, Dasa Gu, Zhe Wang, and Jian Zhen Yu
Atmos. Chem. Phys., 22, 11239–11253, https://doi.org/10.5194/acp-22-11239-2022, https://doi.org/10.5194/acp-22-11239-2022, 2022
Short summary
Short summary
Secondary organic aerosol (SOA) is often enhanced during fine-particulate-matter (PM2.5) episodes. We examined bi-hourly measurements of SOA molecular tracers in suburban Hong Kong during 11 city-wide PM2.5 episodes. The tracers showed regional characteristics for both anthropogenic and biogenic SOA as well as biomass-burning-derived SOA. Multiple tracers of the same precursor revealed the dominance of low-NOx formation pathways for isoprene SOA and less-aged monoterpene SOA during winter.
Rani Jeong, Joseph Lilek, Andreas Zuend, Rongshuang Xu, Man Nin Chan, Dohyun Kim, Hi Gyu Moon, and Mijung Song
Atmos. Chem. Phys., 22, 8805–8817, https://doi.org/10.5194/acp-22-8805-2022, https://doi.org/10.5194/acp-22-8805-2022, 2022
Short summary
Short summary
In this study, the viscosities of particles of sucrose–H2O, AS–H2O, and sucrose–AS–H2O for OIRs of 4:1, 1:1, and 1:4 for decreasing RH, were quantified by poke-and-flow and bead-mobility techniques at 293 ± 1 K. Based on the viscosity results, the particles of binary and ternary systems ranged from liquid to semisolid, and even the solid state depending on the RH. Moreover, we compared the measured viscosities of ternary systems to the predicted viscosities with excellent agreement.
Yee Ka Wong, Kin Man Liu, Claisen Yeung, Kenneth K. M. Leung, and Jian Zhen Yu
Atmos. Chem. Phys., 22, 5017–5031, https://doi.org/10.5194/acp-22-5017-2022, https://doi.org/10.5194/acp-22-5017-2022, 2022
Short summary
Short summary
Coarse particulate matter (PM) has been shown to cause adverse health impacts, but compared to PM2.5, the source of coarse PM is less studied through field measurements. We collected chemical composition data for coarse PM in Hong Kong for a 1-year period. Using statistical models, we found that regional transport of fugitive dust is responsible for the elevated coarse PM. This work sets an example of how field measurements can be effectively utilized for evidence-based policymaking.
Young-Chul Song, Joseph Lilek, Jae Bong Lee, Man Nin Chan, Zhijun Wu, Andreas Zuend, and Mijung Song
Atmos. Chem. Phys., 21, 10215–10228, https://doi.org/10.5194/acp-21-10215-2021, https://doi.org/10.5194/acp-21-10215-2021, 2021
Short summary
Short summary
We report viscosity of binary mixtures of organic material / H2O and inorganic salts / H2O, as well as ternary mixtures of organic material / inorganic salts/ H2O, over the atmospheric relative humidity (RH) range. The viscosity measurements indicate that the studied mixed organic–inorganic particles range in phase state from liquid to semi-solid or even solid across the atmospheric RH range at a temperature of 293 K.
Yao Wang, Yue Zhao, Yuchen Wang, Jian-Zhen Yu, Jingyuan Shao, Ping Liu, Wenfei Zhu, Zhen Cheng, Ziyue Li, Naiqiang Yan, and Huayun Xiao
Atmos. Chem. Phys., 21, 2959–2980, https://doi.org/10.5194/acp-21-2959-2021, https://doi.org/10.5194/acp-21-2959-2021, 2021
Short summary
Short summary
Organosulfates (OSs) are important constituents and tracers of secondary organic aerosols (SOAs) in the atmosphere. Here we characterized the OS species in ambient aerosols in Shanghai, China. We find that the contributions of OSs and SOAs to organic aerosols have increased in recent years and that OS production was largely controlled by the oxidant level (Ox), particularly in summer. We infer that mitigation of Ox pollution can effectively reduce the production of OSs and SOAs in eastern China.
