Articles | Volume 22, issue 7
https://doi.org/10.5194/acp-22-4929-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-4929-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Direct measurements of ozone response to emissions perturbations in California
Shenglun Wu
Department of Civil and Environmental Engineering, University of
California Davis, 1 Shields Ave, Davis, CA 95616, USA
Hyung Joo Lee
Division of Environmental Science and Engineering, Pohang University
of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
Andrea Anderson
Department of Chemistry, University of California Irvine, Irvine, CA
92697, USA
previously published under the name Rohrbacher
Shang Liu
Research Division, California Air Resources Board, 1001 I Street,
Sacramento, CA 95814, USA
Toshihiro Kuwayama
Research Division, California Air Resources Board, 1001 I Street,
Sacramento, CA 95814, USA
John H. Seinfeld
Department of Chemical Engineering, California Institute of
Technology, 1200 E. California Blvd, Pasadena, CA 91125, USA
Michael J. Kleeman
CORRESPONDING AUTHOR
Department of Civil and Environmental Engineering, University of
California Davis, 1 Shields Ave, Davis, CA 95616, USA
Related authors
No articles found.
Qixiang Xu, Zilin Jin, Qi Ying, Ke Wang, Fangcheng Su, Ruiqin Zhang, and Michael J. Kleeman
Atmos. Chem. Phys., 25, 9431–9449, https://doi.org/10.5194/acp-25-9431-2025, https://doi.org/10.5194/acp-25-9431-2025, 2025
Short summary
Short summary
This paper introduces a novel approach for improving the computational efficiency and scalability of source-oriented chemical mechanisms by simplifying the representation of reactions involving source-tagged species and implementing a source-oriented Euler backward iterative (EBI) solver. These advancements reduce simulation times by up to 74 % while maintaining accuracy, offering significant practical benefits for long-term source apportionment studies.
Reina S. Buenconsejo, Sophia M. Charan, John H. Seinfeld, and Paul O. Wennberg
Atmos. Chem. Phys., 25, 1883–1897, https://doi.org/10.5194/acp-25-1883-2025, https://doi.org/10.5194/acp-25-1883-2025, 2025
Short summary
Short summary
We look at the atmospheric chemistry of a volatile chemical product (VCP), benzyl alcohol. Benzyl alcohol and other VCPs may play a significant role in the formation of urban smog. By better understanding the chemistry of VCPs like benzyl alcohol, we may better understand observed data and how VCPs affect air quality. We identify products formed from benzyl alcohol chemistry and use this chemistry to understand how benzyl alcohol forms a key component of smog, secondary organic aerosol.
Chelsea E. Stockwell, Matthew M. Coggon, Rebecca H. Schwantes, Colin Harkins, Bert Verreyken, Congmeng Lyu, Qindan Zhu, Lu Xu, Jessica B. Gilman, Aaron Lamplugh, Jeff Peischl, Michael A. Robinson, Patrick R. Veres, Meng Li, Andrew W. Rollins, Kristen Zuraski, Sunil Baidar, Shang Liu, Toshihiro Kuwayama, Steven S. Brown, Brian C. McDonald, and Carsten Warneke
Atmos. Chem. Phys., 25, 1121–1143, https://doi.org/10.5194/acp-25-1121-2025, https://doi.org/10.5194/acp-25-1121-2025, 2025
Short summary
Short summary
In urban areas, emissions from everyday products like paints, cleaners, and personal care products, along with non-traditional sources such as cooking, are increasingly important and impact air quality. This study uses a box model to evaluate how these emissions impact ozone in the Los Angeles Basin and quantifies the impact of gaseous cooking emissions. Accurate representation of these and other anthropogenic sources in inventories is crucial for informing effective air quality policies.
Qindan Zhu, Rebecca H. Schwantes, Matthew Coggon, Colin Harkins, Jordan Schnell, Jian He, Havala O. T. Pye, Meng Li, Barry Baker, Zachary Moon, Ravan Ahmadov, Eva Y. Pfannerstill, Bryan Place, Paul Wooldridge, Benjamin C. Schulze, Caleb Arata, Anthony Bucholtz, John H. Seinfeld, Carsten Warneke, Chelsea E. Stockwell, Lu Xu, Kristen Zuraski, Michael A. Robinson, J. Andrew Neuman, Patrick R. Veres, Jeff Peischl, Steven S. Brown, Allen H. Goldstein, Ronald C. Cohen, and Brian C. McDonald
Atmos. Chem. Phys., 24, 5265–5286, https://doi.org/10.5194/acp-24-5265-2024, https://doi.org/10.5194/acp-24-5265-2024, 2024
Short summary
Short summary
Volatile organic compounds (VOCs) fuel the production of air pollutants like ozone and particulate matter. The representation of VOC chemistry remains challenging due to its complexity in speciation and reactions. Here, we develop a chemical mechanism, RACM2B-VCP, that better represents VOC chemistry in urban areas such as Los Angeles. We also discuss the contribution of VOCs emitted from volatile chemical products and other anthropogenic sources to total VOC reactivity and O3.
Elyse A. Pennington, Yuan Wang, Benjamin C. Schulze, Karl M. Seltzer, Jiani Yang, Bin Zhao, Zhe Jiang, Hongru Shi, Melissa Venecek, Daniel Chau, Benjamin N. Murphy, Christopher M. Kenseth, Ryan X. Ward, Havala O. T. Pye, and John H. Seinfeld
Atmos. Chem. Phys., 24, 2345–2363, https://doi.org/10.5194/acp-24-2345-2024, https://doi.org/10.5194/acp-24-2345-2024, 2024
Short summary
Short summary
To assess the air quality in Los Angeles (LA), we improved the CMAQ model by using dynamic traffic emissions and new secondary organic aerosol schemes to represent volatile chemical products. Source apportionment demonstrates that the urban areas of the LA Basin and vicinity are NOx-saturated, with the largest sensitivity of O3 to changes in volatile organic compounds in the urban core. The improvement and remaining issues shed light on the future direction of the model development.
