Articles | Volume 22, issue 7
https://doi.org/10.5194/acp-22-4929-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-4929-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Direct measurements of ozone response to emissions perturbations in California
Shenglun Wu
Department of Civil and Environmental Engineering, University of
California Davis, 1 Shields Ave, Davis, CA 95616, USA
Hyung Joo Lee
Division of Environmental Science and Engineering, Pohang University
of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
Andrea Anderson
Department of Chemistry, University of California Irvine, Irvine, CA
92697, USA
previously published under the name Rohrbacher
Shang Liu
Research Division, California Air Resources Board, 1001 I Street,
Sacramento, CA 95814, USA
Toshihiro Kuwayama
Research Division, California Air Resources Board, 1001 I Street,
Sacramento, CA 95814, USA
John H. Seinfeld
Department of Chemical Engineering, California Institute of
Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
Michael J. Kleeman
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, University of
California Davis, 1 Shields Ave, Davis, CA 95616, USA
Related authors
No articles found.
Chelsea E. Stockwell, Matthew M. Coggon, Rebecca H. Schwantes, Colin Harkins, Bert Verreyken, Congmeng Lyu, Qindan Zhu, Lu Xu, Jessica B. Gilman, Aaron Lamplugh, Jeff Peischl, Michael A. Robinson, Patrick R. Veres, Meng Li, Andrew W. Rollins, Kristen Zuraski, Sunil Baidar, Shang Liu, Toshihiro Kuwayama, Steven S. Brown, Brian C. McDonald, and Carsten Warneke
EGUsphere, https://doi.org/10.5194/egusphere-2024-1899, https://doi.org/10.5194/egusphere-2024-1899, 2024
Short summary
Short summary
In urban areas, emissions from everyday products like paints, cleaners, and personal care products, along with non-traditional sources such as cooking are important sources that impact air quality. This study used a model to evaluate how these emissions impact ozone in the Los Angeles Basin, and quantifies the impact of gaseous cooking emissions for the first time. Accurate representation of these and other man-made sources in inventories is crucial to inform effective air quality policies.
Qindan Zhu, Rebecca H. Schwantes, Matthew Coggon, Colin Harkins, Jordan Schnell, Jian He, Havala O. T. Pye, Meng Li, Barry Baker, Zachary Moon, Ravan Ahmadov, Eva Y. Pfannerstill, Bryan Place, Paul Wooldridge, Benjamin C. Schulze, Caleb Arata, Anthony Bucholtz, John H. Seinfeld, Carsten Warneke, Chelsea E. Stockwell, Lu Xu, Kristen Zuraski, Michael A. Robinson, J. Andrew Neuman, Patrick R. Veres, Jeff Peischl, Steven S. Brown, Allen H. Goldstein, Ronald C. Cohen, and Brian C. McDonald
Atmos. Chem. Phys., 24, 5265–5286, https://doi.org/10.5194/acp-24-5265-2024, https://doi.org/10.5194/acp-24-5265-2024, 2024
Short summary
Short summary
Volatile organic compounds (VOCs) fuel the production of air pollutants like ozone and particulate matter. The representation of VOC chemistry remains challenging due to its complexity in speciation and reactions. Here, we develop a chemical mechanism, RACM2B-VCP, that better represents VOC chemistry in urban areas such as Los Angeles. We also discuss the contribution of VOCs emitted from volatile chemical products and other anthropogenic sources to total VOC reactivity and O3.
Elyse A. Pennington, Yuan Wang, Benjamin C. Schulze, Karl M. Seltzer, Jiani Yang, Bin Zhao, Zhe Jiang, Hongru Shi, Melissa Venecek, Daniel Chau, Benjamin N. Murphy, Christopher M. Kenseth, Ryan X. Ward, Havala O. T. Pye, and John H. Seinfeld
Atmos. Chem. Phys., 24, 2345–2363, https://doi.org/10.5194/acp-24-2345-2024, https://doi.org/10.5194/acp-24-2345-2024, 2024
Short summary
Short summary
To assess the air quality in Los Angeles (LA), we improved the CMAQ model by using dynamic traffic emissions and new secondary organic aerosol schemes to represent volatile chemical products. Source apportionment demonstrates that the urban areas of the LA Basin and vicinity are NOx-saturated, with the largest sensitivity of O3 to changes in volatile organic compounds in the urban core. The improvement and remaining issues shed light on the future direction of the model development.
Reina S. Buenconsejo, Sophia M. Charan, John H. Seinfeld, and Paul O. Wennberg
EGUsphere, https://doi.org/10.5194/egusphere-2023-2483, https://doi.org/10.5194/egusphere-2023-2483, 2023
Short summary
Short summary
We look at the atmospheric chemistry of a volatile chemical product (VCP), benzyl alcohol. Benzyl alcohol and other VCPs may play a significant role in the formation of urban smog. By better understanding the chemistry of VCPs like benzyl alcohol, we may better understand observed data and how VCPs affect air quality. We identify products formed from benzyl alcohol chemistry and use this chemistry to understand how benzyl alcohol forms a key component of smog, secondary organic aerosol.
Clara M. Nussbaumer, Bryan K. Place, Qindan Zhu, Eva Y. Pfannerstill, Paul Wooldridge, Benjamin C. Schulze, Caleb Arata, Ryan Ward, Anthony Bucholtz, John H. Seinfeld, Allen H. Goldstein, and Ronald C. Cohen
Atmos. Chem. Phys., 23, 13015–13028, https://doi.org/10.5194/acp-23-13015-2023, https://doi.org/10.5194/acp-23-13015-2023, 2023
Short summary
Short summary
NOx is a precursor to hazardous tropospheric ozone and can be emitted from various anthropogenic sources. It is important to quantify NOx emissions in urban environments to improve the local air quality, which still remains a challenge, as sources are heterogeneous in space and time. In this study, we calculate NOx emissions over Los Angeles, based on aircraft measurements in June 2021, and compare them to a local emission inventory, which we find mostly overpredicts the measured values.
Eva Y. Pfannerstill, Caleb Arata, Qindan Zhu, Benjamin C. Schulze, Roy Woods, John H. Seinfeld, Anthony Bucholtz, Ronald C. Cohen, and Allen H. Goldstein
Atmos. Chem. Phys., 23, 12753–12780, https://doi.org/10.5194/acp-23-12753-2023, https://doi.org/10.5194/acp-23-12753-2023, 2023
Short summary
Short summary
The San Joaquin Valley is an agricultural area with poor air quality. Organic gases drive the formation of hazardous air pollutants. Agricultural emissions of these gases are not well understood and have rarely been quantified at landscape scale. By combining aircraft-based emission measurements with land cover information, we found mis- or unrepresented emission sources. Our results help in understanding of pollution sources and in improving predictions of air quality in agricultural regions.
Qindan Zhu, Bryan Place, Eva Y. Pfannerstill, Sha Tong, Huanxin Zhang, Jun Wang, Clara M. Nussbaumer, Paul Wooldridge, Benjamin C. Schulze, Caleb Arata, Anthony Bucholtz, John H. Seinfeld, Allen H. Goldstein, and Ronald C. Cohen
Atmos. Chem. Phys., 23, 9669–9683, https://doi.org/10.5194/acp-23-9669-2023, https://doi.org/10.5194/acp-23-9669-2023, 2023
Short summary
Short summary
Nitrogen oxide (NOx) is a hazardous air pollutant, and it is the precursor of short-lived climate forcers like tropospheric ozone and aerosol particles. While NOx emissions from transportation has been strictly regulated, soil NOx emissions are overlooked. We use the airborne flux measurements to observe NOx emissions from highways and urban and cultivated soil land cover types. We show non-negligible soil NOx emissions, which are significantly underestimated in current model simulations.
Yuchen Wang, Xvli Guo, Yajie Huo, Mengying Li, Yuqing Pan, Shaocai Yu, Alexander Baklanov, Daniel Rosenfeld, John H. Seinfeld, and Pengfei Li
Atmos. Chem. Phys., 23, 5233–5249, https://doi.org/10.5194/acp-23-5233-2023, https://doi.org/10.5194/acp-23-5233-2023, 2023
Short summary
Short summary
Substantial advances have been made in recent years toward detecting and quantifying methane super-emitters from space. However, such advances have rarely been expanded to measure the global methane pledge because large-scale swaths and high-resolution sampling have not been coordinated. Here we present a versatile spaceborne architecture that can juggle planet-scale and plant-level methane retrievals, challenge official emission reports, and remain relevant for stereoscopic measurements.
Mengying Li, Shaocai Yu, Xue Chen, Zhen Li, Yibo Zhang, Zhe Song, Weiping Liu, Pengfei Li, Xiaoye Zhang, Meigen Zhang, Yele Sun, Zirui Liu, Caiping Sun, Jingkun Jiang, Shuxiao Wang, Benjamin N. Murphy, Kiran Alapaty, Rohit Mathur, Daniel Rosenfeld, and John H. Seinfeld
Atmos. Chem. Phys., 22, 11845–11866, https://doi.org/10.5194/acp-22-11845-2022, https://doi.org/10.5194/acp-22-11845-2022, 2022
Short summary
Short summary
This study constructed an emission inventory of condensable particulate matter (CPM) in China with a focus on organic aerosols (OAs), based on collected CPM emission information. The results show that OA emissions are enhanced twofold for the years 2014 and 2017 after the inclusion of CPM in the new inventory. Sensitivity cases demonstrated the significant contributions of CPM emissions from stationary combustion and mobile sources to primary, secondary, and total OA concentrations.
Shang Liu, Barbara Barletta, Rebecca S. Hornbrook, Alan Fried, Jeff Peischl, Simone Meinardi, Matthew Coggon, Aaron Lamplugh, Jessica B. Gilman, Georgios I. Gkatzelis, Carsten Warneke, Eric C. Apel, Alan J. Hills, Ilann Bourgeois, James Walega, Petter Weibring, Dirk Richter, Toshihiro Kuwayama, Michael FitzGibbon, and Donald Blake
Atmos. Chem. Phys., 22, 10937–10954, https://doi.org/10.5194/acp-22-10937-2022, https://doi.org/10.5194/acp-22-10937-2022, 2022
Short summary
Short summary
California’s ozone persistently exceeds the air quality standards. We studied the spatial distribution of volatile organic compounds (VOCs) that produce ozone over the most polluted regions in California using aircraft measurements. We find that the oxygenated VOCs have the highest ozone formation potential. Spatially, biogenic VOCs are important during high ozone episodes in the South Coast Air Basin, while dairy emissions may be critical for ozone production in San Joaquin Valley.
Sophia M. Charan, Yuanlong Huang, Reina S. Buenconsejo, Qi Li, David R. Cocker III, and John H. Seinfeld
Atmos. Chem. Phys., 22, 917–928, https://doi.org/10.5194/acp-22-917-2022, https://doi.org/10.5194/acp-22-917-2022, 2022
Short summary
Short summary
In this study, we investigate the secondary organic aerosol formation potential of decamethylcyclopentasiloxane (D5), which is used as a tracer for volatile chemical products and measured in high concentrations both outdoors and indoors. By performing experiments in different types of reactors, we find that D5’s aerosol formation is highly dependent on OH, and, at low OH concentrations or exposures, D5 forms little aerosol. We also reconcile results from other studies.
Elyse A. Pennington, Karl M. Seltzer, Benjamin N. Murphy, Momei Qin, John H. Seinfeld, and Havala O. T. Pye
Atmos. Chem. Phys., 21, 18247–18261, https://doi.org/10.5194/acp-21-18247-2021, https://doi.org/10.5194/acp-21-18247-2021, 2021
Short summary
Short summary
Volatile chemical products (VCPs) are commonly used consumer and industrial items that contribute to the formation of atmospheric aerosol. We implemented the emissions and chemistry of VCPs in a regional-scale model and compared predictions with measurements made in Los Angeles. Our results reduced model bias and suggest that VCPs may contribute up to half of anthropogenic secondary organic aerosol in Los Angeles and are an important source of human-influenced particular matter in urban areas.
Linhui Jiang, Yan Xia, Lu Wang, Xue Chen, Jianjie Ye, Tangyan Hou, Liqiang Wang, Yibo Zhang, Mengying Li, Zhen Li, Zhe Song, Yaping Jiang, Weiping Liu, Pengfei Li, Daniel Rosenfeld, John H. Seinfeld, and Shaocai Yu
Atmos. Chem. Phys., 21, 16985–17002, https://doi.org/10.5194/acp-21-16985-2021, https://doi.org/10.5194/acp-21-16985-2021, 2021
Short summary
Short summary
This paper establishes a bottom-up approach to reveal a unique pattern of urban on-road vehicle emissions at a spatial resolution 1–3 orders of magnitude higher than current inventories. The results show that the hourly average on-road vehicle emissions of CO, NOx, HC, and PM2.5 are 74 kg, 40 kg, 8 kg, and 2 kg, respectively. Integrating our traffic-monitoring-based approach with urban measurements, we could address major data gaps between urban air pollutant emissions and concentrations.
Weimeng Kong, Stavros Amanatidis, Huajun Mai, Changhyuk Kim, Benjamin C. Schulze, Yuanlong Huang, Gregory S. Lewis, Susanne V. Hering, John H. Seinfeld, and Richard C. Flagan
Atmos. Meas. Tech., 14, 5429–5445, https://doi.org/10.5194/amt-14-5429-2021, https://doi.org/10.5194/amt-14-5429-2021, 2021
Short summary
Short summary
We present the design, modeling, and experimental characterization of the nano-scanning electrical mobility spectrometer (nSEMS), a recently developed instrument that probes particle physical properties in the 1.5–25 nm range. The nSEMS has proven to be extremely powerful in examining atmospheric nucleation and the subsequent growth of nanoparticles in the CERN CLOUD experiment, which provides a valuable asset to study atmospheric nanoparticles and to evaluate their impact on climate.
Stavros Amanatidis, Yuanlong Huang, Buddhi Pushpawela, Benjamin C. Schulze, Christopher M. Kenseth, Ryan X. Ward, John H. Seinfeld, Susanne V. Hering, and Richard C. Flagan
Atmos. Meas. Tech., 14, 4507–4516, https://doi.org/10.5194/amt-14-4507-2021, https://doi.org/10.5194/amt-14-4507-2021, 2021
Short summary
Short summary
We assess the performance of a highly portable mobility analyzer, the Spider DMA, in measuring ambient aerosol particle size distributions, with specific attention to its moderate sizing resolution (R=3). Long-term field testing showed excellent correlation with a conventional mobility analyzer (R=10) over the 17–500 nm range, suggesting that moderate resolution may be sufficient to obtain key properties of ambient size distributions, enabling smaller instruments and better counting statistics.
Liqiang Wang, Shaocai Yu, Pengfei Li, Xue Chen, Zhen Li, Yibo Zhang, Mengying Li, Khalid Mehmood, Weiping Liu, Tianfeng Chai, Yannian Zhu, Daniel Rosenfeld, and John H. Seinfeld
Atmos. Chem. Phys., 20, 14787–14800, https://doi.org/10.5194/acp-20-14787-2020, https://doi.org/10.5194/acp-20-14787-2020, 2020
Short summary
Short summary
The Chinese government has made major strides in curbing anthropogenic emissions. In this study, we constrain a state-of-the-art CTM by a reliable data assimilation method with extensive chemical and meteorological observations. This comprehensive technical design provides a crucial advance in isolating the influences of emission changes and meteorological perturbations over the Yangtze River Delta (YRD) from 2016 to 2019, thus establishing the first map of the PM2.5 mitigation across the YRD.