Hoi Ki Lam, Rongshuang Xu, Jack Choczynski, James F. Davies, Dongwan Ham, Mijung Song, Andreas Zuend, Wentao Li, Ying-Lung Steve Tse, and Man Nin Chan
Atmos. Chem. Phys., 21, 2053–2066, https://doi.org/10.5194/acp-21-2053-2021, https://doi.org/10.5194/acp-21-2053-2021, 2021
Short summary
Short summary
This work demonstrates that organic compounds present at or near the surface of aerosols can be subjected to oxidation initiated by gas-phase oxidants, such as hydroxyl radicals (OH). The heterogeneous reactivity is sensitive to their surface concentrations, which are determined by the phase separation behavior. This results of this work emphasize the effects of phase separation and potentially distinct aerosol morphologies on the chemical transformation of atmospheric aerosols.
Rui Li, Qiongqiong Wang, Xiao He, Shuhui Zhu, Kun Zhang, Yusen Duan, Qingyan Fu, Liping Qiao, Yangjun Wang, Ling Huang, Li Li, and Jian Zhen Yu
Atmos. Chem. Phys., 20, 12047–12061, https://doi.org/10.5194/acp-20-12047-2020, https://doi.org/10.5194/acp-20-12047-2020, 2020
Cited articles
Bahl, A. and Bahl, B. S: Advanced Organic Chemistry, 1st edn., S. Chand Publication, New Delhi, India, ISBN 9788121935159, 2010.
Bateman, A. P., Walser, M. L., Desyaterik, Y., Laskin, J., Laskin, A., and
Nizkorodov, S. A.: The effect of solvent on the analysis of secondary
organic aerosol using electrospray ionization mass spectrometry, Environ.
Sci. Technol., 42, 7341–7346, https://doi.org/10.1021/es801226w, 2008.
Bennett, J. E. and Summers, R.: Product studies of the mutual termination reactions of sec-alkylperoxy radicals: evidence for non-cyclic termination, Can. J. Chem., 52, 1377–1379, https://doi.org/10.1139/v74-209, 1974.
Bentley, R. and Chasteen, T. G.: Environmental VOSCs – formation and
degradation of dimethyl sulfide, methanethiol and related materials,
Chemos., 55, 291–317, https://doi.org/10.1016/j.chemosphere.2003.12.017,
2004.
Bergh, v. d., Vanhees, V. I., de Boer, R., Compernolle, F., and Vinckier, C.:
Identification of the oxidation products of the reaction between α-pinene and hydroxyl radicals by gas and high-performance liquid
chromatography with mass spectrometric detection, J. Chrom. A., 896,
135–148, https://doi.org/10.1016/s0021-9673(00)00680-4, 2000.
Brüggemann, M., Xu, R., Tilgner, A., Kwong, K. C., Mutzel, A., Poon, H.
Y., Otto, T., Schaefer, T., Poulain, L., Chan, M. N., and Herrmann, H.:
Organosulfates in ambient aerosol: state of knowledge and future research
directions on formation, abundance, fate, and importance, Environ. Sci.
Technol., 54, 3767–3782, https://doi.org/10.1021/acs.est.9b06751.s001,
2020.
Bruice, P. Y.: Organic chemistry, 6th edn., Pearson Publication, Lebanon, Indiana, USA, ISBN 9780321663139, 2010.
Budisulistiorini, S. H., Li, X., Bairai, S. T., Renfro, J., Liu, Y., Liu, Y. J., McKinney, K. A., Martin, S. T., McNeill, V. F., Pye, H. O. T., Nenes, A., Neff, M. E., Stone, E. A., Mueller, S., Knote, C., Shaw, S. L., Zhang, Z., Gold, A., and Surratt, J. D.: Examining the effects of anthropogenic emissions on isoprene-derived secondary organic aerosol formation during the 2013 Southern Oxidant and Aerosol Study (SOAS) at the Look Rock, Tennessee ground site, Atmos. Chem. Phys., 15, 8871–8888, https://doi.org/10.5194/acp-15-8871-2015, 2015.