Clara M. Nussbaumer, Bryan K. Place, Qindan Zhu, Eva Y. Pfannerstill, Paul Wooldridge, Benjamin C. Schulze, Caleb Arata, Ryan Ward, Anthony Bucholtz, John H. Seinfeld, Allen H. Goldstein, and Ronald C. Cohen
Atmos. Chem. Phys., 23, 13015–13028, https://doi.org/10.5194/acp-23-13015-2023, https://doi.org/10.5194/acp-23-13015-2023, 2023
Short summary
Short summary
NOx is a precursor to hazardous tropospheric ozone and can be emitted from various anthropogenic sources. It is important to quantify NOx emissions in urban environments to improve the local air quality, which still remains a challenge, as sources are heterogeneous in space and time. In this study, we calculate NOx emissions over Los Angeles, based on aircraft measurements in June 2021, and compare them to a local emission inventory, which we find mostly overpredicts the measured values.
Eva Y. Pfannerstill, Caleb Arata, Qindan Zhu, Benjamin C. Schulze, Roy Woods, John H. Seinfeld, Anthony Bucholtz, Ronald C. Cohen, and Allen H. Goldstein
Atmos. Chem. Phys., 23, 12753–12780, https://doi.org/10.5194/acp-23-12753-2023, https://doi.org/10.5194/acp-23-12753-2023, 2023
Short summary
Short summary
The San Joaquin Valley is an agricultural area with poor air quality. Organic gases drive the formation of hazardous air pollutants. Agricultural emissions of these gases are not well understood and have rarely been quantified at landscape scale. By combining aircraft-based emission measurements with land cover information, we found mis- or unrepresented emission sources. Our results help in understanding of pollution sources and in improving predictions of air quality in agricultural regions.
Qindan Zhu, Bryan Place, Eva Y. Pfannerstill, Sha Tong, Huanxin Zhang, Jun Wang, Clara M. Nussbaumer, Paul Wooldridge, Benjamin C. Schulze, Caleb Arata, Anthony Bucholtz, John H. Seinfeld, Allen H. Goldstein, and Ronald C. Cohen
Atmos. Chem. Phys., 23, 9669–9683, https://doi.org/10.5194/acp-23-9669-2023, https://doi.org/10.5194/acp-23-9669-2023, 2023
Short summary
Short summary
Nitrogen oxide (NOx) is a hazardous air pollutant, and it is the precursor of short-lived climate forcers like tropospheric ozone and aerosol particles. While NOx emissions from transportation has been strictly regulated, soil NOx emissions are overlooked. We use the airborne flux measurements to observe NOx emissions from highways and urban and cultivated soil land cover types. We show non-negligible soil NOx emissions, which are significantly underestimated in current model simulations.
Yuchen Wang, Xvli Guo, Yajie Huo, Mengying Li, Yuqing Pan, Shaocai Yu, Alexander Baklanov, Daniel Rosenfeld, John H. Seinfeld, and Pengfei Li
Atmos. Chem. Phys., 23, 5233–5249, https://doi.org/10.5194/acp-23-5233-2023, https://doi.org/10.5194/acp-23-5233-2023, 2023
Short summary
Short summary
Substantial advances have been made in recent years toward detecting and quantifying methane super-emitters from space. However, such advances have rarely been expanded to measure the global methane pledge because large-scale swaths and high-resolution sampling have not been coordinated. Here we present a versatile spaceborne architecture that can juggle planet-scale and plant-level methane retrievals, challenge official emission reports, and remain relevant for stereoscopic measurements.
Mengying Li, Shaocai Yu, Xue Chen, Zhen Li, Yibo Zhang, Zhe Song, Weiping Liu, Pengfei Li, Xiaoye Zhang, Meigen Zhang, Yele Sun, Zirui Liu, Caiping Sun, Jingkun Jiang, Shuxiao Wang, Benjamin N. Murphy, Kiran Alapaty, Rohit Mathur, Daniel Rosenfeld, and John H. Seinfeld
Atmos. Chem. Phys., 22, 11845–11866, https://doi.org/10.5194/acp-22-11845-2022, https://doi.org/10.5194/acp-22-11845-2022, 2022
Short summary
Short summary
This study constructed an emission inventory of condensable particulate matter (CPM) in China with a focus on organic aerosols (OAs), based on collected CPM emission information. The results show that OA emissions are enhanced twofold for the years 2014 and 2017 after the inclusion of CPM in the new inventory. Sensitivity cases demonstrated the significant contributions of CPM emissions from stationary combustion and mobile sources to primary, secondary, and total OA concentrations.
Shang Liu, Barbara Barletta, Rebecca S. Hornbrook, Alan Fried, Jeff Peischl, Simone Meinardi, Matthew Coggon, Aaron Lamplugh, Jessica B. Gilman, Georgios I. Gkatzelis, Carsten Warneke, Eric C. Apel, Alan J. Hills, Ilann Bourgeois, James Walega, Petter Weibring, Dirk Richter, Toshihiro Kuwayama, Michael FitzGibbon, and Donald Blake
Atmos. Chem. Phys., 22, 10937–10954, https://doi.org/10.5194/acp-22-10937-2022, https://doi.org/10.5194/acp-22-10937-2022, 2022
Short summary
Short summary
California’s ozone persistently exceeds the air quality standards. We studied the spatial distribution of volatile organic compounds (VOCs) that produce ozone over the most polluted regions in California using aircraft measurements. We find that the oxygenated VOCs have the highest ozone formation potential. Spatially, biogenic VOCs are important during high ozone episodes in the South Coast Air Basin, while dairy emissions may be critical for ozone production in San Joaquin Valley.