Brigitte Rooney, Yuan Wang, Jonathan H. Jiang, Bin Zhao, Zhao-Cheng Zeng, and John H. Seinfeld
Atmos. Chem. Phys., 20, 14597–14616, https://doi.org/10.5194/acp-20-14597-2020, https://doi.org/10.5194/acp-20-14597-2020, 2020
Short summary
Short summary
Wildfires have become increasingly prevalent. Intense smoke consisting of particulate matter (PM) leads to an increased risk of morbidity and mortality. The record-breaking Camp Fire ravaged Northern California for two weeks in 2018. Here, we employ a comprehensive chemical transport model along with ground-based and satellite observations to characterize the PM concentrations across Northern California and to investigate the pollution sensitivity predictions to key parameters of the model.
Sophia M. Charan, Reina S. Buenconsejo, and John H. Seinfeld
Atmos. Chem. Phys., 20, 13167–13190, https://doi.org/10.5194/acp-20-13167-2020, https://doi.org/10.5194/acp-20-13167-2020, 2020
Short summary
Short summary
In urban areas, the emissions from volatile chemical products may be responsible for the formation of as much particulate matter as motor vehicles. Since exposure to particulate matter is a public health crisis, understanding its formation is critical. In this work, we investigate the secondary organic aerosol formation potential of benzyl alcohol, an important compound that is representative of some of these new emission sources, and find that more particulate matter forms than is expected.
Alexander B. MacDonald, Ali Hossein Mardi, Hossein Dadashazar, Mojtaba Azadi Aghdam, Ewan Crosbie, Haflidi H. Jonsson, Richard C. Flagan, John H. Seinfeld, and Armin Sorooshian
Atmos. Chem. Phys., 20, 7645–7665, https://doi.org/10.5194/acp-20-7645-2020, https://doi.org/10.5194/acp-20-7645-2020, 2020
Short summary
Short summary
Understanding how humans affect Earth's climate requires understanding of how particles in the air affect the number concentration of droplets in a cloud (Nd). We use the air-equivalent mass concentration of different chemical species contained in cloud water to predict Nd. In this study we found that the prediction of Nd is (1) best described by total sulfate; (2) improved when considering up to five species; and (3) dependent on factors like turbulence, smoke presence, and in-cloud height.
Khalid Mehmood, Yujie Wu, Liqiang Wang, Shaocai Yu, Pengfei Li, Xue Chen, Zhen Li, Yibo Zhang, Mengying Li, Weiping Liu, Yuesi Wang, Zirui Liu, Yannian Zhu, Daniel Rosenfeld, and John H. Seinfeld
Atmos. Chem. Phys., 20, 2419–2443, https://doi.org/10.5194/acp-20-2419-2020, https://doi.org/10.5194/acp-20-2419-2020, 2020
Short summary
Short summary
We selected June 2014 as our study period, which exhibited a complete evolution process of open biomass burning (OBB) dominated by open crop straw burning (OCSB) over central and eastern China (CEC). We established a constraining method that integrates ground-based PM2.5 measurements with the two-way coupled WRF-CMAQ model to derive optimal OBB emissions. It was found that these emissions could allow the model to reproduce meteorological and chemical fields over CEC during the study period.
Xin Yu, Melissa Venecek, Anikender Kumar, Jianlin Hu, Saffet Tanrikulu, Su-Tzai Soon, Cuong Tran, David Fairley, and Michael J. Kleeman
Atmos. Chem. Phys., 19, 14677–14702, https://doi.org/10.5194/acp-19-14677-2019, https://doi.org/10.5194/acp-19-14677-2019, 2019
Short summary
Short summary
Predictions and measurements of ultrafine particle number and mass concentrations were in overall good agreement at 14 sites across California in the years 2012, 2015, and 2016. On-road vehicles, food cooking, and aircraft were important sources of ultrafine particles as expected, but natural gas combustion was also a significant source at all locations across California. These results can be used to study the health effects of ultrafine particles.
Melissa A. Venecek, Xin Yu, and Michael J. Kleeman
Atmos. Chem. Phys., 19, 9399–9412, https://doi.org/10.5194/acp-19-9399-2019, https://doi.org/10.5194/acp-19-9399-2019, 2019
Short summary
Short summary
Atmospheric ultrafine particles with a diameter < 100 nm are more toxic than larger particles. There are no measurement networks for ultrafine particles, but concentrations can be predicted using models. On-road vehicles, cooking, and aircraft are important sources of ultrafine particles as expected, but natural gas combustion was also found to be a significant source in cities across the United States. Results like this may support future health-effects studies on ultrafine particles.
Brigitte Rooney, Ran Zhao, Yuan Wang, Kelvin H. Bates, Ajay Pillarisetti, Sumit Sharma, Seema Kundu, Tami C. Bond, Nicholas L. Lam, Bora Ozaltun, Li Xu, Varun Goel, Lauren T. Fleming, Robert Weltman, Simone Meinardi, Donald R. Blake, Sergey A. Nizkorodov, Rufus D. Edwards, Ankit Yadav, Narendra K. Arora, Kirk R. Smith, and John H. Seinfeld
Atmos. Chem. Phys., 19, 7719–7742, https://doi.org/10.5194/acp-19-7719-2019, https://doi.org/10.5194/acp-19-7719-2019, 2019
Short summary
Short summary
Approximately 3 billion people worldwide cook with solid fuels, such as wood, charcoal, and agricultural residues, that are often combusted in inefficient cookstoves. Here, we simulate the distribution of the two major health-damaging outdoor pollution species (PM2.5 and O3) using state-of-the-science emissions databases and atmospheric chemical transport models to estimate the impact of household combustion on ambient air quality in India.
Rebecca H. Schwantes, Sophia M. Charan, Kelvin H. Bates, Yuanlong Huang, Tran B. Nguyen, Huajun Mai, Weimeng Kong, Richard C. Flagan, and John H. Seinfeld
Atmos. Chem. Phys., 19, 7255–7278, https://doi.org/10.5194/acp-19-7255-2019, https://doi.org/10.5194/acp-19-7255-2019, 2019
Short summary
Short summary
Oxidation of isoprene, the dominant non-methane biogenic volatile organic compound emitted into the atmosphere, is a significant source of secondary organic aerosol (SOA). Here formation of SOA from isoprene oxidation by the hydroxyl radical (OH) under high-NO conditions is measured. This work improves our understanding of isoprene SOA formation by demonstrating that low-volatility compounds formed under high-NO conditions produce significantly more aerosol than previously thought.
Ali Akherati, Christopher D. Cappa, Michael J. Kleeman, Kenneth S. Docherty, Jose L. Jimenez, Stephen M. Griffith, Sebastien Dusanter, Philip S. Stevens, and Shantanu H. Jathar
Atmos. Chem. Phys., 19, 4561–4594, https://doi.org/10.5194/acp-19-4561-2019, https://doi.org/10.5194/acp-19-4561-2019, 2019
Short summary
Short summary
Unburned and partially burned organic compounds emitted from fossil fuel and biomass combustion can react in the atmosphere in the presence of sunlight to form particles. In this work, we use an air pollution model to examine the influence of these organic compounds released by motor vehicles and fires on fine particle pollution in southern California.
Christina B. Zapata, Chris Yang, Sonia Yeh, Joan Ogden, and Michael J. Kleeman
Geosci. Model Dev., 11, 1293–1320, https://doi.org/10.5194/gmd-11-1293-2018, https://doi.org/10.5194/gmd-11-1293-2018, 2018
Short summary
Short summary
The CA-REMARQUE emissions model translates policies designed for climate change mitigation into inputs needed for air pollution analysis in California. The model captures the complicated trade-offs associated with changing fuels and technologies that sometimes increase air pollution emissions in some areas while decreasing emissions in other areas. These detailed calculations are needed in highly populated regions like California where simple emissions controls have already been applied.
Christina B. Zapata, Chris Yang, Sonia Yeh, Joan Ogden, and Michael J. Kleeman
Atmos. Chem. Phys., 18, 4817–4830, https://doi.org/10.5194/acp-18-4817-2018, https://doi.org/10.5194/acp-18-4817-2018, 2018
Short summary
Short summary
California's greenhouse gas reduction programs will require adoption of low-carbon energy sources across all economic sectors. We selected the least-cost portfolio of new energy sources using an energy–economic model. We then specified new air pollution emissions and simulated air quality with 4 km spatial resolution across the entire state. We find that the adoption of low-carbon energy reduced air pollution deaths 24–26 %, providing USD 11.4–20.4 billion per year of economic benefits.
Shantanu H. Jathar, Christopher Heppding, Michael F. Link, Delphine K. Farmer, Ali Akherati, Michael J. Kleeman, Joost A. de Gouw, Patrick R. Veres, and James M. Roberts
Atmos. Chem. Phys., 17, 8959–8970, https://doi.org/10.5194/acp-17-8959-2017, https://doi.org/10.5194/acp-17-8959-2017, 2017
Short summary
Short summary
Our work makes novel emissions measurements of isocyanic acid, a toxic gas, from a modern-day diesel engine and finds that diesel engines emit isocyanic acid but the emissions control devices do not enhance or destroy the isocyanic acid. Air quality model calculations suggest that diesel engines are possibly important sources of isocyanic acid in urban environments although the isocyanic acid levels are ten times lower than levels linked to adverse human health effects.
Jianlin Hu, Shantanu Jathar, Hongliang Zhang, Qi Ying, Shu-Hua Chen, Christopher D. Cappa, and Michael J. Kleeman
Atmos. Chem. Phys., 17, 5379–5391, https://doi.org/10.5194/acp-17-5379-2017, https://doi.org/10.5194/acp-17-5379-2017, 2017
Short summary
Short summary
Organic aerosol is a major constituent of ultrafine particulate matter (PM0.1). In this study, a source-oriented air quality model was used to simulate the concentrations and sources of primary and secondary organic aerosols in PM0.1 in California for a 9-year modeling period to provide useful information for epidemiological studies to further investigate the associations with health outcomes.
Rebecca H. Schwantes, Katherine A. Schilling, Renee C. McVay, Hanna Lignell, Matthew M. Coggon, Xuan Zhang, Paul O. Wennberg, and John H. Seinfeld
Atmos. Chem. Phys., 17, 3453–3474, https://doi.org/10.5194/acp-17-3453-2017, https://doi.org/10.5194/acp-17-3453-2017, 2017
Short summary
Short summary
Toluene, one of the principle aromatic compounds present in the atmosphere, is oxidized by OH to produce cresol and other products. Here later-generation low-volatility oxygenated products from cresol oxidation by OH are detected in the gas and particle phases. This work identifies a simple and significant mechanism for toluene secondary organic aerosol formation through the cresol pathway. Likely the phenolic pathway of other aromatic compounds is also important for secondary organic aerosol.
Yuanlong Huang, Matthew M. Coggon, Ran Zhao, Hanna Lignell, Michael U. Bauer, Richard C. Flagan, and John H. Seinfeld
Atmos. Meas. Tech., 10, 839–867, https://doi.org/10.5194/amt-10-839-2017, https://doi.org/10.5194/amt-10-839-2017, 2017
Short summary
Short summary
We report on the development of a new laminar flow tube reactor for the study of gas-phase atmospheric chemistry and secondary organic aerosol formation. The present paper is devoted to the design and fluid dynamical characterization of the reactor. The results of gas and particle residence time distribution experiments in the reactor, together with an evaluation of the effect of non-isothermal conditions, are reported.
Theodora Nah, Renee C. McVay, Jeffrey R. Pierce, John H. Seinfeld, and Nga L. Ng
Atmos. Chem. Phys., 17, 2297–2310, https://doi.org/10.5194/acp-17-2297-2017, https://doi.org/10.5194/acp-17-2297-2017, 2017
Short summary
Short summary
We present a model framework that accounts for coagulation in chamber studies where high seed aerosol surface area concentrations are used. The uncertainties in the calculated SOA mass concentrations and yields between four different particle-wall loss correction methods over the series of α-pinene ozonolysis experiments are also assessed. We show that SOA mass yields calculated by the four methods can deviate significantly in studies where high seed aerosol surface area concentrations are used.
Natasha Hodas, Andreas Zuend, Katherine Schilling, Thomas Berkemeier, Manabu Shiraiwa, Richard C. Flagan, and John H. Seinfeld
Atmos. Chem. Phys., 16, 12767–12792, https://doi.org/10.5194/acp-16-12767-2016, https://doi.org/10.5194/acp-16-12767-2016, 2016
Short summary
Short summary
Discontinuities in apparent hygroscopicity below and above water saturation have been observed for organic and mixed organic-inorganic aerosol particles in both laboratory studies and in the ambient atmosphere. This work explores the extent to which such discontinuities are influenced by organic component molecular mass and viscosity, non-ideal thermodynamic interactions between aerosol components, and the combination of these factors.
Theodora Nah, Renee C. McVay, Xuan Zhang, Christopher M. Boyd, John H. Seinfeld, and Nga L. Ng
Atmos. Chem. Phys., 16, 9361–9379, https://doi.org/10.5194/acp-16-9361-2016, https://doi.org/10.5194/acp-16-9361-2016, 2016
Short summary
Short summary
The influence of seed aerosol surface area and oxidation rate on SOA formation in α-pinene ozonolysis is studied. SOA growth rate and mass yields are independent of seed surface area, consistent with the condensation of SOA-forming vapors being dominated by quasi-equilibrium growth. Faster α-pinene oxidation rates and higher SOA mass yields are observed at increasing O3 concentrations, indicating that a faster α-pinene oxidation rate leads to rapidly produced SOA-forming oxidation products.
Hsiang-He Lee, Shu-Hua Chen, Michael J. Kleeman, Hongliang Zhang, Steven P. DeNero, and David K. Joe
Atmos. Chem. Phys., 16, 8353–8374, https://doi.org/10.5194/acp-16-8353-2016, https://doi.org/10.5194/acp-16-8353-2016, 2016
Short summary
Short summary
A source-oriented CCN module was implemented in a source-oriented chemistry model to study the effect of aerosol mixing state on fog formation. The fraction of aerosols activating into CCN at a supersaturation of 0.5 % in the Central Valley decreased from 94 % in the internal mixture model to 80 % in the source-oriented model. The internal mixture model predicted greater CCN activation than the source-oriented model due to artificial coating of hydrophobic particles with hygroscopic components.
Christopher D. Cappa, Shantanu H. Jathar, Michael J. Kleeman, Kenneth S. Docherty, Jose L. Jimenez, John H. Seinfeld, and Anthony S. Wexler
Atmos. Chem. Phys., 16, 3041–3059, https://doi.org/10.5194/acp-16-3041-2016, https://doi.org/10.5194/acp-16-3041-2016, 2016
Short summary
Short summary
Losses of vapors to walls of chambers can negatively bias SOA formation measurements, consequently leading to low predicted SOA concentrations in air quality models. Here, we show that accounting for such vapor losses leads to substantial increases in the predicted amount of SOA formed from VOCs and to notable increases in the O : C atomic ratio in two US regions. Comparison with a variety of observational data suggests generally improved model performance when vapor wall losses are accounted for.