Capouet, M., Peeters, J., Nozi`ere, B., and Müller, J.-F.: Alpha-pinene oxidation by OH: simulations of laboratory experiments, Atmos. Chem. Phys., 4, 2285–2311, https://doi.org/10.5194/acp-4-2285-2004, 2004.
Carrasquillo A. J., Daumit K. E., Kroll J. H.: Radical reactivity in the
condensed phase: intermolecular versus intramolecular reactions of alkoxy
radicals, J. Phys. Chem. Lett., 6, 2388–2392,
https://doi.org/10.1021/acs.jpclett.5b00913, 2015.
Chan, M. N., Zhang, H., Goldstein, A. H., and Wilson, K. R.: Role of water
and phase in the heterogeneous oxidation of solid and aqueous succinic acid
aerosol by hydroxyl radicals, J. Phys. Chem. C, 118, 28978–28992,
https://doi.org/10.1021/jp5012022, 2014.
Chen, Y., Zhang, Y., Lambe, A. T., Xu, R., Lei, Z., Olson, N. E., Zhang, Z.,
Szalkowski, T., Cui, T., Vizuete, W., Gold, A., Turpin, B. J., Ault, A. P.,
Chan, M. N., and Surratt, J. D.: Heterogeneous hydroxyl radical oxidation of
isoprene-epoxydiol-derived methyltetrol sulfates: plausible formation
mechanisms of previously unexplained organosulfates in ambient fine
aerosols, Environ. Sci. Technol. Letters, 7, 460–468,
https://doi.org/10.1021/acs.estlett.0c00276.s001, 2020.
Chim, M. M., Chow, C. Y., Davies, J. F., and Chan, M. N.: Effects of relative
humidity and particle phase water on the heterogeneous OH oxidation of
2-methylglutaric acid aqueous droplets, J. Phys. Chem. A, 121, 1666–1674,
https://doi.org/10.1021/acs.jpca.6b11606, 2017.
Compernolle, S., Ceulemans, K., and Müller, J.-F.: EVAPORATION: a new vapour pressure estimation methodfor organic molecules including non-additivity and intramolecular interactions, Atmos. Chem. Phys., 11, 9431–9450, https://doi.org/10.5194/acp-11-9431-2011, 2011.
Craig, R. L., Peterson, P. K., Nandy, L., Lei, Z., Hossain, M. A., Camarena,
S., Dodson, R. A., Cook, R. D., Dutcher, C. S., and Ault, A. P.: Direct
determination of aerosol pH: size-resolved measurements of submicrometer and
supermicrometer aqueous particles, Anal. Chem., 90, 11232–11239,
https://doi.org/10.1021/acs.analchem.8b00586, 2018.
Darer, A. I., Cole-Filipiak, N. C., O'Connor, A. E., and Elrod, M. J.:
Formation and stability of atmospherically relevant isoprene-derived
organosulfates and organonitrates, Environ. Sci. Technol., 45, 1895–1902,
https://doi.org/10.1021/es103797z, 2011.
Dennis-Smither, B. J., Miles, R. E. H., and Reid, J. P.: Oxidative aging of
mixed oleic acid/sodium chlo-ride aerosol particles, J. Geophys. Res., 117,
D20204, https://doi.org/10.1029/2012JD018163, 2012.
Domingos, J. S. S., Regis, C. D., Santos, V. S., Andrade, B., and Rocha, O.: A
comprehensive and suitable method for determining major ions from
atmospheric particulate matter matrices, J. Chrom. A., 1266, 17–23,
https://doi.org/10.1016/j.chroma.2012.08.074, 2012.
Freedman, M. A.: Phase separation in organic aerosol, Chem. Soc. Rev., 46,
7694–7705,
https://doi.org/10.1039/C6CS00783J, 2017.
Freedman, M. A.: Liquid–liquid phase separation in supermicrometer and
submicrometer aerosol particles, Acc. Chem. Res., 53, 1102–1110,
https://doi.org/10.1021/acs.accounts.0c00093, 2020.
George, I. J. and Abbatt, J. P. D.: Heterogeneous oxidation of atmospheric
aerosol particles by gas-phase radicals, Nat. Chem., 2, 713–722,
https://doi.org/10.1038/nchem.806, 2010.