Sophia M. Charan, Yuanlong Huang, Reina S. Buenconsejo, Qi Li, David R. Cocker III, and John H. Seinfeld
Atmos. Chem. Phys., 22, 917–928, https://doi.org/10.5194/acp-22-917-2022, https://doi.org/10.5194/acp-22-917-2022, 2022
Short summary
Short summary
In this study, we investigate the secondary organic aerosol formation potential of decamethylcyclopentasiloxane (D5), which is used as a tracer for volatile chemical products and measured in high concentrations both outdoors and indoors. By performing experiments in different types of reactors, we find that D5’s aerosol formation is highly dependent on OH, and, at low OH concentrations or exposures, D5 forms little aerosol. We also reconcile results from other studies.
Elyse A. Pennington, Karl M. Seltzer, Benjamin N. Murphy, Momei Qin, John H. Seinfeld, and Havala O. T. Pye
Atmos. Chem. Phys., 21, 18247–18261, https://doi.org/10.5194/acp-21-18247-2021, https://doi.org/10.5194/acp-21-18247-2021, 2021
Short summary
Short summary
Volatile chemical products (VCPs) are commonly used consumer and industrial items that contribute to the formation of atmospheric aerosol. We implemented the emissions and chemistry of VCPs in a regional-scale model and compared predictions with measurements made in Los Angeles. Our results reduced model bias and suggest that VCPs may contribute up to half of anthropogenic secondary organic aerosol in Los Angeles and are an important source of human-influenced particular matter in urban areas.
Linhui Jiang, Yan Xia, Lu Wang, Xue Chen, Jianjie Ye, Tangyan Hou, Liqiang Wang, Yibo Zhang, Mengying Li, Zhen Li, Zhe Song, Yaping Jiang, Weiping Liu, Pengfei Li, Daniel Rosenfeld, John H. Seinfeld, and Shaocai Yu
Atmos. Chem. Phys., 21, 16985–17002, https://doi.org/10.5194/acp-21-16985-2021, https://doi.org/10.5194/acp-21-16985-2021, 2021
Short summary
Short summary
This paper establishes a bottom-up approach to reveal a unique pattern of urban on-road vehicle emissions at a spatial resolution 1–3 orders of magnitude higher than current inventories. The results show that the hourly average on-road vehicle emissions of CO, NOx, HC, and PM2.5 are 74 kg, 40 kg, 8 kg, and 2 kg, respectively. Integrating our traffic-monitoring-based approach with urban measurements, we could address major data gaps between urban air pollutant emissions and concentrations.
Weimeng Kong, Stavros Amanatidis, Huajun Mai, Changhyuk Kim, Benjamin C. Schulze, Yuanlong Huang, Gregory S. Lewis, Susanne V. Hering, John H. Seinfeld, and Richard C. Flagan
Atmos. Meas. Tech., 14, 5429–5445, https://doi.org/10.5194/amt-14-5429-2021, https://doi.org/10.5194/amt-14-5429-2021, 2021
Short summary
Short summary
We present the design, modeling, and experimental characterization of the nano-scanning electrical mobility spectrometer (nSEMS), a recently developed instrument that probes particle physical properties in the 1.5–25 nm range. The nSEMS has proven to be extremely powerful in examining atmospheric nucleation and the subsequent growth of nanoparticles in the CERN CLOUD experiment, which provides a valuable asset to study atmospheric nanoparticles and to evaluate their impact on climate.
Stavros Amanatidis, Yuanlong Huang, Buddhi Pushpawela, Benjamin C. Schulze, Christopher M. Kenseth, Ryan X. Ward, John H. Seinfeld, Susanne V. Hering, and Richard C. Flagan
Atmos. Meas. Tech., 14, 4507–4516, https://doi.org/10.5194/amt-14-4507-2021, https://doi.org/10.5194/amt-14-4507-2021, 2021
Short summary
Short summary
We assess the performance of a highly portable mobility analyzer, the Spider DMA, in measuring ambient aerosol particle size distributions, with specific attention to its moderate sizing resolution (R=3). Long-term field testing showed excellent correlation with a conventional mobility analyzer (R=10) over the 17–500 nm range, suggesting that moderate resolution may be sufficient to obtain key properties of ambient size distributions, enabling smaller instruments and better counting statistics.
Liqiang Wang, Shaocai Yu, Pengfei Li, Xue Chen, Zhen Li, Yibo Zhang, Mengying Li, Khalid Mehmood, Weiping Liu, Tianfeng Chai, Yannian Zhu, Daniel Rosenfeld, and John H. Seinfeld
Atmos. Chem. Phys., 20, 14787–14800, https://doi.org/10.5194/acp-20-14787-2020, https://doi.org/10.5194/acp-20-14787-2020, 2020
Short summary
Short summary
The Chinese government has made major strides in curbing anthropogenic emissions. In this study, we constrain a state-of-the-art CTM by a reliable data assimilation method with extensive chemical and meteorological observations. This comprehensive technical design provides a crucial advance in isolating the influences of emission changes and meteorological perturbations over the Yangtze River Delta (YRD) from 2016 to 2019, thus establishing the first map of the PM2.5 mitigation across the YRD.
Brigitte Rooney, Yuan Wang, Jonathan H. Jiang, Bin Zhao, Zhao-Cheng Zeng, and John H. Seinfeld
Atmos. Chem. Phys., 20, 14597–14616, https://doi.org/10.5194/acp-20-14597-2020, https://doi.org/10.5194/acp-20-14597-2020, 2020
Short summary
Short summary
Wildfires have become increasingly prevalent. Intense smoke consisting of particulate matter (PM) leads to an increased risk of morbidity and mortality. The record-breaking Camp Fire ravaged Northern California for two weeks in 2018. Here, we employ a comprehensive chemical transport model along with ground-based and satellite observations to characterize the PM concentrations across Northern California and to investigate the pollution sensitivity predictions to key parameters of the model.