Renee C. McVay, Xuan Zhang, Bernard Aumont, Richard Valorso, Marie Camredon, Yuyi S. La, Paul O. Wennberg, and John H. Seinfeld
Atmos. Chem. Phys., 16, 2785–2802, https://doi.org/10.5194/acp-16-2785-2016, https://doi.org/10.5194/acp-16-2785-2016, 2016
Short summary
Short summary
Secondary organic aerosol (SOA) affects climate change, human health, and cloud formation. We examine SOA formation from the biogenic hydrocarbon α-pinene and observe unexpected experimental results that run contrary to model predictions. Various processes are explored via modeling to rationalize the observations. The paper identifies the importance of further constraining via experiments various steps in the chemical mechanism in order to accurately predict SOA worldwide.
S. H. Jathar, C. D. Cappa, A. S. Wexler, J. H. Seinfeld, and M. J. Kleeman
Atmos. Chem. Phys., 16, 2309–2322, https://doi.org/10.5194/acp-16-2309-2016, https://doi.org/10.5194/acp-16-2309-2016, 2016
Short summary
Short summary
Multi-generational chemistry schemes applied in regional models do not increase secondary organic aerosol (SOA) mass production relative to traditional "two-product" schemes when both models are fitted to the same chamber data. The multi-generational chemistry schemes do change the predicted composition of SOA and the source attribution of SOA.
S. H. Jathar, C. D. Cappa, A. S. Wexler, J. H. Seinfeld, and M. J. Kleeman
Geosci. Model Dev., 8, 2553–2567, https://doi.org/10.5194/gmd-8-2553-2015, https://doi.org/10.5194/gmd-8-2553-2015, 2015
Short summary
Short summary
Multi-generational oxidation of organic vapors can significantly alter the mass, chemical composition and properties of secondary organic aerosol (SOA). Here, we implement a semi-explicit, constrained multi-generational oxidation model of Cappa and Wilson (2012) in a 3-D air quality model. When compared with results from a current-generation SOA model, we predict similar mass concentrations of SOA but a different chemical composition. O:C ratios of SOA are in line with those measured globally.
M. J. Alvarado, C. R. Lonsdale, R. J. Yokelson, S. K. Akagi, H. Coe, J. S. Craven, E. V. Fischer, G. R. McMeeking, J. H. Seinfeld, T. Soni, J. W. Taylor, D. R. Weise, and C. E. Wold
Atmos. Chem. Phys., 15, 6667–6688, https://doi.org/10.5194/acp-15-6667-2015, https://doi.org/10.5194/acp-15-6667-2015, 2015
Short summary
Short summary
Being able to understand and simulate the chemical evolution of biomass burning smoke plumes under a wide variety of conditions is a critical part of forecasting the impact of these fires on air quality, atmospheric composition, and climate. Here we use an improved model of this chemistry to simulate the evolution of ozone and secondary organic aerosol within a young biomass burning smoke plume from the Williams prescribed burn in chaparral, which was sampled over California in November 2009.
E. Jung, B. A. Albrecht, H. H. Jonsson, Y.-C. Chen, J. H. Seinfeld, A. Sorooshian, A. R. Metcalf, S. Song, M. Fang, and L. M. Russell
Atmos. Chem. Phys., 15, 5645–5658, https://doi.org/10.5194/acp-15-5645-2015, https://doi.org/10.5194/acp-15-5645-2015, 2015
Short summary
Short summary
To study the effect of giant cloud condensation nuclei (GCCN) on precipitation processes in stratocumulus clouds, 1-10 µm diameter salt particles were released from an aircraft while flying near the cloud top off the central coast of California. The analyses suggest that GCCN result in a four-fold increase in the cloud base rainfall rate and depletion of the cloud water due to rainout.
N. Hodas, A. Zuend, W. Mui, R. C. Flagan, and J. H. Seinfeld
Atmos. Chem. Phys., 15, 5027–5045, https://doi.org/10.5194/acp-15-5027-2015, https://doi.org/10.5194/acp-15-5027-2015, 2015
X. Zhang, R. H. Schwantes, R. C. McVay, H. Lignell, M. M. Coggon, R. C. Flagan, and J. H. Seinfeld
Atmos. Chem. Phys., 15, 4197–4214, https://doi.org/10.5194/acp-15-4197-2015, https://doi.org/10.5194/acp-15-4197-2015, 2015
Short summary
Short summary
We present an experimental protocol to constrain the nature of organic vapor--wall deposition in Teflon chambers and develop an empirical model to predict the wall-induced deposition rate of intermediate/semi/non-volatility organic vapors in chambers.
J. Hu, H. Zhang, Q. Ying, S.-H. Chen, F. Vandenberghe, and M. J. Kleeman
Atmos. Chem. Phys., 15, 3445–3461, https://doi.org/10.5194/acp-15-3445-2015, https://doi.org/10.5194/acp-15-3445-2015, 2015
Short summary
Short summary
Air quality model simulations have been conducted for California from 2000 to 2009 with 4km spatial resolution to provide exposure data for health effect studies. Comprehensive analysis shows that predicted concentrations for many pollutants are in agreement with measurements at monitoring stations, building confidence that the fields may be useful at times and locations where measurements are not available. Data can be downloaded for free at http://faculty.engineering.ucdavis.edu/kleeman/.
T. B. Nguyen, J. D. Crounse, R. H. Schwantes, A. P. Teng, K. H. Bates, X. Zhang, J. M. St. Clair, W. H. Brune, G. S. Tyndall, F. N. Keutsch, J. H. Seinfeld, and P. O. Wennberg
Atmos. Chem. Phys., 14, 13531–13549, https://doi.org/10.5194/acp-14-13531-2014, https://doi.org/10.5194/acp-14-13531-2014, 2014
J. D. Fast, J. Allan, R. Bahreini, J. Craven, L. Emmons, R. Ferrare, P. L. Hayes, A. Hodzic, J. Holloway, C. Hostetler, J. L. Jimenez, H. Jonsson, S. Liu, Y. Liu, A. Metcalf, A. Middlebrook, J. Nowak, M. Pekour, A. Perring, L. Russell, A. Sedlacek, J. Seinfeld, A. Setyan, J. Shilling, M. Shrivastava, S. Springston, C. Song, R. Subramanian, J. W. Taylor, V. Vinoj, Q. Yang, R. A. Zaveri, and Q. Zhang
Atmos. Chem. Phys., 14, 10013–10060, https://doi.org/10.5194/acp-14-10013-2014, https://doi.org/10.5194/acp-14-10013-2014, 2014
M. Shiraiwa, T. Berkemeier, K. A. Schilling-Fahnestock, J. H. Seinfeld, and U. Pöschl
Atmos. Chem. Phys., 14, 8323–8341, https://doi.org/10.5194/acp-14-8323-2014, https://doi.org/10.5194/acp-14-8323-2014, 2014
R. A. Zaveri, R. C. Easter, J. E. Shilling, and J. H. Seinfeld
Atmos. Chem. Phys., 14, 5153–5181, https://doi.org/10.5194/acp-14-5153-2014, https://doi.org/10.5194/acp-14-5153-2014, 2014
T. B. Nguyen, M. M. Coggon, K. H. Bates, X. Zhang, R. H. Schwantes, K. A. Schilling, C. L. Loza, R. C. Flagan, P. O. Wennberg, and J. H. Seinfeld
Atmos. Chem. Phys., 14, 3497–3510, https://doi.org/10.5194/acp-14-3497-2014, https://doi.org/10.5194/acp-14-3497-2014, 2014
J. J. Ensberg, P. L. Hayes, J. L. Jimenez, J. B. Gilman, W. C. Kuster, J. A. de Gouw, J. S. Holloway, T. D. Gordon, S. Jathar, A. L. Robinson, and J. H. Seinfeld
Atmos. Chem. Phys., 14, 2383–2397, https://doi.org/10.5194/acp-14-2383-2014, https://doi.org/10.5194/acp-14-2383-2014, 2014
X. Zhang, R. H. Schwantes, M. M. Coggon, C. L. Loza, K. A. Schilling, R. C. Flagan, and J. H. Seinfeld
Atmos. Chem. Phys., 14, 1733–1753, https://doi.org/10.5194/acp-14-1733-2014, https://doi.org/10.5194/acp-14-1733-2014, 2014
C. L. Loza, J. S. Craven, L. D. Yee, M. M. Coggon, R. H. Schwantes, M. Shiraiwa, X. Zhang, K. A. Schilling, N. L. Ng, M. R. Canagaratna, P. J. Ziemann, R. C. Flagan, and J. H. Seinfeld
Atmos. Chem. Phys., 14, 1423–1439, https://doi.org/10.5194/acp-14-1423-2014, https://doi.org/10.5194/acp-14-1423-2014, 2014
H. Zhang, S. P. DeNero, D. K. Joe, H.-H. Lee, S.-H. Chen, J. Michalakes, and M. J. Kleeman
Atmos. Chem. Phys., 14, 485–503, https://doi.org/10.5194/acp-14-485-2014, https://doi.org/10.5194/acp-14-485-2014, 2014
A. L. Corrigan, L. M. Russell, S. Takahama, M. Äijälä, M. Ehn, H. Junninen, J. Rinne, T. Petäjä, M. Kulmala, A. L. Vogel, T. Hoffmann, C. J. Ebben, F. M. Geiger, P. Chhabra, J. H. Seinfeld, D. R. Worsnop, W. Song, J. Auld, and J. Williams
Atmos. Chem. Phys., 13, 12233–12256, https://doi.org/10.5194/acp-13-12233-2013, https://doi.org/10.5194/acp-13-12233-2013, 2013
L. D. Yee, J. S. Craven, C. L. Loza, K. A. Schilling, N. L. Ng, M. R. Canagaratna, P. J. Ziemann, R. C. Flagan, and J. H. Seinfeld
Atmos. Chem. Phys., 13, 11121–11140, https://doi.org/10.5194/acp-13-11121-2013, https://doi.org/10.5194/acp-13-11121-2013, 2013
A. Wonaschütz, M. Coggon, A. Sorooshian, R. Modini, A. A. Frossard, L. Ahlm, J. Mülmenstädt, G. C. Roberts, L. M. Russell, S. Dey, F. J. Brechtel, and J. H. Seinfeld
Atmos. Chem. Phys., 13, 9819–9835, https://doi.org/10.5194/acp-13-9819-2013, https://doi.org/10.5194/acp-13-9819-2013, 2013
L. D. Yee, K. E. Kautzman, C. L. Loza, K. A. Schilling, M. M. Coggon, P. S. Chhabra, M. N. Chan, A. W. H. Chan, S. P. Hersey, J. D. Crounse, P. O. Wennberg, R. C. Flagan, and J. H. Seinfeld
Atmos. Chem. Phys., 13, 8019–8043, https://doi.org/10.5194/acp-13-8019-2013, https://doi.org/10.5194/acp-13-8019-2013, 2013
H. Jiang, H. Liao, H. O. T. Pye, S. Wu, L. J. Mickley, J. H. Seinfeld, and X. Y. Zhang
Atmos. Chem. Phys., 13, 7937–7960, https://doi.org/10.5194/acp-13-7937-2013, https://doi.org/10.5194/acp-13-7937-2013, 2013
X. Zhang and J. H. Seinfeld
Atmos. Chem. Phys., 13, 5907–5926, https://doi.org/10.5194/acp-13-5907-2013, https://doi.org/10.5194/acp-13-5907-2013, 2013
C. D. Cappa, X. Zhang, C. L. Loza, J. S. Craven, L. D. Yee, and J. H. Seinfeld
Atmos. Chem. Phys., 13, 1591–1606, https://doi.org/10.5194/acp-13-1591-2013, https://doi.org/10.5194/acp-13-1591-2013, 2013
J. S. Craven, L. D. Yee, N. L. Ng, M. R. Canagaratna, C. L. Loza, K. A. Schilling, R. L. N. Yatavelli, J. A. Thornton, P. J. Ziemann, R. C. Flagan, and J. H. Seinfeld
Atmos. Chem. Phys., 12, 11795–11817, https://doi.org/10.5194/acp-12-11795-2012, https://doi.org/10.5194/acp-12-11795-2012, 2012
Related subject area
Subject: Gases | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Consistency evaluation of tropospheric ozone from ozonesonde and IAGOS (In-service Aircraft for a Global Observing System) observations: vertical distribution, ozonesonde types, and station–airport distance
CO2 and CO temporal variability over Mexico City from ground-based total column and surface measurements
Investigating carbonyl compounds above the Amazon rainforest using a proton-transfer-reaction time-of-flight mass spectrometer (PTR-ToF-MS) with NO+ chemical ionization
Measurement report: In-flight and ground-based measurements of nitrogen oxide emissions from latest-generation jet engines and 100 % sustainable aviation fuel
Measurement report: Sources, sinks, and lifetime of NOx in a suburban temperate forest at night
Measurement report: Urban ammonia and amines in Houston, Texas
Biomass-burning sources control ambient particulate matter, but traffic and industrial sources control volatile organic compound (VOC) emissions and secondary-pollutant formation during extreme pollution events in Delhi
Multi-year observations of variable incomplete combustion in the New York megacity
Observations of the vertical distributions of summertime atmospheric pollutants in Nam Co: OH production and source analysis
Measurement report: Elevated atmospheric ammonia may promote particle pH and HONO formation – insights from the COVID-19 pandemic
Measurement report: Vertical and temporal variability in the near-surface ozone production rate and sensitivity in an urban area in the Pearl River Delta region, China
Elevated oxidized mercury in the free troposphere: analytical advances and application at a remote continental mountaintop site
Using observed urban NOx sinks to constrain VOC reactivity and the ozone and radical budget in the Seoul Metropolitan Area
Real-world emission characteristics of VOCs from typical cargo ships and their potential contributions to secondary organic aerosol and O3 under low-sulfur fuel policies
NO3 reactivity during a summer period in a temperate forest below and above the canopy
The role of oceanic ventilation and terrestrial outflow in atmospheric non-methane hydrocarbons over the Chinese marginal seas
Concentration and source changes of nitrous acid (HONO) during the COVID-19 lockdown in Beijing
Characteristics and sources of nonmethane volatile organic compounds (NMVOCs) and O3–NOx–NMVOC relationships in Zhengzhou, China
Seasonal Air Concentration Variability, Gas/Particle Partitioning, Precipitation Scavenging, and Air-Water Equilibrium of Organophosphate Esters in Southern Canada
Measurement report: Surface exchange fluxes of HONO during the growth process of paddy fields in the Huaihe River Basin, China
Characterization of biogenic volatile organic compounds and their oxidation products at a stressed pine forest close to a biogas power plant
On the dynamics of ozone depletion events at Villum Research Station in the High Arctic
Deciphering anthropogenic and biogenic contributions to selected non-methane volatile organic compound emissions in an urban area
Emission characteristics of reactive organic gases (ROGs) from industrial volatile chemical products (VCPs) in the Pearl River Delta (PRD), China
Measurement report: Enhanced photochemical formation of formic and isocyanic acids in urban regions aloft – insights from tower-based online gradient measurements
Sources of organic gases and aerosol particles and their roles in nighttime particle growth at a rural forested site in southwest Germany
Surface snow bromide and nitrate at Eureka, Canada, in early spring and implications for polar boundary layer chemistry
Molecular and seasonal characteristics of organic vapors in urban Beijing: insights from Vocus-PTR measurements
Opinion: Strengthening research in the Global South – atmospheric science opportunities in South America and Africa
Analysis of ozone vertical profile day-to-day variability in the lower troposphere during the Paris-2022 ACROSS campaign
Shipping and algae emissions have a major impact on ambient air mixing ratios of non-methane hydrocarbons (NMHCs) and methanethiol on Utö Island in the Baltic Sea
Measurement report: Long-term measurements of ozone concentrations in semi-natural African ecosystems
Contribution of cooking emissions to the urban volatile organic compounds in Las Vegas, NV
Reanalysis of NOAA H2 observations: implications for the H2 budget
A large role of missing volatile organic compound reactivity from anthropogenic emissions in ozone pollution regulation
Measurement report: Insights into the chemical composition and origin of molecular clusters and potential precursor molecules present in the free troposphere over the southern Indian Ocean: observations from the Maïdo Observatory (2150 m a.s.l., Réunion)
Ozone deposition measurements over wheat fields in the North China Plain: variability and related factors of deposition flux and velocity
Production of oxygenated volatile organic compounds from the ozonolysis of coastal seawater
Comment on “Transport of substantial stratospheric ozone to the surface by a dying typhoon and shallow convection” by Chen et al. (2022)
Observations of cyanogen bromide (BrCN) in the global troposphere and their relation to polar surface O3 destruction
Individual coal mine methane emissions constrained by eddy covariance measurements: low bias and missing sources
The variations of VOCs based on the policy change of Omicron in polluted winter in traffic-hub city, China
Discovery of reactive chlorine, sulphur and nitrogen containing ambient volatile organic compounds in the megacity of Delhi during both clean and extremely polluted seasons
Measurement report: Observations of ground-level ozone concentration gradients perpendicular to the Lake Ontario shoreline
Measurement report: The Palau Atmospheric Observatory and its ozonesonde record – continuous monitoring of tropospheric composition and dynamics in the tropical western Pacific
Quantifying SO2 oxidation pathways to atmospheric sulfate using stable sulfur and oxygen isotopes: laboratory simulation and field observation
Influences of downward transport and photochemistry on surface ozone over East Antarctica during austral summer: in situ observations and model simulations
Iodine oxoacids and their roles in sub-3 nm particle growth in polluted urban environments
Intensive photochemical oxidation in the marine atmosphere: evidence from direct radical measurements
Diurnal variations in oxygen and nitrogen isotopes of atmospheric nitrogen dioxide and nitrate: implications for tracing NOx oxidation pathways and emission sources
Honglei Wang, David W. Tarasick, Jane Liu, Herman G. J. Smit, Roeland Van Malderen, Lijuan Shen, Romain Blot, and Tianliang Zhao
Atmos. Chem. Phys., 24, 11927–11942, https://doi.org/10.5194/acp-24-11927-2024, https://doi.org/10.5194/acp-24-11927-2024, 2024
Short summary
Short summary
In this study, we identify 23 suitable pairs of sites from World Ozone and Ultraviolet Radiation Data Centre (WOUDC) and In-service Aircraft for a Global Observing System (IAGOS) datasets (1995 to 2021), compare the average vertical distributions of tropospheric O3 from ozonesonde and aircraft measurements, and analyze the differences based on ozonesonde type and station–airport distance.