Gopalakrishnan, S., Jungwirth, P., Tobias, D. J., and Allen, H. C.: Air–Liquid
Interfaces of Aqueous Solutions Containing Ammonium and Sulfate:
Spectroscopic and Molecular Dynamics Studies, J. Phys. Chem. B, 109,
8861–8872, 2005.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Hansen, A. M. K., Hong, J., Raatikainen, T., Kristensen, K., Ylisirniö, A., Virtanen, A., Petäjä, T., Glasius, M., and Prisle, N. L.: Hygroscopic properties and cloud condensation nuclei activation of limonene-derived organosulfates and their mixtures with ammonium sulfate, Atmos. Chem. Phys., 15, 14071–14089, https://doi.org/10.5194/acp-15-14071-2015, 2015.
Hettiyadura, A. P. S., Jayarathne, T., Baumann, K., Goldstein, A. H., de Gouw, J. A., Koss, A., Keutsch, F. N., Skog, K., and Stone, E. A.: Qualitative and quantitative analysis of atmospheric organosulfates in Centreville, Alabama, Atmos. Chem. Phys., 17, 1343–1359, https://doi.org/10.5194/acp-17-1343-2017, 2017.
Hettiyadura, A. P. S., Al-Naiema, I. M., Hughes, D. D., Fang, T., and Stone, E. A.: Organosulfates in Atlanta, Georgia: anthropogenic influences on biogenic secondary organic aerosol formation, Atmos. Chem. Phys., 19, 3191–3206, https://doi.org/10.5194/acp-19-3191-2019, 2019.
Hu, K. S., Darer, A. I., and Elrod, M. J.: Thermodynamics and kinetics of the hydrolysis of atmospherically relevant organonitrates and organosulfates, Atmos. Chem. Phys., 11, 8307–8320, https://doi.org/10.5194/acp-11-8307-2011, 2011.
Huang, D. D., Li, Y. J., Lee, B. P., and Chan, C. K.: Analysis of organic
sulfur compounds in atmospheric aerosols at the HKUST supersite in Hong Kong
using HR-ToF-AMS, Environ. Sci. Technol., 49, 3672–3679,
https://doi.org/10.1021/es5056269, 2015.
Huang, R.-J., Cao, J., Chen, Y., Yang, L., Shen, J., You, Q., Wang, K., Lin, C., Xu, W., Gao, B., Li, Y., Chen, Q., Hoffmann, T., O'Dowd, C. D., Bilde, M., and Glasius, M.: Organosulfates in atmospheric aerosol: synthesis and quantitative analysis of PM2.5 from Xi'an, northwestern China, Atmos. Meas. Tech., 11, 3447–3456, https://doi.org/10.5194/amt-11-3447-2018, 2018.
Hughes, D. D. and Stone, E. A.: Organosulfates in the Midwestern United
States: Abundance, composition and stability, Environ. Chem., 16, 312–322,
https://doi.org/10.1071/EN18260, 2019.
Hyttinen, N., Elm, J., Malila, J., Calderón, S. M., and Prisle, N. L.: Thermodynamic properties of isoprene- and monoterpene-derived organosulfates estimated with COSMOtherm, Atmos. Chem. Phys., 20, 5679–5696, https://doi.org/10.5194/acp-20-5679-2020, 2020.
Iinuma, Y., Böge, O., Miao, Y., Sierau, B., Gnauk, T., and Herrmann, H.:
Laboratory studies on secondary organic aerosol formation from terpenes,
Faraday Discuss., 130, 279–294, https://doi.org/10.1039/b502160j, 2005.
Iinuma, Y., Müller, C., Berndt, T., Böge, O., Claeys, M., and Herrmann, H.: Evidence for the existence of
organosulfates from β-pinene ozonolysis in ambient secondary organic
aerosol, Environ. Sci. Technol., 41, 6678–6683,
https://doi.org/10.1021/es070938t, 2007.
Jungwirth P. and Tobias D. J.: Ions at the Air/Water Interface, J. Phys.