Sophia M. Charan, Reina S. Buenconsejo, and John H. Seinfeld
Atmos. Chem. Phys., 20, 13167–13190, https://doi.org/10.5194/acp-20-13167-2020, https://doi.org/10.5194/acp-20-13167-2020, 2020
Short summary
Short summary
In urban areas, the emissions from volatile chemical products may be responsible for the formation of as much particulate matter as motor vehicles. Since exposure to particulate matter is a public health crisis, understanding its formation is critical. In this work, we investigate the secondary organic aerosol formation potential of benzyl alcohol, an important compound that is representative of some of these new emission sources, and find that more particulate matter forms than is expected.
Cited articles
Altshuler, S. L., Zhang, Q., Kleinman, M. T., Garcia-Menendez, F., Moore, C.
T., Hough, M. L., Stevenson, E. D., Chow, J. C., Jaffe, D. A., and Watson, J.
G.: Wildfire and prescribed burning impacts on air quality in the United
States, J. Air Waste Manage., 70, 961–970,
https://doi.org/10.1080/10962247.2020.1813217, 2020.
American Lung Association: The State of the Air 2019, https://www.lung.org/media/press-releases/state-of-the-air-california (last access: 15 March 2021), 2020.
Anderson, A. and Kuwayama, T.: Fire Influences on O3 levels: Insights into California O3 Sensitivity using Ground and Satellite Measurements, in preparation, 2022.
Baidar, S., Hardesty, R. M., Kim, S. W., Langford, A. O., Oetjen, H., Senff,
C. J., Trainer, M., and Volkamer, R.: Weakening of the weekend ozone effect
over California's South Coast Air Basin, Geophys. Res. Lett., 42,
9457–9464, https://doi.org/10.1002/2015GL066419, 2015.
Baker, A. K., Beyersdorf, A. J., Doezema, L. A., Katzenstein, A., Meinardi,
S., Simpson, I. J., Blake, D. R., and Sherwood Rowland, F.: Measurements of
nonmethane hydrocarbons in 28 United States cities, Atmos. Environ., 42,
170–182, https://doi.org/10.1016/j.atmosenv.2007.09.007, 2008.
Barcikowski, W., Cheung, K., Cohanim, S., Durkee, K., Eckerle, E., Epstein,
S., Farina, S., Farr, H., Gamino, K. T., Ghasemi, A., Katzenstein, A.,
Kang, E., Laybourn, M., Lee, J. H., Lee, S.-M., Orellana, K., Pakbin, P.,
Sospedra, M. C., Thai, D., and Zhang, X.: Final 2016 Air Quality Management
Plan, http://www.aqmd.gov/home/air-quality/clean-air-plans/air-quality-mgt-plan/final-2016-aqmp
(last access: 3 May 2021), 2017.
Brown, E. G.: Zero-Emission Vehicles (ZEV) Action Plan 2018 updated, https://cecsb.org/ (last access: 12 May 2021), 2018.
Burke, W.: South Coast Air Quality Management District Annual report 2019, Diamond Bar, CA, https://www.aqmd.gov/home/research/documents-reports (Last access: 12 May 2021), 2020.
California Air Resources Board: California Ambient Air Quality Standards, https://ww2.arb.ca.gov/resources/california-ambient-air-quality-standards
(last access: 1 April 2021), 2007.
California Air Resources Board: 2018 Updates to the California State
Implementation Plan, https://ww2.arb.ca.gov/resources/documents/2018-updates-california-state-implementation-plan-2018-sip-update
(last access: May 2021), 2018.
Carter, W., Luo, D., Malkina, I., and Pierce, J.: Environmental Chamber Studies of Atmospheric Reactivities of Volatile Organic Compounds: Effects of Varying Chamber and Light Source, Technical Report, United States: N, https://doi.org/10.2172/57153, 1995.
Carter, W. P. L. and Heo, G.: Development of revised SAPRC aromatics
mechanisms, Atmos. Environ., 77, 404–414,
https://doi.org/10.1016/J.ATMOSENV.2013.05.021, 2013.
Cazorla, M., Brune, W. H., Ren, X., and Lefer, B.: Direct measurement of ozone production rates in Houston in 2009 and comparison with two estimation methods, Atmos. Chem. Phys., 12, 1203–1212, https://doi.org/10.5194/acp-12-1203-2012, 2012.
Chen, S. P., Liu, T. H., Chen, T. F., Yang, C. F. O., Wang, J. L., and Chang,
J. S.: Diagnostic modeling of PAMS VOC observation, Environ. Sci. Technol.,
44, 4635–4644, https://doi.org/10.1021/es903361r, 2010.
Chossière, G. P., Xu, H., Dixit, Y., Isaacs, S., Eastham, S. D.,
Allroggen, F., Speth, R. L., and Barrett, S. R. H.: Air pollution impacts of
COVID-19–related containment measures, Sci. Adv., 7, 1178, https://doi.org/10.1126/sciadv.abe1178, 2021.
Coles, S.: An Introduction to Statistical Modeling of Extreme Values, 3rd edn., Vol. 208, Springer London, London, ISBN: 978-1-84996-874-4, https://doi.org/10.1007/978-1-4471-3675-0, 2001.
Cox, P., Delao, A., and Komorniczak, A.: The California Almanac of Emissions and Air Quality – 2013 Edition, https://www.arb.ca.gov/aqd/almanac/almanac13/almanac13.htm, (last access: 12 May 2021) 2013.
De Smedt, I., Theys, N., Yu, H., Danckaert, T., Lerot, C., Compernolle, S., Van Roozendael, M., Richter, A., Hilboll, A., Peters, E., Pedergnana, M., Loyola, D., Beirle, S., Wagner, T., Eskes, H., van Geffen, J., Boersma, K. F., and Veefkind, P.: Algorithm theoretical baseline for formaldehyde retrievals from S5P TROPOMI and from the QA4ECV project, Atmos. Meas. Tech., 11, 2395–2426, https://doi.org/10.5194/amt-11-2395-2018, 2018.