Noémie Taquet, Wolfgang Stremme, María Eugenia González del Castillo, Victor Almanza, Alejandro Bezanilla, Olivier Laurent, Carlos Alberti, Frank Hase, Michel Ramonet, Thomas Lauvaux, Ke Che, and Michel Grutter
Atmos. Chem. Phys., 24, 11823–11848, https://doi.org/10.5194/acp-24-11823-2024, https://doi.org/10.5194/acp-24-11823-2024, 2024
Short summary
Short summary
We characterize the variability in CO and CO2 emissions over Mexico City from long-term time-resolved Fourier transform infrared spectroscopy solar absorption and surface measurements from 2013 to 2021. Using the average intraday CO growth rate from total columns, the average CO / CO2 ratio and TROPOMI data, we estimate the interannual variability in the CO and CO2 anthropogenic emissions of Mexico City, highlighting the effect of an unprecedented drop in activity due to the COVID-19 lockdown.
Akima Ringsdorf, Achim Edtbauer, Bruna Holanda, Christopher Poehlker, Marta O. Sá, Alessandro Araújo, Jürgen Kesselmeier, Jos Lelieveld, and Jonathan Williams
Atmos. Chem. Phys., 24, 11883–11910, https://doi.org/10.5194/acp-24-11883-2024, https://doi.org/10.5194/acp-24-11883-2024, 2024
Short summary
Short summary
We show the average height distribution of separately observed aldehydes and ketones over a day and discuss their rainforest-specific sources and sinks as well as their seasonal changes above the Amazon. Ketones have much longer atmospheric lifetimes than aldehydes and thus different implications for atmospheric chemistry. However, they are commonly observed together, which we overcome by measuring with a NO+ chemical ionization mass spectrometer for the first time in the Amazon rainforest.
Theresa Harlass, Rebecca Dischl, Stefan Kaufmann, Raphael Märkl, Daniel Sauer, Monika Scheibe, Paul Stock, Tiziana Bräuer, Andreas Dörnbrack, Anke Roiger, Hans Schlager, Ulrich Schumann, Magdalena Pühl, Tobias Schripp, Tobias Grein, Linda Bondorf, Charles Renard, Maxime Gauthier, Mark Johnson, Darren Luff, Paul Madden, Peter Swann, Denise Ahrens, Reetu Sallinen, and Christiane Voigt
Atmos. Chem. Phys., 24, 11807–11822, https://doi.org/10.5194/acp-24-11807-2024, https://doi.org/10.5194/acp-24-11807-2024, 2024
Short summary
Short summary
Emissions from aircraft have a direct impact on our climate. Here, we present airborne and ground-based measurement data of nitrogen oxides that were collected in the exhaust of an Airbus aircraft. We study the impact of burning fossil and sustainable aviation fuel on nitrogen oxide emissions at different engine settings related to combustor temperature, pressure and fuel flow. Further, we compare observations with engine emission models.
Simone T. Andersen, Max R. McGillen, Chaoyang Xue, Tobias Seubert, Patrick Dewald, Gunther N. T. E. Türk, Jan Schuladen, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Marina Jamar, Sergio Harb, Manuela Cirtog, Vincent Michoud, Mathieu Cazaunau, Antonin Bergé, Christopher Cantrell, Sebastien Dusanter, Bénédicte Picquet-Varrault, Alexandre Kukui, Abdelwahid Mellouki, Lucy J. Carpenter, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 24, 11603–11618, https://doi.org/10.5194/acp-24-11603-2024, https://doi.org/10.5194/acp-24-11603-2024, 2024
Short summary
Short summary
Using measurements of various trace gases in a suburban forest near Paris in the summer of 2022, we were able to gain insight into the sources and sinks of NOx (NO+NO2) with a special focus on their nighttime chemical and physical loss processes. NO was observed as a result of nighttime soil emissions when O3 levels were strongly depleted by deposition. NO oxidation products were not observed at night, indicating that soil and/or foliar surfaces are an efficient sink of reactive N.
Lee Tiszenkel, James H. Flynn, and Shan-Hu Lee
Atmos. Chem. Phys., 24, 11351–11363, https://doi.org/10.5194/acp-24-11351-2024, https://doi.org/10.5194/acp-24-11351-2024, 2024
Short summary
Short summary
Ammonia and amines are important ingredients for aerosol formation in urban environments, but the measurements of these compounds are extremely challenging. Our observations show that urban ammonia and amines in Houston are emitted from urban sources, and diurnal variations in their concentrations are likely governed by gas-to-particle conversion and emissions.
Arpit Awasthi, Baerbel Sinha, Haseeb Hakkim, Sachin Mishra, Varkrishna Mummidivarapu, Gurmanjot Singh, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Vinayak Sinha, and Madhavan N. Rajeevan
Atmos. Chem. Phys., 24, 10279–10304, https://doi.org/10.5194/acp-24-10279-2024, https://doi.org/10.5194/acp-24-10279-2024, 2024
Short summary
Short summary
We use 111 volatile organic compounds (VOCs), PM10, and PM2.5 in a positive matrix factorization (PMF) model to resolve 11 pollution sources validated with chemical fingerprints. Crop residue burning and heating account for ~ 50 % of the PM, while traffic and industrial emissions dominate the gas-phase VOC burden and formation potential of secondary organic aerosols (> 60 %). Non-tailpipe emissions from compressed-natural-gas-fuelled commercial vehicles dominate the transport sector's PM burden.
Luke D. Schiferl, Cong Cao, Bronte Dalton, Andrew Hallward-Driemeier, Ricardo Toledo-Crow, and Róisín Commane
Atmos. Chem. Phys., 24, 10129–10142, https://doi.org/10.5194/acp-24-10129-2024, https://doi.org/10.5194/acp-24-10129-2024, 2024
Short summary
Short summary
Carbon monoxide (CO) is an air pollutant and an important indicator of the incomplete combustion of fossil fuels in cities. Using 4 years of winter and spring observations in New York City, we found that both the magnitude and variability of CO from the metropolitan area are greater than expected. Transportation emissions cannot explain the missing and variable CO, which points to energy from buildings as a likely underappreciated source of urban air pollution and greenhouse gas emissions.
Chengzhi Xing, Cheng Liu, Chunxiang Ye, Jingkai Xue, Hongyu Wu, Xiangguang Ji, Jinping Ou, and Qihou Hu
Atmos. Chem. Phys., 24, 10093–10112, https://doi.org/10.5194/acp-24-10093-2024, https://doi.org/10.5194/acp-24-10093-2024, 2024
Short summary
Short summary
We identified the contributions of ozone (O3) and nitrous acid (HONO) to the production rates of hydroxide (OH) in vertical space on the Tibetan Plateau (TP). A new insight was offered: the contributions of HONO and O3 to the production rates of OH on the TP are even greater than in lower-altitudes areas. This study enriches the understanding of vertical distribution of atmospheric components and explains the strong atmospheric oxidation capacity (AOC) on the TP.
Xinyuan Zhang, Lingling Wang, Nan Wang, Shuangliang Ma, Shenbo Wang, Ruiqin Zhang, Dong Zhang, Mingkai Wang, and Hongyu Zhang
Atmos. Chem. Phys., 24, 9885–9898, https://doi.org/10.5194/acp-24-9885-2024, https://doi.org/10.5194/acp-24-9885-2024, 2024
Short summary
Short summary
This study highlights the importance of the redox reaction of NO2 with SO2 based on actual atmospheric observations. The particle pH in future China is expected to rise steadily. Consequently, this reaction could become a significant source of HONO in China. Therefore, it is crucial to coordinate the control of SO2, NOx, and NH3 emissions to avoid a rapid increase in the particle pH.
Jun Zhou, Chunsheng Zhang, Aiming Liu, Bin Yuan, Yan Wang, Wenjie Wang, Jie-Ping Zhou, Yixin Hao, Xiao-Bing Li, Xianjun He, Xin Song, Yubin Chen, Suxia Yang, Shuchun Yang, Yanfeng Wu, Bin Jiang, Shan Huang, Junwen Liu, Yuwen Peng, Jipeng Qi, Minhui Deng, Bowen Zhong, Yibo Huangfu, and Min Shao
Atmos. Chem. Phys., 24, 9805–9826, https://doi.org/10.5194/acp-24-9805-2024, https://doi.org/10.5194/acp-24-9805-2024, 2024
Short summary
Short summary
In-depth understanding of the near-ground vertical variability in photochemical ozone (O3) formation is crucial for mitigating O3 pollution. Utilizing a self-built vertical observation system, a direct net photochemical O3 production rate detection system, and an observation-based model, we diagnosed the vertical distributions and formation mechanism of net photochemical O3 production rates and sensitivity in the Pearl River Delta region, one of the most O3-polluted areas in China.
Eleanor J. Derry, Tyler R. Elgiar, Taylor Y. Wilmot, Nicholas W. Hoch, Noah S. Hirshorn, Peter Weiss-Penzias, Christopher F. Lee, John C. Lin, A. Gannet Hallar, Rainer Volkamer, Seth N. Lyman, and Lynne E. Gratz
Atmos. Chem. Phys., 24, 9615–9643, https://doi.org/10.5194/acp-24-9615-2024, https://doi.org/10.5194/acp-24-9615-2024, 2024
Short summary
Short summary
Mercury (Hg) is a globally distributed neurotoxic pollutant. Atmospheric deposition is the main source of Hg in ecosystems. However, measurement biases hinder understanding of the origins and abundance of the more bioavailable oxidized form. We used an improved, calibrated measurement system to study air mass composition and transport of atmospheric Hg at a remote mountaintop site in the central US. Oxidized Hg originated upwind in the low to middle free troposphere under clean, dry conditions.
Benjamin A. Nault, Katherine R. Travis, James H. Crawford, Donald R. Blake, Pedro Campuzano-Jost, Ronald C. Cohen, Joshua P. DiGangi, Glenn S. Diskin, Samuel R. Hall, L. Gregory Huey, Jose L. Jimenez, Kyung-Eun Min, Young Ro Lee, Isobel J. Simpson, Kirk Ullmann, and Armin Wisthaler
Atmos. Chem. Phys., 24, 9573–9595, https://doi.org/10.5194/acp-24-9573-2024, https://doi.org/10.5194/acp-24-9573-2024, 2024
Short summary
Short summary
Ozone (O3) is a pollutant formed from the reactions of gases emitted from various sources. In urban areas, the density of human activities can increase the O3 formation rate (P(O3)), thus impacting air quality and health. Observations collected over Seoul, South Korea, are used to constrain P(O3). A high local P(O3) was found; however, local P(O3) was partly reduced due to compounds typically ignored. These observations also provide constraints for unmeasured compounds that will impact P(O3).
Fan Zhang, Binyu Xiao, Zeyu Liu, Yan Zhang, Chongguo Tian, Rui Li, Can Wu, Yali Lei, Si Zhang, Xinyi Wan, Yubao Chen, Yong Han, Min Cui, Cheng Huang, Hongli Wang, Yingjun Chen, and Gehui Wang
Atmos. Chem. Phys., 24, 8999–9017, https://doi.org/10.5194/acp-24-8999-2024, https://doi.org/10.5194/acp-24-8999-2024, 2024
Short summary
Short summary
Mandatory use of low-sulfur fuel due to global sulfur limit regulations means large uncertainties in volatile organic compound (VOC) emissions. On-board tests of VOCs from nine cargo ships in China were carried out. Results showed that switching from heavy-fuel oil to diesel increased emission factor VOCs by 48 % on average, enhancing O3 and the secondary organic aerosol formation potential. Thus, implementing a global ultra-low-sulfur oil policy needs to be optimized in the near future.