Chem. B, 106, 6361–6373, https://doi.org/10.1021/jp020242g, 2002.
Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E., Stephanou, E. G., and Wilson, J.: Organic aerosol and global climate modelling: a review, Atmos. Chem. Phys., 5, 1053–1123, https://doi.org/10.5194/acp-5-1053-2005, 2005.
Kang, E., Root, M. J., Toohey, D. W., and Brune, W. H.: Introducing the concept of Potential Aerosol Mass (PAM), Atmos. Chem. Phys., 7, 5727–5744, https://doi.org/10.5194/acp-7-5727-2007, 2007.
Koop, T., Bookhold, J., Shiraiwa, M., and Pöschl, U.: Glass transition
and phase state of organic compounds: Dependency on molecular properties and
implications for secondary organic aerosols in the atmosphere, Phys. Chem.
Chem. Phys., 13, 19238–19255, https://doi.org/10.1039/C1CP22617G, 2011.
Kristensen, K. and Glasius, M.: Organosulfates and oxidation products from
biogenic hydrocarbons in fine aerosols from a forest in Northwest Europe
during spring, Atmos. Environ., 45, 4546–4556,
https://doi.org/10.1016/j.atmosenv.2011.05.063, 2011.
Kroll, J., Lim, C., Kessler, S., and Wilson, K.: Heterogeneous oxidation of
atmospheric organic aerosol: kinetics of changes to the amount and oxidation
state of particle-phase organic carbon, J. Phys. Chem. A., 119,
10767–10783, https://doi.org/10.1021/acs.jpca.5b06946, 2015.
Kwong, K. C., Chim, M. M., Davies, J. F., Wilson, K. R., and Chan, M. N.: Importance of sulfate radical anion formation and chemistry in heterogeneous OH oxidation of sodium methyl sulfate, the smallest organosulfate, Atmos. Chem. Phys., 18, 2809–2820, https://doi.org/10.5194/acp-18-2809-2018, 2018.
Lam, H. K., Kwong, K. C., Poon, H. Y., Davies, J. F., Zhang, Z., Gold, A., Surratt, J. D., and Chan, M. N.: Heterogeneous OH oxidation of isoprene-epoxydiol-derived organosulfates: kinetics, chemistry and formation of inorganic sulfate, Atmos. Chem. Phys., 19, 2433–2440, https://doi.org/10.5194/acp-19-2433-2019, 2019.
Lam, H. K., Xu, R., Choczynski, J., Davies, J. F., Ham, D., Song, M., Zuend, A., Li, W., Tse, Y.-L. S., and Chan, M. N.: Effects of liquid–liquid phase separation and relative humidity on the heterogeneous OH oxidation of inorganic–organic aerosols: insights from methylglutaric acid and ammonium sulfate particles, Atmos. Chem. Phys., 21, 2053–2066, https://doi.org/10.5194/acp-21-2053-2021, 2021.
Liggio, J. and Li, S.-M.: Organosulfate Formation during the uptake of
pinonaldehyde on acidic sulfate aerosols, Geophys. Res. Lett., 33, L13808,
https://doi.org/10.1029/2006gl026079, 2006.
Ma, Y., Xu, X., Song, W., Geng, F., and Wang, L.: Seasonal and Diurnal
Variations of Particulate Organosulfates in Urban Shanghai, China, Atmos.
Environ., 85, 152–160, https://doi.org/10.1016/j.atmosenv.2013.12.017,
2014.
Mao, J., Ren, X., Brune, W. H., Olson, J. R., Crawford, J. H., Fried, A., Huey, L. G., Cohen, R. C., Heikes, B., Singh, H. B., Blake, D. R., Sachse, G. W., Diskin, G. S., Hall, S. R., and Shetter, R. E.: Airborne measurement of OH reactivity during INTEX-B, Atmos. Chem. Phys., 9, 163–173, https://doi.org/10.5194/acp-9-163-2009, 2009.