Duncan, B. N., Yoshida, Y., Olson, J. R., Sillman, S., Martin, R. V.,
Lamsal, L., Hu, Y., Pickering, K. E., Retscher, C., Allen, D. J., and
Crawford, J. H.: Application of OMI observations to a space-based indicator
of NOx and VOC controls on surface ozone formation, Atmos. Environ., 44,
2213–2223, https://doi.org/10.1016/j.atmosenv.2010.03.010, 2010.
Gilleland, E. and Katz, R. W.: ExtRemes 2.0: An extreme value analysis
package in R, J. Stat. Softw., 72, 1–39, https://doi.org/10.18637/jss.v072.i08,
2016.
Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C.: Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 3181–3210, https://doi.org/10.5194/acp-6-3181-2006, 2006.
Guenther, A. B., Monson, R. K., and Fall, R.: Isoprene and monoterpene
emission rate variability: Observations with eucalyptus and emission rate
algorithm development, J. Geophys. Res., 96, 10799,
https://doi.org/10.1029/91jd00960, 1991.
Howard, C. J., Yang, W., Green, P. G., Mitloehner, F., Malkina, I. L.,
Flocchini, R. G., and Kleeman, M. J.: Direct measurements of the ozone
formation potential from dairy cattle emissions using a transportable smog
chamber, Atmos. Environ., 42, 5267–5277,
https://doi.org/10.1016/j.atmosenv.2008.02.064, 2008.
Howard, C. J., Kumar, A., Mitloehner, F., Stackhouse, K., Green, P. G.,
Flocchini, R. G., and Kleeman, M. J.: Direct measurements of the ozone
formation potential from livestock and poultry waste emissions, Environ.
Sci. Technol., 44, 2292–2298, https://doi.org/10.1021/es901916b, 2010a.
Howard, C. J., Kumar, A., Malkina, I., Mitloehner, F., Green, P. G.,
Flocchini, R. G., and Kleeman, M. J.: Reactive organic gas emissions from
livestock feed contribute significantly to ozone production in central
California, Environ. Sci. Technol., 44, 2309–2314,
https://doi.org/10.1021/es902864u, 2010b.
Hudman, R. C., Murray, L. T., Jacob, D. J., Millet, D. B., Turquety, S., Wu,
S., Blake, D. R., Goldstein, A. H., Holloway, J. S., and Sachse, G. W.:
Biogenic versus anthropogenic sources of CO in the United States, Geophys.
Res. Lett., 35, L04801, https://doi.org/10.1029/2007GL032393, 2008.
Ialongo, I., Virta, H., Eskes, H., Hovila, J., and Douros, J.: Comparison of TROPOMI/Sentinel-5 Precursor NO2 observations with ground-based measurements in Helsinki, Atmos. Meas. Tech., 13, 205–218, https://doi.org/10.5194/amt-13-205-2020, 2020.
Jacob, D. J. and Winner, D. A.: Effect of climate change on air quality,
Atmos. Environ., 43, 51–63, https://doi.org/10.1016/j.atmosenv.2008.09.051, 2009.
Jaffe, D. A. and Wigder, N. L.: Ozone production from wildfires: A critical
review, Atmos. Environ., 51, 1–10, https://doi.org/10.1016/j.atmosenv.2011.11.063,
2012.
Jaffe, D. A., Wigder, N., Downey, N., Pfister, G., Boynard, A., and Reid, S.
B.: Impact of wildfires on ozone exceptional events in the western U.S.,
Environ. Sci. Technol., 47, 11065–11072, https://doi.org/10.1021/es402164f, 2013.
Jing, P., Lu, Z., and Steiner, A. L.: The ozone-climate penalty in the
Midwestern U.S., Atmos. Environ., 170, 130–142,
https://doi.org/10.1016/j.atmosenv.2017.09.038, 2017.
Jin, X., Fiore, A. M., Murray, L. T., Valin, L. C., Lamsal, L. N., Duncan,
B., Folkert Boersma, K., De Smedt, I., Abad, G. G., Chance, K., and Tonnesen,
G. S.: Evaluating a Space-Based Indicator of Surface Ozone-NOx-VOC
Sensitivity Over Midlatitude Source Regions and Application to Decadal
Trends, J. Geophys. Res.-Atmos., 122, 10439–10461,
https://doi.org/10.1002/2017JD026720, 2017.
Jin, X., Fiore, A., Fiore, A., Boersma, K. F., De Smedt, I., and Valin, L.: Inferring Changes in Summertime Surface Ozone-NOx−VOC Chemistry over U.S. Urban Areas from Two Decades of Satellite and Ground-Based Observations, Environ. Sci. Technol., 54, 6518–6529, https://doi.org/10.1021/acs.est.9b07785, 2020.
Jorga, S. D., Kaltsonoudis, C., Liangou, A., and Pandis, S. N.: Measurement
of Formation Rates of Secondary Aerosol in the Ambient Urban Atmosphere
Using a Dual Smog Chamber System, Environ. Sci. Technol., 54, 1336–1343,
https://doi.org/10.1021/acs.est.9b03479, 2020.
Kaltsonoudis, C., Jorga, S. D., Louvaris, E., Florou, K., and Pandis, S. N.: A portable dual-smog-chamber system for atmospheric aerosol field studies, Atmos. Meas. Tech., 12, 2733–2743, https://doi.org/10.5194/amt-12-2733-2019, 2019.
Kleinman, L. I.: The dependence of tropospheric ozone production rate on
ozone precursors, Atmos. Environ., 39, 575–586,
https://doi.org/10.1016/j.atmosenv.2004.08.047, 2005.
Kroll, J. H., Heald, C. L., Cappa, C. D., Farmer, D. K., Fry, J. L., Murphy,
J. G., and Steiner, A. L.: The complex chemical effects of COVID-19 shutdowns
on air quality, Nat. Chem., 12, 777–779, https://doi.org/10.1038/s41557-020-0535-z,
2020.