Patrick Dewald, Tobias Seubert, Simone T. Andersen, Gunther N. T. E. Türk, Jan Schuladen, Max R. McGillen, Cyrielle Denjean, Jean-Claude Etienne, Olivier Garrouste, Marina Jamar, Sergio Harb, Manuela Cirtog, Vincent Michoud, Mathieu Cazaunau, Antonin Bergé, Christopher Cantrell, Sebastien Dusanter, Bénédicte Picquet-Varrault, Alexandre Kukui, Chaoyang Xue, Abdelwahid Mellouki, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 24, 8983–8997, https://doi.org/10.5194/acp-24-8983-2024, https://doi.org/10.5194/acp-24-8983-2024, 2024
Short summary
Short summary
In the scope of a field campaign in a suburban forest near Paris in the summer of 2022, we measured the reactivity of the nitrate radical NO3 towards biogenic volatile organic compounds (BVOCs; e.g. monoterpenes) mainly below but also above the canopy. NO3 reactivity was the highest during nights with strong temperature inversions and decreased strongly with height. Reactions with BVOCs were the main removal process of NO3 throughout the diel cycle below the canopy.
Jian Wang, Lei Xue, Qianyao Ma, Feng Xu, Gaobin Xu, Shibo Yan, Jiawei Zhang, Jianlong Li, Honghai Zhang, Guiling Zhang, and Zhaohui Chen
Atmos. Chem. Phys., 24, 8721–8736, https://doi.org/10.5194/acp-24-8721-2024, https://doi.org/10.5194/acp-24-8721-2024, 2024
Short summary
Short summary
This study investigated the distribution and sources of non-methane hydrocarbons (NMHCs) in the lower atmosphere over the marginal seas of China. NMHCs, a subset of volatile organic compounds (VOCs), play a crucial role in atmospheric chemistry. Derived from systematic atmospheric sampling in coastal cities and marginal sea regions, this study offers valuable insights into the interaction between land and sea in shaping offshore atmospheric NMHCs.
Yusheng Zhang, Feixue Zheng, Zemin Feng, Chaofan Lian, Weigang Wang, Xiaolong Fan, Wei Ma, Zhuohui Lin, Chang Li, Gen Zhang, Chao Yan, Ying Zhang, Veli-Matti Kerminen, Federico Bianch, Tuukka Petäjä, Juha Kangasluoma, Markku Kulmala, and Yongchun Liu
Atmos. Chem. Phys., 24, 8569–8587, https://doi.org/10.5194/acp-24-8569-2024, https://doi.org/10.5194/acp-24-8569-2024, 2024
Short summary
Short summary
The nitrous acid (HONO) budget was validated during a COVID-19 lockdown event. The main conclusions are (1) HONO concentrations showed a significant decrease from 0.97 to 0.53 ppb during lockdown; (2) vehicle emissions accounted for 53 % of nighttime sources, with the heterogeneous conversion of NO2 on ground surfaces more important than aerosol; and (3) the dominant daytime source shifted from the homogenous reaction between NO and OH (51 %) to nitrate photolysis (53 %) during lockdown.
Dong Zhang, Xiao Li, Minghao Yuan, Yifei Xu, Qixiang Xu, Fangcheng Su, Shenbo Wang, and Ruiqin Zhang
Atmos. Chem. Phys., 24, 8549–8567, https://doi.org/10.5194/acp-24-8549-2024, https://doi.org/10.5194/acp-24-8549-2024, 2024
Short summary
Short summary
The increasing concentration of O3 precursors and unfavorable meteorological conditions are key factors in the formation of O3 pollution in Zhengzhou. Vehicular exhausts (28 %), solvent usage (27 %), and industrial production (22 %) are identified as the main sources of NMVOCs. Moreover, O3 formation in Zhengzhou is found to be in an anthropogenic volatile organic compound (AVOC)-limited regime. Thus, to reduce O3 formation, a minimum AVOCs / NOx reduction ratio ≥ 3 : 1 is recommended.
Yuening Li, Faqiang Zhan, Chubashini Shunthirasingham, Ying Duan Lei, Jenny Oh, Amina Ben Chaaben, Zhe Lu, Kelsey Lee, Frank A. P. C. Gobas, Hayley Hung, and Frank Wania
EGUsphere, https://doi.org/10.5194/egusphere-2024-1883, https://doi.org/10.5194/egusphere-2024-1883, 2024
Short summary
Short summary
Organophosphate esters are important man-made trace contaminants. Measuring them in the atmospheric gas phase, particles, precipitation and surface water from Canada, we explore seasonal concentration variability, gas/particle partitioning, precipitation scavenging, and air-water equilibrium. Whereas higher concentrations in summer and efficient precipitation scavenging conform with expectations, the lack of a relationship between compound volatility and gas-particle partitioning is puzzling.
Fanhao Meng, Baobin Han, Min Qin, Wu Fang, Ke Tang, Dou Shao, Zhitang Liao, Jun Duan, Yan Feng, Yong Huang, Ting Ni, and Pinhua Xie
EGUsphere, https://doi.org/10.5194/egusphere-2024-2127, https://doi.org/10.5194/egusphere-2024-2127, 2024
Short summary
Short summary
Comprehensive observations of HONO and NOx fluxes were first performed over paddy fields in the Huaihe River Basin. The consecutive peaks in HONO flux and NO flux demonstrated a potentially enhanced release of HONO and NO due to soil tillage, whereas higher WFPS (~80 %) inhibited microbial processes following irrigation. Notably, the biological processes and light-driven NO2 reactions on the surface could both be sources of HONO and influence the local HONO budget during rotary tillage.
Junwei Song, Georgios I. Gkatzelis, Ralf Tillmann, Nicolas Brüggemann, Thomas Leisner, and Harald Saathoff
EGUsphere, https://doi.org/10.5194/egusphere-2024-1768, https://doi.org/10.5194/egusphere-2024-1768, 2024
Short summary
Short summary
VOCs and organic aerosol (OA) particles were measured online at an European stressed pine forest site. Higher temperatures can enhance the forest emissions of biogenic VOCs exceeding their photochemical consumption during daytime. Weakly oxidized monoterpene products dominated the VOCs during nighttime. Moreover, increasing relative humidity can promote the gas-to-particle partitioning of these weakly oxidized monoterpene products, leading to increased OA mass.
Jakob Boyd Pernov, Jens Liengaard Hjorth, Lise Lotte Sørensen, and Henrik Skov
EGUsphere, https://doi.org/10.5194/egusphere-2024-1676, https://doi.org/10.5194/egusphere-2024-1676, 2024
Short summary
Short summary
Arctic ozone depletion events (ODEs) occurs every spring and have vast implications for the oxidizing capacity, radiative balance, and mercury oxidation. In this study, we analyze ozone, ODEs, and their connection to meteorological and air mass history variables through statistical analyses, back-trajectories, and machine learning (ML) at Villum Research Station. ODEs are favorable under sunny, calm conditions with air masses arriving from northerly wind directions with sea ice contact.
Arianna Peron, Martin Graus, Marcus Striednig, Christian Lamprecht, Georg Wohlfahrt, and Thomas Karl
Atmos. Chem. Phys., 24, 7063–7083, https://doi.org/10.5194/acp-24-7063-2024, https://doi.org/10.5194/acp-24-7063-2024, 2024
Short summary
Short summary
The anthropogenic fraction of non-methane volatile organic compound (NMVOC) emissions associated with biogenic sources (e.g., terpenes) is investigated based on eddy covariance observations. The anthropogenic fraction of terpene emissions is strongly dependent on season. When analyzing volatile chemical product (VCP) emissions in urban environments, we caution that observations from short-term campaigns might over-/underestimate their significance depending on local and seasonal circumstances.
Sihang Wang, Bin Yuan, Xianjun He, Ru Cui, Xin Song, Yubin Chen, Caihong Wu, Chaomin Wang, Yibo Huangfu, Xiao-Bing Li, Boguang Wang, and Min Shao
Atmos. Chem. Phys., 24, 7101–7121, https://doi.org/10.5194/acp-24-7101-2024, https://doi.org/10.5194/acp-24-7101-2024, 2024
Short summary
Short summary
Emissions of reactive organic gases from industrial volatile chemical product sources are measured. There are large differences among these industrial sources. We show that oxygenated species account for significant contributions to reactive organic gas emissions, especially for industrial sources utilizing water-borne chemicals.
Qing Yang, Xiao-Bing Li, Bin Yuan, Xiaoxiao Zhang, Yibo Huangfu, Lei Yang, Xianjun He, Jipeng Qi, and Min Shao
Atmos. Chem. Phys., 24, 6865–6882, https://doi.org/10.5194/acp-24-6865-2024, https://doi.org/10.5194/acp-24-6865-2024, 2024
Short summary
Short summary
Online vertical gradient measurements of formic and isocyanic acids were made based on a 320 m tower in a megacity. Vertical variations and sources of the two acids were analyzed in this study. We find that formic and isocyanic acids exhibited positive vertical gradients and were mainly contributed by photochemical formations. The formation of formic and isocyanic acids was also significantly enhanced in urban regions aloft.
Junwei Song, Harald Saathoff, Feng Jiang, Linyu Gao, Hengheng Zhang, and Thomas Leisner
Atmos. Chem. Phys., 24, 6699–6717, https://doi.org/10.5194/acp-24-6699-2024, https://doi.org/10.5194/acp-24-6699-2024, 2024
Short summary
Short summary
This study presents concurrent online measurements of organic gas and particles (VOCs and OA) at a forested site in summer. Both VOCs and OA were largely contributed by oxygenated organic compounds. Semi-volatile oxygenated OA and organic nitrate formed from monoterpenes and sesquiterpenes contributed significantly to nighttime particle growth. The results help us to understand the causes of nighttime particle growth regularly observed in summer in central European rural forested environments.
Xin Yang, Kimberly Strong, Alison S. Criscitiello, Marta Santos-Garcia, Kristof Bognar, Xiaoyi Zhao, Pierre Fogal, Kaley A. Walker, Sara M. Morris, and Peter Effertz
Atmos. Chem. Phys., 24, 5863–5886, https://doi.org/10.5194/acp-24-5863-2024, https://doi.org/10.5194/acp-24-5863-2024, 2024
Short summary
Short summary
This study uses snow samples collected from a Canadian high Arctic site, Eureka, to demonstrate that surface snow in early spring is a net sink of atmospheric bromine and nitrogen. Surface snow bromide and nitrate are significantly correlated, indicating the oxidation of reactive nitrogen is accelerated by reactive bromine. In addition, we show evidence that snow photochemical release of reactive bromine is very weak, and its emission flux is much smaller than the deposition flux of bromide.
Zhaojin An, Rujing Yin, Xinyan Zhao, Xiaoxiao Li, Yi Yuan, Junchen Guo, Yuyang Li, Xue Li, Dandan Li, Yaowei Li, Dongbin Wang, Chao Yan, Kebin He, Douglas R. Worsnop, Frank N. Keutsch, and Jingkun Jiang
EGUsphere, https://doi.org/10.5194/egusphere-2024-1325, https://doi.org/10.5194/egusphere-2024-1325, 2024
Short summary
Short summary
Online Vocus-PTR measurements show the compositions and seasonal variations of organic vapors in urban Beijing. With enhanced sensitivity and mass resolution, various sub-ppt level species and organics with multiple oxygens (≥3) were discovered. The fast photooxidation process in summer leads to an increase in both concentration and proportion of organics with multiple oxygens. While in other seasons, the variations of them could be influenced by primary emissions.
Rebecca M. Garland, Katye E. Altieri, Laura Dawidowski, Laura Gallardo, Aderiana Mbandi, Nestor Y. Rojas, and N'datchoh E. Touré
Atmos. Chem. Phys., 24, 5757–5764, https://doi.org/10.5194/acp-24-5757-2024, https://doi.org/10.5194/acp-24-5757-2024, 2024
Short summary
Short summary
This opinion piece focuses on two geographical areas in the Global South where the authors are based that are underrepresented in atmospheric science. This opinion provides context on common challenges and constraints, with suggestions on how the community can address these. The focus is on the strengths of atmospheric science research in these regions. It is these strengths, we believe, that highlight the critical role of Global South researchers in the future of atmospheric science research.
Gerard Ancellet, Camille Viatte, Anne Boynard, François Ravetta, Jacques Pelon, Cristelle Cailteau-Fischbach, Pascal Genau, Julie Capo, Axel Roy, and Philippe Nédélec
EGUsphere, https://doi.org/10.5194/egusphere-2024-892, https://doi.org/10.5194/egusphere-2024-892, 2024
Short summary
Short summary
Characterization of ozone pollution in urban areas has benefited from a measurement campaign in summer 2022 in the Paris region. The analysis is based on 21 days of lidar and aircraft observations. The main objective is a sensitivity analysis of ozone pollution to first the micrometeorological processes in the urban atmospheric boundary layer, and second, the transport of regional pollution. The paper also discuss to what extent satellite observations can track the observed ozone plumes.
Heidi Hellén, Rostislav Kouznetsov, Kaisa Kraft, Jukka Seppälä, Mika Vestenius, Jukka-Pekka Jalkanen, Lauri Laakso, and Hannele Hakola
Atmos. Chem. Phys., 24, 4717–4731, https://doi.org/10.5194/acp-24-4717-2024, https://doi.org/10.5194/acp-24-4717-2024, 2024
Short summary
Short summary
Mixing ratios of C2-C5 NMHCs and methanethiol were measured on an island in the Baltic Sea using an in situ gas chromatograph. Shipping emissions were found to be an important source of ethene, ethyne, propene, and benzene. High summertime mixing ratios of methanethiol and dependence of mixing ratios on seawater temperature and height indicated the biogenic origin to possibly be phytoplankton or macroalgae. These emissions may have a strong impact on SO2 production and new particle formation.
Hagninou Elagnon Venance Donnou, Aristide Barthélémy Akpo, Money Ossohou, Claire Delon, Véronique Yoboué, Dungall Laouali, Marie Ouafo-Leumbe, Pieter Gideon Van Zyl, Ousmane Ndiaye, Eric Gardrat, Maria Dias-Alves, and Corinne Galy-Lacaux
EGUsphere, https://doi.org/10.5194/egusphere-2024-284, https://doi.org/10.5194/egusphere-2024-284, 2024
Short summary
Short summary
Ozone is a secondary air pollutant that is detrimental to human and plant health. A better understanding of its chemical evolution is a challenge for Africa, where it is still under-sampled. Out of 14 sites examined (1995–2020), high levels of O3 are reported in southern Africa. The dominant chemical processes leading to O3 formation are identified. A decrease in O3 is observed at Katibougou (Mali) and Banizoumbou (Niger), and an increase at Zoétélé (Cameroon) and Skukuza (South Africa).
Matthew M. Coggon, Chelsea E. Stockwell, Lu Xu, Jeff Peischl, Jessica B. Gilman, Aaron Lamplugh, Henry J. Bowman, Kenneth Aikin, Colin Harkins, Qindan Zhu, Rebecca H. Schwantes, Jian He, Meng Li, Karl Seltzer, Brian McDonald, and Carsten Warneke
Atmos. Chem. Phys., 24, 4289–4304, https://doi.org/10.5194/acp-24-4289-2024, https://doi.org/10.5194/acp-24-4289-2024, 2024
Short summary
Short summary
Residential and commercial cooking emits pollutants that degrade air quality. Here, ambient observations show that cooking is an important contributor to anthropogenic volatile organic compounds (VOCs) emitted in Las Vegas, NV. These emissions are not fully presented in air quality models, and more work may be needed to quantify emissions from important sources, such as commercial restaurants.