Marshall, F. H., Miles, R. E. H., Song, Y.-C., Ohm, P. B., Power, R. M., Reid, J. P., and Dutcher, C. S.: Diffusion and reactivity in ultra-viscous aerosol and the correlation with particle viscosity, Chem. Sci., 7, 1298–1308, https://doi.org/10.1039/c5sc03223g, 2016.
Marshall, F. H., Berkemeier, T., Shiraiwa, M., Nandy, L., Ohm, P. B.,
Dutcher, C. S., and Reid, J. P.: Influence of particle viscosity on mass
transfer and heterogeneous ozonolysis kinetics in aqueous-sucrose-maleic
acid aerosol, Phys. Chem. Chem. Phys., 20, 15560–15573,
https://doi.org/10.1039/c8cp01666f, 2018.
McNeill, V. F., Wolfe, G. M., and Thornton, J. A.: The Oxidation of oleate in
submicron aqueous salt aerosols: evidence of a surface process, J. Phys.
Chem. A, 111, 1073–1083, https://doi.org/10.1021/jp066233f, 2007.
McNeill, V. F., Yatavelli, R. L. N., Thornton, J. A., Stipe, C. B., and Landgrebe, O.: Heterogeneous OH oxidation of palmitic acid in single component and internally mixed aerosol particles: vaporization and the role of particle phase, Atmos. Chem. Phys., 8, 5465–5476, https://doi.org/10.5194/acp-8-5465-2008, 2008.
Monod A. and Doussin, J. F.: Structure-activity relationship for the
estimation of OH-oxidation rate constants of aliphatic organic compounds in
the aqueous phase: alkanes, alcohols, organic acids and bases, Atmos.
Environ., 42, 7611–7622, https://doi.org/10.1016/j.atmosenv.2008.06.005,
2008.
Mungall, E. L., Wong, J. P. S., and Abbatt, J. P. D.: Heterogeneous
Oxidation of Particulate Methanesulfonic Acid by the Hydroxyl Radical:
Kinetics and Atmospheric Implications, ACS Earth Space Chem., 2, 48–55,
https://doi.org/10.1021/acsearthspacechem.7b00114, 2017.
Peeters, J., Vereecken, L., and Fantechi, G.: The detailed mechanism of the
OH-initiated atmospheric oxidation of α-pinene: a theoretical study,
Phys. Chem. Chem. Phys., 3, 5489–5504, https://doi.org/10.1039/b106555f,
2001.
Pye, H. O. T., Chan, A. W. H., Barkley, M. P., and Seinfeld, J. H.: Global modeling of organic aerosol: the importance of reactive nitrogen (NOx and NO3), Atmos. Chem. Phys., 10, 11261–11276, https://doi.org/10.5194/acp-10-11261-2010, 2010.
Qiu, Y. and Molinero, V.: Morphology of liquid-liquid phase separated
aerosols, J. Am. Chem. Soc., 137, 10642–10651, https://doi.org/10.1021/jacs.5b05579, 2015.
Rowley D. M., Lightfoot P. D., Lesclaux R., and Wallington T. J.:
Ultraviolet absorption spectrum and self-reaction of cyclopentylperoxy
radicals, J. Chem. Soc. Faraday T., 88, 1369–1376,
https://doi.org/10.1039/ft9928801369, 1992.
Riva, M., Tomaz, S., Cui, T. Q., Lin, Y. H., Perraudin, E., Gold, A., Stone,
E. A., Villenave, E., and Surratt, J. D.: Evidence for an unrecognized
secondary anthropogenic source of organosulfates and sulfonates: gas-phase
oxidation of polycyclic aromatic hydrocarbons in the presence of sulfate
aerosol, Environ. Sci. Technol., 49, 6654–6664,
https://doi.org/10.1021/acs.est.5b00836, 2015.
Russell, G. A.: Deuterium-isotope effects in the autoxidation of aralkyl hydrocarbons. mechanism of the interaction of peroxy radicals1, J. Am. Chem. Soc., 79, 3871–3877, https://doi.org/10.1021/ja01571a068, 1957.
Shakya, K. M. and Peltier, R. E.: Investigating missing sources of sulfur
at Fairbanks, Alaska, Environ. Sci. Technol., 47, 9332−9338,
https://doi.org/10.1021/es402020b, 2013.