LaFranchi, B. W., Goldstein, A. H., and Cohen, R. C.: Observations of the temperature dependent response of ozone to NOx reductions in the Sacramento, CA urban plume, Atmos. Chem. Phys., 11, 6945–6960, https://doi.org/10.5194/acp-11-6945-2011, 2011.
Lindaas, J., Farmer, D. K., Pollack, I. B., Abeleira, A., Flocke, F., Roscioli, R., Herndon, S., and Fischer, E. V.: Changes in ozone and precursors during two aged wildfire smoke events in the Colorado Front Range in summer 2015, Atmos. Chem. Phys., 17, 10691–10707, https://doi.org/10.5194/acp-17-10691-2017, 2017.
Li, Y., Alaimo, C. P., Kim, M., Kado, N. Y., Peppers, J., Xue, J., Wan, C.,
Green, P. G., Zhang, R., Jenkins, B. M., Vogel, C. F. A., Wuertz, S., Young,
T. M., and Kleeman, M. J.: Composition and Toxicity of Biogas Produced from
Different Feedstocks in California, Environ. Sci. Technol., 53, 11569–11579, https://doi.org/10.1021/acs.est.9b03003, 2019.
Liu, J., Lipsitt, J., Jerrett, M., and Zhu, Y.: Decreases in Near-Road NO and
NO2 Concentrations during the COVID-19 Pandemic in California, Environ. Sci.
Tech. Let., 8, 161–167, https://doi.org/10.1021/acs.estlett.0c00815, 2020.
Liu, Q., Harris, J. T., Chiu, L. S., Sun, D., Houser, P. R., Yu, M., Duffy,
D. Q., Little, M. M., and Yang, C.: Spatiotemporal impacts of COVID-19 on air
pollution in California, USA, Sci. Total Environ., 750, 141592,
https://doi.org/10.1016/j.scitotenv.2020.141592, 2021.
Lu, X., Zhang, L., Yue, X., Zhang, J., Jaffe, D. A., Stohl, A., Zhao, Y., and Shao, J.: Wildfire influences on the variability and trend of summer surface ozone in the mountainous western United States, Atmos. Chem. Phys., 16, 14687–14702, https://doi.org/10.5194/acp-16-14687-2016, 2016.
Martin, R. V., Fiore, A. M., and Van Donkelaar, A.: Space-based diagnosis of
surface ozone sensitivity to anthropogenic emissions, Geophys. Res. Lett.,
31, 2–5, https://doi.org/10.1029/2004gl019416, 2004.
McDonald, B. C., De Gouw, J. A., Gilman, J. B., Jathar, S. H., Akherati, A.,
Cappa, C. D., Jimenez, J. L., Lee-Taylor, J., Hayes, P. L., McKeen, S. A.,
Cui, Y. Y., Kim, S. W., Gentner, D. R., Isaacman-VanWertz, G., Goldstein, A.
H., Harley, R. A., Frost, G. J., Roberts, J. M., Ryerson, T. B., and Trainer,
M.: Volatile chemical products emerging as largest petrochemical source of
urban organic emissions, Science, 359, 760–764,
https://doi.org/10.1126/science.aaq0524, 2018.
Meng, Z., Dabdub, D., and Seinfeld, J. H.: Chemical coupling between
atmospheric ozone and particulate matter, Science, 277,
116–119, https://doi.org/10.1126/science.277.5322.116, 1997.
Misztal, P. K., Karl, T., Weber, R., Jonsson, H. H., Guenther, A. B., and Goldstein, A. H.: Airborne flux measurements of biogenic isoprene over California, Atmos. Chem. Phys., 14, 10631–10647, https://doi.org/10.5194/acp-14-10631-2014, 2014.
Nussbaumer, C. M. and Cohen, R. C.: The Role of Temperature and NOx in Ozone
Trends in the Los Angeles Basin, Environ. Sci. Technol., 54,
15652–15659, https://doi.org/10.1021/acs.est.0c04910, 2020.
Parker, H. A., Hasheminassab, S., Crounse, J. D., Roehl, C. M., and Wennberg,
P. O.: Impacts of Traffic Reductions Associated With COVID-19 on Southern
California Air Quality, Geophys. Res. Lett., 47, 1–9,
https://doi.org/10.1029/2020GL090164, 2020.
Parrish, D. D., Xu, J., Croes, B., and Shao, M.: Air quality improvement in
Los Angeles – perspectives for developing cities, Front. Environ. Sci. En.,
10, 11, https://doi.org/10.1007/s11783-016-0859-5, 2016.
Parrish, D. D., Young, L. M., Newman, M. H., Aikin, K. C., and Ryerson, T.
B.: Ozone Design Values in Southern California's Air Basins: Temporal
Evolution and U.S. Background Contribution, J. Geophys. Res.-Atmos.,
122, 11166–11182, https://doi.org/10.1002/2016JD026329, 2017.
Platt, S. M., El Haddad, I., Zardini, A. A., Clairotte, M., Astorga, C., Wolf, R., Slowik, J. G., Temime-Roussel, B., Marchand, N., Ježek, I., Drinovec, L., Močnik, G., Möhler, O., Richter, R., Barmet, P., Bianchi, F., Baltensperger, U., and Prévôt, A. S. H.: Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber, Atmos. Chem. Phys., 13, 9141–9158, https://doi.org/10.5194/acp-13-9141-2013, 2013.
Pollack, I. B., Ryerson, T. B., Trainer, M., Parrish, D. D., Andrews, A. E.,
Atlas, E. L., Blake, D. R., Brown, S. S., Commane, R., Daube, B. C., De
Gouw, J. A., Dubé, W. P., Flynn, J., Frost, G. J., Gilman, J. B.,
Grossberg, N., Holloway, J. S., Kofler, J., Kort, E. A., Kuster, W. C.,
Lang, P. M., Lefer, B., Lueb, R. A., Neuman, J. A., Nowak, J. B., Novelli,
P. C., Peischl, J., Perring, A. E., Roberts, J. M., Santoni, G., Schwarz, J.
P., Spackman, J. R., Wagner, N. L., Warneke, C., Washenfelder, R. A., Wofsy,
S. C., and Xiang, B.: Airborne and ground-based observations of a weekend
effect in ozone, precursors, and oxidation products in the California South
Coast Air Basin, J. Geophys. Res.-Atmos., 117, 1–14,
https://doi.org/10.1029/2011JD016772, 2012.