Fabien Paulot, Gabrielle Pétron, Andrew M. Crotwell, and Matteo B. Bertagni
Atmos. Chem. Phys., 24, 4217–4229, https://doi.org/10.5194/acp-24-4217-2024, https://doi.org/10.5194/acp-24-4217-2024, 2024
Short summary
Short summary
New data from the National Oceanic and Atmospheric Administration show that hydrogen (H2) concentrations increased from 2010 to 2019, which is consistent with the simulated increase in H2 photochemical production (mainly from methane). But this cannot be reconciled with the expected decrease (increase) in H2 anthropogenic emissions (soil deposition) in the same period. This shows gaps in our knowledge of the H2 biogeochemical cycle that must be resolved to quantify the impact of higher H2 usage.
Wenjie Wang, Bin Yuan, Hang Su, Yafang Cheng, Jipeng Qi, Sihang Wang, Wei Song, Xinming Wang, Chaoyang Xue, Chaoqun Ma, Fengxia Bao, Hongli Wang, Shengrong Lou, and Min Shao
Atmos. Chem. Phys., 24, 4017–4027, https://doi.org/10.5194/acp-24-4017-2024, https://doi.org/10.5194/acp-24-4017-2024, 2024
Short summary
Short summary
This study investigates the important role of unmeasured volatile organic compounds (VOCs) in ozone formation. Based on results in a megacity of China, we show that unmeasured VOCs can contribute significantly to ozone fomation and also influence the determination of ozone control strategy. Our results show that these unmeasured VOCs are mainly from human sources.
Romain Salignat, Matti Rissanen, Siddharth Iyer, Jean-Luc Baray, Pierre Tulet, Jean-Marc Metzger, Jérôme Brioude, Karine Sellegri, and Clémence Rose
Atmos. Chem. Phys., 24, 3785–3812, https://doi.org/10.5194/acp-24-3785-2024, https://doi.org/10.5194/acp-24-3785-2024, 2024
Short summary
Short summary
Using mass spectrometry data collected at the Maïdo Observatory (2160 m a.s.l., Réunion), we provide the first detailed analysis of molecular cluster chemical composition specifically in the marine free troposphere. The abundance of the identified species is related both to in situ meteorological parameters and air mass history, which also provide insight into their origin. Our work makes an important contribution to documenting the chemistry and physics of the marine free troposphere.
Xiaoyi Zhang, Wanyun Xu, Weili Lin, Gen Zhang, Jinjian Geng, Li Zhou, Huarong Zhao, Sanxue Ren, Guangsheng Zhou, Jianmin Chen, and Xiaobin Xu
EGUsphere, https://doi.org/10.5194/egusphere-2024-643, https://doi.org/10.5194/egusphere-2024-643, 2024
Short summary
Short summary
Ozone (O3) deposition is a key process removing surface O3, affecting air quality, ecosystem and climate change. This study conducted an O3 deposition measurement over wheat canopy using a newly relaxed eddy accumulation flux system. Large variabilities of O3 deposition were detected mainly determined by crop growth and modulated by various environmental factors. More O3 deposition observations over different surfaces are needed for exploring deposition mechanism, model optimization.
Delaney B. Kilgour, Gordon A. Novak, Megan S. Claflin, Brian M. Lerner, and Timothy H. Bertram
Atmos. Chem. Phys., 24, 3729–3742, https://doi.org/10.5194/acp-24-3729-2024, https://doi.org/10.5194/acp-24-3729-2024, 2024
Short summary
Short summary
Laboratory experiments with seawater mimics suggest ozone deposition to the surface ocean can be a source of reactive carbon to the marine atmosphere. We conduct both field and laboratory measurements to assess abiotic VOC composition and yields from ozonolysis of real surface seawater. We show that C5–C11 aldehydes contribute to the observed VOC emission flux. We estimate that VOCs generated by the ozonolysis of surface seawater are competitive with biological VOC production and emission.
Xiangdong Zheng, Wen Yang, Yuting Sun, Chunmei Geng, Yingying Liu, and Xiaobin Xu
Atmos. Chem. Phys., 24, 3759–3768, https://doi.org/10.5194/acp-24-3759-2024, https://doi.org/10.5194/acp-24-3759-2024, 2024
Short summary
Short summary
Chen et al. (2022) attributed the nocturnal ozone enhancement (NOE) during the night of 31 July 2021 in the North China Plain (NCP) to "the direct stratospheric intrusion to reach the surface". We analyzed in situ data from the NCP. Our results do not suggest that there was a significant impact from the stratosphere on surface ozone during the NOE. We argue that the NOE was not caused by stratospheric intrusion but originated from fresh photochemical production in the lower troposphere.
James M. Roberts, Siyuan Wang, Patrick R. Veres, J. Andrew Neuman, Michael A. Robinson, Ilann Bourgeois, Jeff Peischl, Thomas B. Ryerson, Chelsea R. Thompson, Hannah M. Allen, John D. Crounse, Paul O. Wennberg, Samuel R. Hall, Kirk Ullmann, Simone Meinardi, Isobel J. Simpson, and Donald Blake
Atmos. Chem. Phys., 24, 3421–3443, https://doi.org/10.5194/acp-24-3421-2024, https://doi.org/10.5194/acp-24-3421-2024, 2024
Short summary
Short summary
We measured cyanogen bromide (BrCN) in the troposphere for the first time. BrCN is a product of the same active bromine chemistry that destroys ozone and removes mercury in polar surface environments and is a previously unrecognized sink for active Br compounds. BrCN has an apparent lifetime against heterogeneous loss in the range 1–10 d, so it serves as a cumulative marker of Br-radical chemistry. Accounting for BrCN chemistry is an important part of understanding polar Br cycling.
Kai Qin, Wei Hu, Qin He, Fan Lu, and Jason Blake Cohen
Atmos. Chem. Phys., 24, 3009–3028, https://doi.org/10.5194/acp-24-3009-2024, https://doi.org/10.5194/acp-24-3009-2024, 2024
Short summary
Short summary
We compute CH4 emissions and uncertainty on a mine-by-mine basis, including underground, overground, and abandoned mines. Mine-by-mine gas and flux data and 30 min observations from a flux tower located next to a mine shaft are integrated. The observed variability and bias correction are propagated over the emissions dataset, demonstrating that daily observations may not cover the range of variability. Comparisons show both an emissions magnitude and spatial mismatch with current inventories.
Bowen Zhang, Dong Zhang, Zhe Dong, Xinshuai Song, Ruiqin Zhang, and Xiao Li
EGUsphere, https://doi.org/10.5194/egusphere-2024-575, https://doi.org/10.5194/egusphere-2024-575, 2024
Short summary
Short summary
Continuous online VOCs monitoring was carried out at an urban site in a traffic-hub city for two months during the Omicron-infected stage. The characteristics and variations of VOCs in different periods were studied, and their impact on the formation of SOA were evaluated. The work in this manuscript evaluated the influence of the policy variation on VOCs pollution, which will provide some basis for VOCs pollution research and control of pollution sources.
Sachin Mishra, Vinayak Sinha, Haseeb Hakkim, Arpit Awasthi, Sachin D. Ghude, Vijay Kumar Soni, Narendra Nigam, Baerbel Sinha, and Madhavan N. Rajeevan
EGUsphere, https://doi.org/10.5194/egusphere-2024-500, https://doi.org/10.5194/egusphere-2024-500, 2024
Short summary
Short summary
We quantified 111 gases using extended volatility mass spectrometry to understand how changes in seasonality and emissions lead from clean air in monsoon to extremely polluted air in the post-monsoon season in Delhi. Averaged total mass concentrations (260 µgm-3) were >4 times in polluted periods, driven by biomass burning emissions and reduced atmospheric ventilation. Reactive gaseous nitrogen, chlorine and sulphur compounds hitherto un-reported from such a polluted environment were discovered.
Yao Yan Huang and D. James Donaldson
Atmos. Chem. Phys., 24, 2387–2398, https://doi.org/10.5194/acp-24-2387-2024, https://doi.org/10.5194/acp-24-2387-2024, 2024
Short summary
Short summary
Ground-level ozone interacts at the lake–land boundary; this is important to our understanding and modelling of atmospheric chemistry and air pollution in the lower atmosphere. We show that a steep ozone gradient occurs year-round moving inland up to 1 km from the lake and that this gradient is influenced by seasonal factors on the local land environment, where more rural areas are more greatly affected seasonally.
Katrin Müller, Jordis S. Tradowsky, Peter von der Gathen, Christoph Ritter, Sharon Patris, Justus Notholt, and Markus Rex
Atmos. Chem. Phys., 24, 2169–2193, https://doi.org/10.5194/acp-24-2169-2024, https://doi.org/10.5194/acp-24-2169-2024, 2024
Short summary
Short summary
The Palau Atmospheric Observatory is introduced as an ideal site to detect changes in atmospheric composition and dynamics above the remote tropical western Pacific. We focus on the ozone sounding program from 2016–2021, including El Niño 2016. The year-round high convective activity is reflected in dominant low tropospheric ozone and high relative humidity. Their seasonal distributions are unique compared to other tropical sites and are modulated by the Intertropical Convergence Zone.
Ziyan Guo, Keding Lu, Pengxiang Qiu, Mingyi Xu, and Zhaobing Guo
Atmos. Chem. Phys., 24, 2195–2205, https://doi.org/10.5194/acp-24-2195-2024, https://doi.org/10.5194/acp-24-2195-2024, 2024
Short summary
Short summary
The formation of secondary sulfate needs to be further explored. In this work, we simultaneously measured sulfur and oxygen isotopic compositions to gain an increased understanding of specific sulfate formation processes. The results indicated that secondary sulfate was mainly ascribed to SO2 homogeneous oxidation by OH radicals and heterogeneous oxidation by H2O2 and Fe3+ / O2. This study is favourable for deeply investigating the sulfur cycle in the atmosphere.
Imran A. Girach, Narendra Ojha, Prabha R. Nair, Kandula V. Subrahmanyam, Neelakantan Koushik, Mohammed M. Nazeer, Nadimpally Kiran Kumar, Surendran Nair Suresh Babu, Jos Lelieveld, and Andrea Pozzer
Atmos. Chem. Phys., 24, 1979–1995, https://doi.org/10.5194/acp-24-1979-2024, https://doi.org/10.5194/acp-24-1979-2024, 2024
Short summary
Short summary
We investigate surface ozone variability in East Antarctica based on measurements and EMAC global model simulations during austral summer. Nearly half of the surface ozone is found to be of stratospheric origin. The east coast of Antarctica acts as a stronger sink of ozone than surrounding regions. Photochemical loss of ozone is counterbalanced by downward transport of ozone. The study highlights the intertwined role of chemistry and dynamics in governing ozone variations over East Antarctica.
Ying Zhang, Duzitian Li, Xu-Cheng He, Wei Nie, Chenjuan Deng, Runlong Cai, Yuliang Liu, Yishuo Guo, Chong Liu, Yiran Li, Liangduo Chen, Yuanyuan Li, Chenjie Hua, Tingyu Liu, Zongcheng Wang, Jiali Xie, Lei Wang, Tuukka Petäjä, Federico Bianchi, Ximeng Qi, Xuguang Chi, Pauli Paasonen, Yongchun Liu, Chao Yan, Jingkun Jiang, Aijun Ding, and Markku Kulmala
Atmos. Chem. Phys., 24, 1873–1893, https://doi.org/10.5194/acp-24-1873-2024, https://doi.org/10.5194/acp-24-1873-2024, 2024
Short summary
Short summary
This study conducts a long-term observation of gaseous iodine oxoacids in two Chinese megacities, revealing their ubiquitous presence with peak concentrations (up to 0.1 pptv) in summer. Our analysis suggests a mix of terrestrial and marine sources for iodine. Additionally, iodic acid is identified as a notable contributor to sub-3 nm particle growth and particle survival probability.
Guoxian Zhang, Renzhi Hu, Pinhua Xie, Changjin Hu, Xiaoyan Liu, Liujun Zhong, Haotian Cai, Bo Zhu, Shiyong Xia, Xiaofeng Huang, Xin Li, and Wenqing Liu
Atmos. Chem. Phys., 24, 1825–1839, https://doi.org/10.5194/acp-24-1825-2024, https://doi.org/10.5194/acp-24-1825-2024, 2024
Short summary
Short summary
Comprehensive observation of HOx radicals was conducted at a coastal site in the Pearl River Delta. Radical chemistry was influenced by different air masses in a time-dependent way. Land mass promotes a more active photochemical process, with daily averages of 7.1 × 106 and 5.2 × 108 cm−3 for OH and HO2 respectively. The rapid oxidation process was accompanied by a higher diurnal HONO concentration, which influences the ozone-sensitive system and eventually magnifies the background ozone.
Sarah Albertin, Joël Savarino, Slimane Bekki, Albane Barbero, Roberto Grilli, Quentin Fournier, Irène Ventrillard, Nicolas Caillon, and Kathy Law
Atmos. Chem. Phys., 24, 1361–1388, https://doi.org/10.5194/acp-24-1361-2024, https://doi.org/10.5194/acp-24-1361-2024, 2024
Short summary
Short summary
This study reports the first simultaneous records of oxygen (Δ17O) and nitrogen (δ15N) isotopes in nitrogen dioxide (NO2) and nitrate (NO3−). These data are combined with atmospheric observations to explore sub-daily N reactive chemistry and quantify N fractionation effects in an Alpine winter city. The results highlight the necessity of using Δ17O and δ15N in both NO2 and NO3− to avoid biased estimations of NOx sources and fates from NO3− isotopic records in urban winter environments.
Cited articles
Altshuler, S. L., Zhang, Q., Kleinman, M. T., Garcia-Menendez, F., Moore, C.
T., Hough, M. L., Stevenson, E. D., Chow, J. C., Jaffe, D. A., and Watson, J.
G.: Wildfire and prescribed burning impacts on air quality in the United
States, J. Air Waste Manage., 70, 961–970,
https://doi.org/10.1080/10962247.2020.1813217, 2020.
American Lung Association: The State of the Air 2019, https://www.lung.org/media/press-releases/state-of-the-air-california (last access: 15 March 2021), 2020.
Anderson, A. and Kuwayama, T.: Fire Influences on O3 levels: Insights into California O3 Sensitivity using Ground and Satellite Measurements, in preparation, 2022.
Baidar, S., Hardesty, R. M., Kim, S. W., Langford, A. O., Oetjen, H., Senff,
C. J., Trainer, M., and Volkamer, R.: Weakening of the weekend ozone effect
over California's South Coast Air Basin, Geophys. Res. Lett., 42,
9457–9464, https://doi.org/10.1002/2015GL066419, 2015.
Baker, A. K., Beyersdorf, A. J., Doezema, L. A., Katzenstein, A., Meinardi,
S., Simpson, I. J., Blake, D. R., and Sherwood Rowland, F.: Measurements of
nonmethane hydrocarbons in 28 United States cities, Atmos. Environ., 42,
170–182, https://doi.org/10.1016/j.atmosenv.2007.09.007, 2008.
Barcikowski, W., Cheung, K., Cohanim, S., Durkee, K., Eckerle, E., Epstein,
S., Farina, S., Farr, H., Gamino, K. T., Ghasemi, A., Katzenstein, A.,
Kang, E., Laybourn, M., Lee, J. H., Lee, S.-M., Orellana, K., Pakbin, P.,
Sospedra, M. C., Thai, D., and Zhang, X.: Final 2016 Air Quality Management
Plan, http://www.aqmd.gov/home/air-quality/clean-air-plans/air-quality-mgt-plan/final-2016-aqmp
(last access: 3 May 2021), 2017.