Shakya, K. M. and Peltier, R. E.: Non-sulfate sulfur in fine aerosols
across the United States: insight for organosulfate prevalence, Atmos.
Environ., 100, 159–166, https://doi.org/10.1016/j.atmosenv.2014.10.058,
2015.
Shiraiwa, M., Ammann, M., Koop, T., and Pöschl, U.: Gas uptake and
chemical aging of semisolid organic aerosol particles, Proc. Natl. Acad.
Sci., 108, 11003–11008, https://doi.org/10.1073/pnas.1103045108, 2011.
Shiraiwa, M., Zuend, A., Bertram, A. K., and Seinfeld, J. H.: Gas–particle
partitioning of atmospheric aerosols: Interplay of physical state, non-ideal
mixing and morphology, Phys. Chem. Chem. Phys., 15, 11441–11453,
https://doi.org/10.1039/C3CP51595H, 2013.
Slade, J. H. and Knopf, D. A.: Multiphase OH oxidation kinetics of organic
aerosol: The role of particle phase state and relative humidity, Geophys.
Res. Lett., 41, 5297–5306, https://doi.org/10.1002/2014gl060582, 2014.
Smith, J. D., Kroll, J. H., Cappa, C. D., Che, D. L., Liu, C. L., Ahmed, M., Leone, S. R., Worsnop, D. R., and Wilson, K. R.: The heterogeneous reaction of hydroxyl radicals with sub-micron squalane particles: a model system for understanding the oxidative aging of ambient aerosols, Atmos. Chem. Phys., 9, 3209–3222, https://doi.org/10.5194/acp-9-3209-2009, 2009.
Stadtler, S., Kühn, T., Schröder, S., Taraborrelli, D., Schultz, M. G., and Kokkola, H.: Isoprene-derived secondary organic aerosol in the global aerosol–chemistry–climate model ECHAM6.3.0–HAM2.3–MOZ1.0, Geosci. Model Dev., 11, 3235–3260, https://doi.org/10.5194/gmd-11-3235-2018, 2018.
Stone, E. A., Yang, L., Yu, L. E., and Rupakheti, M.: Characterization of
Organosulfates in Atmospheric Aerosols at Four Asian Locations, Atmos.
Environ., 47, 323–329, https://doi.org/10.1016/j.atmosenv.2011.10.058,
2012.
Surratt, J. D., Gómez-González, Y., Chan, A. W. H., Vermeylen, R.,
Shahgholi, M., Kleindienst, T. E., Edney, E. O., Offenberg, J. H.,
Lewandowski, M., Jaoui, M., Maenhaut, W., Claeys, M., Flagan, R. C., and
Seinfeld, J. H.: Organosulfate formation in biogenic secondary organic
aerosol, J. Phys. Chem. A., 112, 8345–8378,
https://doi.org/10.1021/jp802310p, 2008.
Tolocka, M. P. and Turpin, B.: Contribution of organosulfur compounds to
organic aerosol mass, Environ. Sci. Technol., 46, 7978–7983,
https://doi.org/10.1021/es300651v, 2012.
Vogel, A. L., Schneider, J., Müller-Tautges, C., Klimach,
T., and Hoffmann, T.: Aerosol chemistry resolved by mass spectrometry:
insights into particle growth after ambient particle formation, Environ.
Sci. Technol., 50, 10814–10822, https://doi.org/10.1021/acs.est.6b01673,
2016.
Wang, Y., Ren, J., Huang, X. H. H., Tong, R., and Yu, J. Z.: Synthesis of
four monoterpene-derived organosulfates and their quantification in
atmospheric aerosol samples, Environ. Sci. Technol., 51, 6791–6801,
https://doi.org/10.1021/acs.est.7b01179, 2017.