Pollack, I. B., Ryerson, T. B., Trainer, M., Neuman, J. A., Roberts, J. M.,
and Parrish, D. D.: Trends in ozone, its precursors, and related secondary
oxidation products in Los Angeles, California: A synthesis of measurements
from 1960 to 2010, J. Geophys. Res.-Atmos., 118, 5893–5911,
https://doi.org/10.1002/jgrd.50472, 2013a.
Pollack, I. B., Ryerson, T. B., Trainer, M., Neuman, J. A., Roberts, J. M.,
Parrish, D. D., Pollack, C., Ryerson, T. B., Trainer, M., Roberts, J. M.,
and Parrish, D. D.: Trends in ozone, its precursors, and related secondary
oxidation products in Los Angeles, California: A synthesis of measurements
from 1960 to 2010, J. Geophys. Res.-Atmos., 118, 5893–5911,
https://doi.org/10.1002/JGRD.50472, 2013b.
Presto, A. A., Nguyen, N. T., Ranjan, M., Reeder, A. J., Lipsky, E. M.,
Hennigan, C. J., Miracolo, M. A., Riemer, D. D., and Robinson, A. L.: Fine
particle and organic vapor emissions from staged tests of an in-use aircraft
engine, Atmos. Environ., 45, 3603–3612,
https://doi.org/10.1016/J.ATMOSENV.2011.03.061, 2011.
Pusede, S. E. and Cohen, R. C.: On the observed response of ozone to NOx and VOC reactivity reductions in San Joaquin Valley California 1995–present, Atmos. Chem. Phys., 12, 8323–8339, https://doi.org/10.5194/acp-12-8323-2012, 2012.
Pusede, S. E., Steiner, A. L., and Cohen, R. C.: Temperature and Recent
Trends in the Chemistry of Continental Surface Ozone, Chem. Rev., 115,
3898–3918, https://doi.org/10.1021/cr5006815, 2015.
Rasmussen, D. J., Hu, J., Mahmud, A., and Kleeman, M. J.: The ozone-climate
penalty: Past, present, and future, Environ. Sci. Technol., 47,
14258–14266, https://doi.org/10.1021/es403446m, 2013.
Schroeder, J. R., Crawford, J. H., Fried, A., Walega, J., Weinheimer, A.,
Wisthaler, A., Müller, M., Mikoviny, T., Chen, G., Shook, M., Blake, D.
R., and Tonnesen, G. S.: New insights into the column
ratio as an indicator of near-surface ozone sensitivity, J. Geophys. Res.-Atmos., 122, 8885–8907, https://doi.org/10.1002/2017JD026781, 2017a.
Schroeder, J. R., Crawford, J. H., Fried, A., Walega, J., Weinheimer, A.,
Wisthaler, A., Müller, M., Mikoviny, T., Chen, G., Shook, M., Blake, D.
R., and Tonnesen, G. S.: New insights into the column ratio as an
indicator of near-surface ozone sensitivity, J. Geophys. Res.-Atmos.,
122, 8885–8907, https://doi.org/10.1002/2017JD026781, 2017b.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric chemistry and physics: from air pollution to climate change, 3rd edn., John Wiley & Sons, Incorporated, Hoboken, New Jersey, ISBN: 978-1-118-94740-1, 2016.
Shah, R. U., Coggon, M. M., Gkatzelis, G. I., McDonald, B. C., Tasoglou, A.,
Huber, H., Gilman, J., Warneke, C., Robinson, A. L., and Presto, A. A.: Urban
Oxidation Flow Reactor Measurements Reveal Significant Secondary Organic
Aerosol Contributions from Volatile Emissions of Emerging Importance,
Environ. Sci. Technol., 54, 714–725, https://doi.org/10.1021/acs.est.9b06531, 2020.
Sillman, S.: The use of NOy, H2O2, and
HNO3 as indicators for ozone-NOx-hydrocarbon
sensitivity in urban locations, J. Geophys. Res., 100, 14175,
https://doi.org/10.1029/94JD02953, 1995.
Sillman, S.: The relation between ozone, NO(x) and hydrocarbons in urban and
polluted rural environments, Atmos. Environ., 33, 1821–1845,
https://doi.org/10.1016/S1352-2310(98)00345-8, 1999.
Simon, H., Reff, A., Wells, B., Xing, J., and Frank, N.: Ozone trends across
the United States over a period of decreasing NOx and VOC emissions,
Environ. Sci. Technol., 49, 186–195, https://doi.org/10.1021/es504514z, 2015.
Singh, H. B., Cai, C., Kaduwela, A., Weinheimer, A., and Wisthaler, A.:
Interactions of fire emissions and urban pollution over California: Ozone
formation and air quality simulations, Atmos. Environ., 56, 45–51,
https://doi.org/10.1016/j.atmosenv.2012.03.046, 2012.
South Coast AQMD: Facility-Based Mobile Source Measure focused on reducing
emissions associated with vehicles and mobile equipment operating in and out
of warehouse distribution centers, https://www.aqmd.gov/home/air-quality/clean-air-plans/air-quality-mgt-plan/facility-based-mobile-source-measures/warehs-distr-wkng-grp, last access: 12 May 2021.
Steiner, A. L., Tonse, S., Cohen, R. C., Goldstein, A. H., and Harley, R. A.:
Influence of future climate and emissions on regional air quality in
California, J. Geophys. Res., 111, D18303, https://doi.org/10.1029/2005JD006935,
2006.