Brown, E. G.: Zero-Emission Vehicles (ZEV) Action Plan 2018 updated, https://cecsb.org/ (last access: 12 May 2021), 2018.
Burke, W.: South Coast Air Quality Management District Annual report 2019, Diamond Bar, CA, https://www.aqmd.gov/home/research/documents-reports (Last access: 12 May 2021), 2020.
California Air Resources Board: California Ambient Air Quality Standards, https://ww2.arb.ca.gov/resources/california-ambient-air-quality-standards
(last access: 1 April 2021), 2007.
California Air Resources Board: 2018 Updates to the California State
Implementation Plan, https://ww2.arb.ca.gov/resources/documents/2018-updates-california-state-implementation-plan-2018-sip-update
(last access: May 2021), 2018.
Carter, W., Luo, D., Malkina, I., and Pierce, J.: Environmental Chamber Studies of Atmospheric Reactivities of Volatile Organic Compounds: Effects of Varying Chamber and Light Source, Technical Report, United States: N, https://doi.org/10.2172/57153, 1995.
Carter, W. P. L. and Heo, G.: Development of revised SAPRC aromatics
mechanisms, Atmos. Environ., 77, 404–414,
https://doi.org/10.1016/J.ATMOSENV.2013.05.021, 2013.
Cazorla, M., Brune, W. H., Ren, X., and Lefer, B.: Direct measurement of ozone production rates in Houston in 2009 and comparison with two estimation methods, Atmos. Chem. Phys., 12, 1203–1212, https://doi.org/10.5194/acp-12-1203-2012, 2012.
Chen, S. P., Liu, T. H., Chen, T. F., Yang, C. F. O., Wang, J. L., and Chang,
J. S.: Diagnostic modeling of PAMS VOC observation, Environ. Sci. Technol.,
44, 4635–4644, https://doi.org/10.1021/es903361r, 2010.
Chossière, G. P., Xu, H., Dixit, Y., Isaacs, S., Eastham, S. D.,
Allroggen, F., Speth, R. L., and Barrett, S. R. H.: Air pollution impacts of
COVID-19–related containment measures, Sci. Adv., 7, 1178, https://doi.org/10.1126/sciadv.abe1178, 2021.
Coles, S.: An Introduction to Statistical Modeling of Extreme Values, 3rd edn., Vol. 208, Springer London, London, ISBN: 978-1-84996-874-4, https://doi.org/10.1007/978-1-4471-3675-0, 2001.
Cox, P., Delao, A., and Komorniczak, A.: The California Almanac of Emissions and Air Quality – 2013 Edition, https://www.arb.ca.gov/aqd/almanac/almanac13/almanac13.htm, (last access: 12 May 2021) 2013.
De Smedt, I., Theys, N., Yu, H., Danckaert, T., Lerot, C., Compernolle, S., Van Roozendael, M., Richter, A., Hilboll, A., Peters, E., Pedergnana, M., Loyola, D., Beirle, S., Wagner, T., Eskes, H., van Geffen, J., Boersma, K. F., and Veefkind, P.: Algorithm theoretical baseline for formaldehyde retrievals from S5P TROPOMI and from the QA4ECV project, Atmos. Meas. Tech., 11, 2395–2426, https://doi.org/10.5194/amt-11-2395-2018, 2018.
Duncan, B. N., Yoshida, Y., Olson, J. R., Sillman, S., Martin, R. V.,
Lamsal, L., Hu, Y., Pickering, K. E., Retscher, C., Allen, D. J., and
Crawford, J. H.: Application of OMI observations to a space-based indicator
of NOx and VOC controls on surface ozone formation, Atmos. Environ., 44,
2213–2223, https://doi.org/10.1016/j.atmosenv.2010.03.010, 2010.
Gilleland, E. and Katz, R. W.: ExtRemes 2.0: An extreme value analysis
package in R, J. Stat. Softw., 72, 1–39, https://doi.org/10.18637/jss.v072.i08,
2016.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
Guenther, A. B., Monson, R. K., and Fall, R.: Isoprene and monoterpene
emission rate variability: Observations with eucalyptus and emission rate
algorithm development, J. Geophys. Res., 96, 10799,
https://doi.org/10.1029/91jd00960, 1991.
Howard, C. J., Yang, W., Green, P. G., Mitloehner, F., Malkina, I. L.,
Flocchini, R. G., and Kleeman, M. J.: Direct measurements of the ozone
formation potential from dairy cattle emissions using a transportable smog
chamber, Atmos. Environ., 42, 5267–5277,
https://doi.org/10.1016/j.atmosenv.2008.02.064, 2008.
Howard, C. J., Kumar, A., Mitloehner, F., Stackhouse, K., Green, P. G.,
Flocchini, R. G., and Kleeman, M. J.: Direct measurements of the ozone
formation potential from livestock and poultry waste emissions, Environ.
Sci. Technol., 44, 2292–2298, https://doi.org/10.1021/es901916b, 2010a.
Howard, C. J., Kumar, A., Malkina, I., Mitloehner, F., Green, P. G.,
Flocchini, R. G., and Kleeman, M. J.: Reactive organic gas emissions from
livestock feed contribute significantly to ozone production in central
California, Environ. Sci. Technol., 44, 2309–2314,
https://doi.org/10.1021/es902864u, 2010b.
Hudman, R. C., Murray, L. T., Jacob, D. J., Millet, D. B., Turquety, S., Wu,
S., Blake, D. R., Goldstein, A. H., Holloway, J. S., and Sachse, G. W.:
Biogenic versus anthropogenic sources of CO in the United States, Geophys.
Res. Lett., 35, L04801, https://doi.org/10.1029/2007GL032393, 2008.
Ialongo, I., Virta, H., Eskes, H., Hovila, J., and Douros, J.: Comparison of TROPOMI/Sentinel-5 Precursor NO2 observations with ground-based measurements in Helsinki, Atmos. Meas. Tech., 13, 205–218, https://doi.org/10.5194/amt-13-205-2020, 2020.
Jacob, D. J. and Winner, D. A.: Effect of climate change on air quality,
Atmos. Environ., 43, 51–63, https://doi.org/10.1016/j.atmosenv.2008.09.051, 2009.
Jaffe, D. A. and Wigder, N. L.: Ozone production from wildfires: A critical
review, Atmos. Environ., 51, 1–10, https://doi.org/10.1016/j.atmosenv.2011.11.063,
2012.
Jaffe, D. A., Wigder, N., Downey, N., Pfister, G., Boynard, A., and Reid, S.
B.: Impact of wildfires on ozone exceptional events in the western U.S.,
Environ. Sci. Technol., 47, 11065–11072, https://doi.org/10.1021/es402164f, 2013.
Jing, P., Lu, Z., and Steiner, A. L.: The ozone-climate penalty in the
Midwestern U.S., Atmos. Environ., 170, 130–142,
https://doi.org/10.1016/j.atmosenv.2017.09.038, 2017.
Jin, X., Fiore, A. M., Murray, L. T., Valin, L. C., Lamsal, L. N., Duncan,
B., Folkert Boersma, K., De Smedt, I., Abad, G. G., Chance, K., and Tonnesen,
G. S.: Evaluating a Space-Based Indicator of Surface Ozone-NOx-VOC
Sensitivity Over Midlatitude Source Regions and Application to Decadal
Trends, J. Geophys. Res.-Atmos., 122, 10439–10461,
https://doi.org/10.1002/2017JD026720, 2017.
Jin, X., Fiore, A., Fiore, A., Boersma, K. F., De Smedt, I., and Valin, L.: Inferring Changes in Summertime Surface Ozone-NOx−VOC Chemistry over U.S. Urban Areas from Two Decades of Satellite and Ground-Based Observations, Environ. Sci. Technol., 54, 6518–6529, https://doi.org/10.1021/acs.est.9b07785, 2020.
Jorga, S. D., Kaltsonoudis, C., Liangou, A., and Pandis, S. N.: Measurement
of Formation Rates of Secondary Aerosol in the Ambient Urban Atmosphere
Using a Dual Smog Chamber System, Environ. Sci. Technol., 54, 1336–1343,
https://doi.org/10.1021/acs.est.9b03479, 2020.
Kaltsonoudis, C., Jorga, S. D., Louvaris, E., Florou, K., and Pandis, S. N.: A portable dual-smog-chamber system for atmospheric aerosol field studies, Atmos. Meas. Tech., 12, 2733–2743, https://doi.org/10.5194/amt-12-2733-2019, 2019.
Kleinman, L. I.: The dependence of tropospheric ozone production rate on
ozone precursors, Atmos. Environ., 39, 575–586,
https://doi.org/10.1016/j.atmosenv.2004.08.047, 2005.
Kroll, J. H., Heald, C. L., Cappa, C. D., Farmer, D. K., Fry, J. L., Murphy,
J. G., and Steiner, A. L.: The complex chemical effects of COVID-19 shutdowns
on air quality, Nat. Chem., 12, 777–779, https://doi.org/10.1038/s41557-020-0535-z,
2020.
LaFranchi, B. W., Goldstein, A. H., and Cohen, R. C.: Observations of the temperature dependent response of ozone to NOx reductions in the Sacramento, CA urban plume, Atmos. Chem. Phys., 11, 6945–6960, https://doi.org/10.5194/acp-11-6945-2011, 2011.
Lindaas, J., Farmer, D. K., Pollack, I. B., Abeleira, A., Flocke, F., Roscioli, R., Herndon, S., and Fischer, E. V.: Changes in ozone and precursors during two aged wildfire smoke events in the Colorado Front Range in summer 2015, Atmos. Chem. Phys., 17, 10691–10707, https://doi.org/10.5194/acp-17-10691-2017, 2017.
Li, Y., Alaimo, C. P., Kim, M., Kado, N. Y., Peppers, J., Xue, J., Wan, C.,
Green, P. G., Zhang, R., Jenkins, B. M., Vogel, C. F. A., Wuertz, S., Young,
T. M., and Kleeman, M. J.: Composition and Toxicity of Biogas Produced from
Different Feedstocks in California, Environ. Sci. Technol., 53, 11569–11579, https://doi.org/10.1021/acs.est.9b03003, 2019.
Liu, J., Lipsitt, J., Jerrett, M., and Zhu, Y.: Decreases in Near-Road NO and
NO2 Concentrations during the COVID-19 Pandemic in California, Environ. Sci.
Tech. Let., 8, 161–167, https://doi.org/10.1021/acs.estlett.0c00815, 2020.
Liu, Q., Harris, J. T., Chiu, L. S., Sun, D., Houser, P. R., Yu, M., Duffy,
D. Q., Little, M. M., and Yang, C.: Spatiotemporal impacts of COVID-19 on air
pollution in California, USA, Sci. Total Environ., 750, 141592,
https://doi.org/10.1016/j.scitotenv.2020.141592, 2021.
Lu, X., Zhang, L., Yue, X., Zhang, J., Jaffe, D. A., Stohl, A., Zhao, Y., and Shao, J.: Wildfire influences on the variability and trend of summer surface ozone in the mountainous western United States, Atmos. Chem. Phys., 16, 14687–14702, https://doi.org/10.5194/acp-16-14687-2016, 2016.
Martin, R. V., Fiore, A. M., and Van Donkelaar, A.: Space-based diagnosis of
surface ozone sensitivity to anthropogenic emissions, Geophys. Res. Lett.,
31, 2–5, https://doi.org/10.1029/2004gl019416, 2004.
McDonald, B. C., De Gouw, J. A., Gilman, J. B., Jathar, S. H., Akherati, A.,
Cappa, C. D., Jimenez, J. L., Lee-Taylor, J., Hayes, P. L., McKeen, S. A.,
Cui, Y. Y., Kim, S. W., Gentner, D. R., Isaacman-VanWertz, G., Goldstein, A.
H., Harley, R. A., Frost, G. J., Roberts, J. M., Ryerson, T. B., and Trainer,
M.: Volatile chemical products emerging as largest petrochemical source of
urban organic emissions, Science, 359, 760–764,
https://doi.org/10.1126/science.aaq0524, 2018.
Meng, Z., Dabdub, D., and Seinfeld, J. H.: Chemical coupling between
atmospheric ozone and particulate matter, Science, 277,
116–119, https://doi.org/10.1126/science.277.5322.116, 1997.
Misztal, P. K., Karl, T., Weber, R., Jonsson, H. H., Guenther, A. B., and Goldstein, A. H.: Airborne flux measurements of biogenic isoprene over California, Atmos. Chem. Phys., 14, 10631–10647, https://doi.org/10.5194/acp-14-10631-2014, 2014.
Nussbaumer, C. M. and Cohen, R. C.: The Role of Temperature and NOx in Ozone
Trends in the Los Angeles Basin, Environ. Sci. Technol., 54,
15652–15659, https://doi.org/10.1021/acs.est.0c04910, 2020.
Parker, H. A., Hasheminassab, S., Crounse, J. D., Roehl, C. M., and Wennberg,
P. O.: Impacts of Traffic Reductions Associated With COVID-19 on Southern
California Air Quality, Geophys. Res. Lett., 47, 1–9,
https://doi.org/10.1029/2020GL090164, 2020.
Parrish, D. D., Xu, J., Croes, B., and Shao, M.: Air quality improvement in
Los Angeles – perspectives for developing cities, Front. Environ. Sci. En.,
10, 11, https://doi.org/10.1007/s11783-016-0859-5, 2016.
Parrish, D. D., Young, L. M., Newman, M. H., Aikin, K. C., and Ryerson, T.
B.: Ozone Design Values in Southern California's Air Basins: Temporal
Evolution and U.S. Background Contribution, J. Geophys. Res.-Atmos.,
122, 11166–11182, https://doi.org/10.1002/2016JD026329, 2017.
Platt, S. M., El Haddad, I., Zardini, A. A., Clairotte, M., Astorga, C., Wolf, R., Slowik, J. G., Temime-Roussel, B., Marchand, N., Ježek, I., Drinovec, L., Močnik, G., Möhler, O., Richter, R., Barmet, P., Bianchi, F., Baltensperger, U., and Prévôt, A. S. H.: Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber, Atmos. Chem. Phys., 13, 9141–9158, https://doi.org/10.5194/acp-13-9141-2013, 2013.
Pollack, I. B., Ryerson, T. B., Trainer, M., Parrish, D. D., Andrews, A. E.,
Atlas, E. L., Blake, D. R., Brown, S. S., Commane, R., Daube, B. C., De
Gouw, J. A., Dubé, W. P., Flynn, J., Frost, G. J., Gilman, J. B.,
Grossberg, N., Holloway, J. S., Kofler, J., Kort, E. A., Kuster, W. C.,
Lang, P. M., Lefer, B., Lueb, R. A., Neuman, J. A., Nowak, J. B., Novelli,
P. C., Peischl, J., Perring, A. E., Roberts, J. M., Santoni, G., Schwarz, J.
P., Spackman, J. R., Wagner, N. L., Warneke, C., Washenfelder, R. A., Wofsy,
S. C., and Xiang, B.: Airborne and ground-based observations of a weekend
effect in ozone, precursors, and oxidation products in the California South
Coast Air Basin, J. Geophys. Res.-Atmos., 117, 1–14,
https://doi.org/10.1029/2011JD016772, 2012.