Wang, Y., Hu, M., Guo, S., Wang, Y., Zheng, J., Yang, Y., Zhu, W., Tang, R., Li, X., Liu, Y., Le Breton, M., Du, Z., Shang, D., Wu, Y., Wu, Z., Song, Y., Lou, S., Hallquist, M., and Yu, J.: The secondary formation of organosulfates under interactions between biogenic emissions and anthropogenic pollutants in summer in Beijing, Atmos. Chem. Phys., 18, 10693–10713, https://doi.org/10.5194/acp-18-10693-2018, 2018.
Wang, Y., Zhao, Y., Wang, Y., Yu, J.-Z., Shao, J., Liu, P., Zhu, W., Cheng, Z., Li, Z., Yan, N., and Xiao, H.: Organosulfates in atmospheric aerosols in Shanghai, China: seasonal and interannual variability, origin, and formation mechanisms, Atmos. Chem. Phys., 21, 2959–2980, https://doi.org/10.5194/acp-21-2959-2021, 2021.
Wilsey, S., Dowd, P., and Houk, K. N.: Effect of alkyl substituents and ring
size on alkoxy radical cleavage reactions, J. Organ. Chem., 64, 8801–8811,
https://doi.org/10.1021/jo990652+, 1999.
Xu, R., Ge, Y., Kwong, K. C., Poon, H. Y., Wilson, K. R., Yu, J. Z., and
Chan, M. N.: Inorganic sulfur species formed upon heterogeneous OH oxidation
of organosulfates: a case study of methyl sulfate, ACS Earth Space Chem., 4,
2041–2049, https://doi.org/10.1021/acsearthspacechem.0c00209, 2020a.
Xu, R., Lam, H. K., Wilson, K. R., Davies, J. F., Song, M., Li, W., Tse, Y.-L. S., and Chan, M. N.: Effect of inorganic-to-organic mass ratio on the heterogeneous OH reaction rates of erythritol: implications for atmospheric chemical stability of 2-methyltetrols, Atmos. Chem. Phys., 20, 3879–3893, https://doi.org/10.5194/acp-20-3879-2020, 2020b.
Yamazaki, Y., Naganuma, J., and Gotoh, H.: A Theoretical, dynamical
evaluation method of the steric hindrance in nitroxide radicals using
transition states of model reactions, Sci. Rep., 9, 20339,
https://doi.org/10.1038/s41598-019-56342-w, 2019.
You, Y., Smith, M. L., Song, M., Martin, S. T., and Bertram, A. K.:
Liquid–liquid phase separation in atmospherically relevant particles
consisting of organic species and inorganic salts, Int. Rev. Phys. Chem.,
33, 43–77, https://doi.org/10.1080/0144235x.2014.890786, 2014.
Zhang, H., Worton, D. R., Lewandowski, M., Ortega, J., Rubitschun, C. L.,
Park, J.-H., Kristensen, K., Campuzano-Jost, P., Day, D. A., Jimenez, J. L.,
Jaoui, M., Offenberg, J. H., Kleindienst, T. E., Gilman, J., Kuster, W. C.,
de Gouw, J., Park, C., Schade, G. W., Frossard, A. A., Russell, L., Kaser,
L., Jud, W., Hansel, A., Cappellin, L., Karl, T., Glasius, M., Guenther, A.,
Goldstein, A. H., Seinfeld, J. H., Gold, A., Kamens, R. M., and Surratt, J.
D.: Organosulfates as tracers for Secondary Organic Aerosol (SOA) formation
from 2-Methyl-3-Buten-2-ol (MBO) in the atmosphere, Environ. Sci. Technol.,
46, 9437–9446, https://doi.org/10.1021/es301648z, 2012.
Short summary
To date, while over a hundred organosulfates (OSs) have been detected in atmospheric aerosols, many of them are still unidentified, with unknown precursors and formation processes. We found the heterogeneous OH oxidation of an α-pinene-derived organosulfate (C10H17O5SNa, αpOS-249, αpOS-249) can proceed at an efficient rate and transform into more oxygenated OSs, which have been commonly detected in atmospheric aerosols and α-pinene-derived SOA in chamber studies.
To date, while over a hundred organosulfates (OSs) have been detected in atmospheric aerosols,...
Altmetrics
Final-revised paper
Preprint