Pollack, I. B., Ryerson, T. B., Trainer, M., Neuman, J. A., Roberts, J. M.,
and Parrish, D. D.: Trends in ozone, its precursors, and related secondary
oxidation products in Los Angeles, California: A synthesis of measurements
from 1960 to 2010, J. Geophys. Res.-Atmos., 118, 5893–5911,
https://doi.org/10.1002/jgrd.50472, 2013a.
Pollack, I. B., Ryerson, T. B., Trainer, M., Neuman, J. A., Roberts, J. M.,
Parrish, D. D., Pollack, C., Ryerson, T. B., Trainer, M., Roberts, J. M.,
and Parrish, D. D.: Trends in ozone, its precursors, and related secondary
oxidation products in Los Angeles, California: A synthesis of measurements
from 1960 to 2010, J. Geophys. Res.-Atmos., 118, 5893–5911,
https://doi.org/10.1002/JGRD.50472, 2013b.
Presto, A. A., Nguyen, N. T., Ranjan, M., Reeder, A. J., Lipsky, E. M.,
Hennigan, C. J., Miracolo, M. A., Riemer, D. D., and Robinson, A. L.: Fine
particle and organic vapor emissions from staged tests of an in-use aircraft
engine, Atmos. Environ., 45, 3603–3612,
https://doi.org/10.1016/J.ATMOSENV.2011.03.061, 2011.
Pusede, S. E. and Cohen, R. C.: On the observed response of ozone to NOx and VOC reactivity reductions in San Joaquin Valley California 1995–present, Atmos. Chem. Phys., 12, 8323–8339, https://doi.org/10.5194/acp-12-8323-2012, 2012.
Pusede, S. E., Steiner, A. L., and Cohen, R. C.: Temperature and Recent
Trends in the Chemistry of Continental Surface Ozone, Chem. Rev., 115,
3898–3918, https://doi.org/10.1021/cr5006815, 2015.
Rasmussen, D. J., Hu, J., Mahmud, A., and Kleeman, M. J.: The ozone-climate
penalty: Past, present, and future, Environ. Sci. Technol., 47,
14258–14266, https://doi.org/10.1021/es403446m, 2013.
Schroeder, J. R., Crawford, J. H., Fried, A., Walega, J., Weinheimer, A.,
Wisthaler, A., Müller, M., Mikoviny, T., Chen, G., Shook, M., Blake, D.
R., and Tonnesen, G. S.: New insights into the column
ratio as an indicator of near-surface ozone sensitivity, J. Geophys. Res.-Atmos., 122, 8885–8907, https://doi.org/10.1002/2017JD026781, 2017a.
Schroeder, J. R., Crawford, J. H., Fried, A., Walega, J., Weinheimer, A.,
Wisthaler, A., Müller, M., Mikoviny, T., Chen, G., Shook, M., Blake, D.
R., and Tonnesen, G. S.: New insights into the column ratio as an
indicator of near-surface ozone sensitivity, J. Geophys. Res.-Atmos.,
122, 8885–8907, https://doi.org/10.1002/2017JD026781, 2017b.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: from air pollution to climate change, 3rd edn., John Wiley & Sons, Incorporated, Hoboken, New Jersey, ISBN: 978-1-118-94740-1, 2016.
Shah, R. U., Coggon, M. M., Gkatzelis, G. I., McDonald, B. C., Tasoglou, A.,
Huber, H., Gilman, J., Warneke, C., Robinson, A. L., and Presto, A. A.: Urban
Oxidation Flow Reactor Measurements Reveal Significant Secondary Organic
Aerosol Contributions from Volatile Emissions of Emerging Importance,
Environ. Sci. Technol., 54, 714–725, https://doi.org/10.1021/acs.est.9b06531, 2020.
Sillman, S.: The use of NOy, H2O2, and
HNO3 as indicators for ozone-NOx-hydrocarbon
sensitivity in urban locations, J. Geophys. Res., 100, 14175,
https://doi.org/10.1029/94JD02953, 1995.
Sillman, S.: The relation between ozone, NO(x) and hydrocarbons in urban and
polluted rural environments, Atmos. Environ., 33, 1821–1845,
https://doi.org/10.1016/S1352-2310(98)00345-8, 1999.
Simon, H., Reff, A., Wells, B., Xing, J., and Frank, N.: Ozone trends across
the United States over a period of decreasing NOx and VOC emissions,
Environ. Sci. Technol., 49, 186–195, https://doi.org/10.1021/es504514z, 2015.
Singh, H. B., Cai, C., Kaduwela, A., Weinheimer, A., and Wisthaler, A.:
Interactions of fire emissions and urban pollution over California: Ozone
formation and air quality simulations, Atmos. Environ., 56, 45–51,
https://doi.org/10.1016/j.atmosenv.2012.03.046, 2012.
South Coast AQMD: Facility-Based Mobile Source Measure focused on reducing
emissions associated with vehicles and mobile equipment operating in and out
of warehouse distribution centers, https://www.aqmd.gov/home/air-quality/clean-air-plans/air-quality-mgt-plan/facility-based-mobile-source-measures/warehs-distr-wkng-grp, last access: 12 May 2021.
Steiner, A. L., Tonse, S., Cohen, R. C., Goldstein, A. H., and Harley, R. A.:
Influence of future climate and emissions on regional air quality in
California, J. Geophys. Res., 111, D18303, https://doi.org/10.1029/2005JD006935,
2006.
Steiner, A. L., Cohen, R. C., Harley, R. A., Tonse, S., Millet, D. B., Schade, G. W., and Goldstein, A. H.: VOC reactivity in central California: comparing an air quality model to ground-based measurements, Atmos. Chem. Phys., 8, 351–368, https://doi.org/10.5194/acp-8-351-2008, 2008.
Tonnesen, G. S. and Dennis, R. L.: Analysis of radical propagation
efficiency to assess ozone sensitivity to hydrocarbons and NOx 1. Local
indicators of instantaneous odd oxygen production sensitivity, J. Geophys.
Res. Atmos., 105, 9213–9225, https://doi.org/10.1029/1999JD900371, 2000.
USGCRP: Climate Science Special Report: Fourth National Climate Assessment, Volume I, edited by: Wuebbles, D. J., Fahey, D. W., Hibbard, K. A., Dokken, D. J., Stewart, B. C., and Maycock, T. K., U.S. Global Change Research Program, Washington, DC, USA, 470 pp., https://doi.org/10.7930/J0J964J6, 2017.
US EPA: 2017 National Emissions Inventory Technical Support Documentation, (April), 486, https://www.epa.gov/air-emissions-inventories/2017-national-emissions-inventory-nei-data
(last access: 16 April 2021), 2020a.
US EPA: Integrated Science Assessment (ISA) for ozone and related
photochemical oxidants (Final Report), U.S. Environ. Prot. Agency,
Washington, DC, EPA/600/R-20/012, 2020, https://www.epa.gov/isa/integrated-science-assessment-isa-ozone-and-related-photochemical-oxidants
(last access: 9 June 2021), 2020b.
US EPA: Criteria Air Pollutants, US EPA, https://www.epa.gov/criteria-air-pollutants, last access: 1 April 2021.
van Geffen, J., Boersma, K. F., Eskes, H., Sneep, M., ter Linden, M., Zara, M., and Veefkind, J. P.: S5P TROPOMI NO2 slant column retrieval: method, stability, uncertainties and comparisons with OMI, Atmos. Meas. Tech., 13, 1315–1335, https://doi.org/10.5194/amt-13-1315-2020, 2020.
Van Geffen, J., Eskes, H., Boersma, K., Maasakkers, J., and Veefkind, J.: TROPOMI ATBD of the total and tropospheric NO2 data products, S5P-KNMI-L2-0005-RP Issue 2.2.0, Royal Netherlands Meteorological Institute (KNMI), https://sentinel.esa.int/documents/247904/2476257/Sentinel-5P-TROPOMI-ATBD-NO2-data-products (last access: 20 Febuary 2022), 2021.
Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries, J.,
Otter, G., Claas, J., Eskes, H. J., de Haan, J. F., Kleipool, Q., van Weele,
M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P., Ingmann,
P., Voors, R., Kruizinga, B., Vink, R., Visser, H., and Levelt, P. F.:
TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global
observations of the atmospheric composition for climate, air quality and
ozone layer applications, Remote Sens. Environ., 120, 70–83,
https://doi.org/10.1016/j.rse.2011.09.027, 2012.
Venecek, M. A., Cai, C., Kaduwela, A., Avise, J., Carter, W. P. L., and
Kleeman, M. J.: Analysis of SAPRC16 chemical mechanism for ambient
simulations, Atmos. Environ., 192, 136–150,
https://doi.org/10.1016/J.ATMOSENV.2018.08.039, 2018.
Verhoelst, T., Compernolle, S., Pinardi, G., Lambert, J.-C., Eskes, H. J., Eichmann, K.-U., Fjæraa, A. M., Granville, J., Niemeijer, S., Cede, A., Tiefengraber, M., Hendrick, F., Pazmiño, A., Bais, A., Bazureau, A., Boersma, K. F., Bognar, K., Dehn, A., Donner, S., Elokhov, A., Gebetsberger, M., Goutail, F., Grutter de la Mora, M., Gruzdev, A., Gratsea, M., Hansen, G. H., Irie, H., Jepsen, N., Kanaya, Y., Karagkiozidis, D., Kivi, R., Kreher, K., Levelt, P. F., Liu, C., Müller, M., Navarro Comas, M., Piters, A. J. M., Pommereau, J.-P., Portafaix, T., Prados-Roman, C., Puentedura, O., Querel, R., Remmers, J., Richter, A., Rimmer, J., Rivera Cárdenas, C., Saavedra de Miguel, L., Sinyakov, V. P., Stremme, W., Strong, K., Van Roozendael, M., Veefkind, J. P., Wagner, T., Wittrock, F., Yela González, M., and Zehner, C.: Ground-based validation of the Copernicus Sentinel-5P TROPOMI NO2 measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks, Atmos. Meas. Tech., 14, 481–510, https://doi.org/10.5194/amt-14-481-2021, 2021.
Vigouroux, C., Langerock, B., Bauer Aquino, C. A., Blumenstock, T., Cheng, Z., De Mazière, M., De Smedt, I., Grutter, M., Hannigan, J. W., Jones, N., Kivi, R., Loyola, D., Lutsch, E., Mahieu, E., Makarova, M., Metzger, J.-M., Morino, I., Murata, I., Nagahama, T., Notholt, J., Ortega, I., Palm, M., Pinardi, G., Röhling, A., Smale, D., Stremme, W., Strong, K., Sussmann, R., Té, Y., van Roozendael, M., Wang, P., and Winkler, H.: TROPOMI–Sentinel-5 Precursor formaldehyde validation using an extensive network of ground-based Fourier-transform infrared stations, Atmos. Meas. Tech., 13, 3751–3767, https://doi.org/10.5194/amt-13-3751-2020, 2020a.
Vigouroux, C., Langerock, B., Bauer Aquino, C. A., Blumenstock, T., Cheng, Z., De Mazière, M., De Smedt, I., Grutter, M., Hannigan, J. W., Jones, N., Kivi, R., Loyola, D., Lutsch, E., Mahieu, E., Makarova, M., Metzger, J.-M., Morino, I., Murata, I., Nagahama, T., Notholt, J., Ortega, I., Palm, M., Pinardi, G., Röhling, A., Smale, D., Stremme, W., Strong, K., Sussmann, R., Té, Y., van Roozendael, M., Wang, P., and Winkler, H.: TROPOMI–Sentinel-5 Precursor formaldehyde validation using an extensive network of ground-based Fourier-transform infrared stations, Atmos. Meas. Tech., 13, 3751–3767, https://doi.org/10.5194/amt-13-3751-2020, 2020b.
Warneke, C., De Gouw, J. A., Holloway, J. S., Peischl, J., Ryerson, T. B.,
Atlas, E., Blake, D., Trainer, M., Parrish, D. D., Warneke, C., De Gouw,
J. A., Holloway, J. S., Peischl, J., Ryerson, T. B., Atlas, E., Blake, D.,
Trainer, M., and Parrish, D. D.: Multiyear trends in volatile organic
compounds in Los Angeles, California: Five decades of decreasing emissions,
J. Geophys. Res.-Atmos., 117, 0–17, https://doi.org/10.1029/2012JD017899, 2012.
Weaver, C. P., Liang, X. Z., Zhu, J., Adams, P. J., Amar, P., Avise, J.,
Caughey, M., Chen, J., Cohen, R. C., Cooter, E., Dawson, J. P., Gilliam, R.,
Gilliland, A., Goldstein, A. H., Grambsch, A., Grano, D., Guenther, A.,
Gustafson, W. I., Harley, R. A., He, S., Hemming, B., Hogrefe, C., Huang, H.
C., Hunt, S. W., Jacob, D. J., Kinney, P. L., Kunkel, K., Lamarque, J. F.,
Lamb, B., Larkin, N. K., Leung, L. R., Liao, K. J., Lin, J. T., Lynn, B. H.,
Manomaiphiboon, K., Mass, C., Mckenzie, D., Mickley, L. J., O'Neill, S. M.,
Nolte, C., Pandis, S. N., Racherla, P. N., Rosenzweig, C., Russell, A. G.,
Salathé, E., Steiner, A. L., Tagaris, E., Tao, Z., Tonse, S.,
Wiedinmyer, C., Williams, A., Winner, D. A., Woo, J. H., Wu, S., and
Wuebbles, D. J.: A preliminary synthesis of modeled climate change impacts
on U.S. regional ozone concentrations, B. Am. Meteorol. Soc., 90,
1843–1863, https://doi.org/10.1175/2009BAMS2568.1, 2009.
Wu, S., Lee, H. J., Anderson, A., Liu, S., Kuwayama, T., Seinfeld, J. H., and Kleeman, M. J.: Direct measurements of ozone response to emissions perturbations in California, Dryad [data set], https://datadryad.org/stash/share/ktJh3AxAs0K7y8Iku8-VL3v7ZuGwBGQodYhRT-wHZ04 (Last access 12 April 2022), 2022.
Ying, Q., Fraser, M. P., Griffin, R. J., Chen, J., and Kleeman, M. J.:
Verification of a source-oriented externally mixed air quality model during
a severe photochemical smog episode, Atmos. Environ., 41, 1521–1538,
https://doi.org/10.1016/J.ATMOSENV.2006.10.004, 2007.
Zhang, Q., Zhou, S., Collier, S., Jaffe, D., Onasch, T., Shilling, J.,
Kleinman, L., and Sedlacek, A.: Understanding composition, formation, and
aging of organic aerosols in wildfire emissions via combined mountain top
and airborne measurements, ACS Symp. Ser., 1299, 363–385,
https://doi.org/10.1021/bk-2018-1299.ch018, 2018.
Short summary
An ozone control experiment usually conducted in the laboratory was installed in a trailer and moved to the outdoor environment to directly confirm that we are controlling the right sources in order to lower ambient ozone concentrations. Adding small amounts of precursor oxides of nitrogen and volatile organic compounds to ambient air showed that the highest ozone concentrations are best controlled by reducing concentrations of oxides of nitrogen. The results confirm satellite measurements.
An ozone control experiment usually conducted in the laboratory was installed in a trailer and...
Altmetrics
Final-revised paper
Preprint