Steiner, A. L., Cohen, R. C., Harley, R. A., Tonse, S., Millet, D. B., Schade, G. W., and Goldstein, A. H.: VOC reactivity in central California: comparing an air quality model to ground-based measurements, Atmos. Chem. Phys., 8, 351–368, https://doi.org/10.5194/acp-8-351-2008, 2008.
Tonnesen, G. S. and Dennis, R. L.: Analysis of radical propagation
efficiency to assess ozone sensitivity to hydrocarbons and NOx 1. Local
indicators of instantaneous odd oxygen production sensitivity, J. Geophys.
Res. Atmos., 105, 9213–9225, https://doi.org/10.1029/1999JD900371, 2000.
USGCRP: Climate Science Special Report: Fourth National Climate Assessment, Volume I, edited by: Wuebbles, D. J., Fahey, D. W., Hibbard, K. A., Dokken, D. J., Stewart, B. C., and Maycock, T. K., U.S. Global Change Research Program, Washington, DC, USA, 470 pp., https://doi.org/10.7930/J0J964J6, 2017.
US EPA: 2017 National Emissions Inventory Technical Support Documentation, (April), 486, https://www.epa.gov/air-emissions-inventories/2017-national-emissions-inventory-nei-data
(last access: 16 April 2021), 2020a.
US EPA: Integrated Science Assessment (ISA) for ozone and related
photochemical oxidants (Final Report), U.S. Environ. Prot. Agency,
Washington, DC, EPA/600/R-20/012, 2020, https://www.epa.gov/isa/integrated-science-assessment-isa-ozone-and-related-photochemical-oxidants
(last access: 9 June 2021), 2020b.
US EPA: Criteria Air Pollutants, US EPA, https://www.epa.gov/criteria-air-pollutants, last access: 1 April 2021.
van Geffen, J., Boersma, K. F., Eskes, H., Sneep, M., ter Linden, M., Zara, M., and Veefkind, J. P.: S5P TROPOMI NO2 slant column retrieval: method, stability, uncertainties and comparisons with OMI, Atmos. Meas. Tech., 13, 1315–1335, https://doi.org/10.5194/amt-13-1315-2020, 2020.
Van Geffen, J., Eskes, H., Boersma, K., Maasakkers, J., and Veefkind, J.: TROPOMI ATBD of the total and tropospheric NO2 data products, S5P-KNMI-L2-0005-RP Issue 2.2.0, Royal Netherlands Meteorological Institute (KNMI), https://sentinel.esa.int/documents/247904/2476257/Sentinel-5P-TROPOMI-ATBD-NO2-data-products (last access: 20 Febuary 2022), 2021.
Veefkind, J. P., Aben, I., McMullan, K., Förster, H., de Vries, J.,
Otter, G., Claas, J., Eskes, H. J., de Haan, J. F., Kleipool, Q., van Weele,
M., Hasekamp, O., Hoogeveen, R., Landgraf, J., Snel, R., Tol, P., Ingmann,
P., Voors, R., Kruizinga, B., Vink, R., Visser, H., and Levelt, P. F.:
TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global
observations of the atmospheric composition for climate, air quality and
ozone layer applications, Remote Sens. Environ., 120, 70–83,
https://doi.org/10.1016/j.rse.2011.09.027, 2012.
Venecek, M. A., Cai, C., Kaduwela, A., Avise, J., Carter, W. P. L., and
Kleeman, M. J.: Analysis of SAPRC16 chemical mechanism for ambient
simulations, Atmos. Environ., 192, 136–150,
https://doi.org/10.1016/J.ATMOSENV.2018.08.039, 2018.
Verhoelst, T., Compernolle, S., Pinardi, G., Lambert, J.-C., Eskes, H. J., Eichmann, K.-U., Fjæraa, A. M., Granville, J., Niemeijer, S., Cede, A., Tiefengraber, M., Hendrick, F., Pazmiño, A., Bais, A., Bazureau, A., Boersma, K. F., Bognar, K., Dehn, A., Donner, S., Elokhov, A., Gebetsberger, M., Goutail, F., Grutter de la Mora, M., Gruzdev, A., Gratsea, M., Hansen, G. H., Irie, H., Jepsen, N., Kanaya, Y., Karagkiozidis, D., Kivi, R., Kreher, K., Levelt, P. F., Liu, C., Müller, M., Navarro Comas, M., Piters, A. J. M., Pommereau, J.-P., Portafaix, T., Prados-Roman, C., Puentedura, O., Querel, R., Remmers, J., Richter, A., Rimmer, J., Rivera Cárdenas, C., Saavedra de Miguel, L., Sinyakov, V. P., Stremme, W., Strong, K., Van Roozendael, M., Veefkind, J. P., Wagner, T., Wittrock, F., Yela González, M., and Zehner, C.: Ground-based validation of the Copernicus Sentinel-5P TROPOMI NO2 measurements with the NDACC ZSL-DOAS, MAX-DOAS and Pandonia global networks, Atmos. Meas. Tech., 14, 481–510, https://doi.org/10.5194/amt-14-481-2021, 2021.
Vigouroux, C., Langerock, B., Bauer Aquino, C. A., Blumenstock, T., Cheng, Z., De Mazière, M., De Smedt, I., Grutter, M., Hannigan, J. W., Jones, N., Kivi, R., Loyola, D., Lutsch, E., Mahieu, E., Makarova, M., Metzger, J.-M., Morino, I., Murata, I., Nagahama, T., Notholt, J., Ortega, I., Palm, M., Pinardi, G., Röhling, A., Smale, D., Stremme, W., Strong, K., Sussmann, R., Té, Y., van Roozendael, M., Wang, P., and Winkler, H.: TROPOMI–Sentinel-5 Precursor formaldehyde validation using an extensive network of ground-based Fourier-transform infrared stations, Atmos. Meas. Tech., 13, 3751–3767, https://doi.org/10.5194/amt-13-3751-2020, 2020a.
Vigouroux, C., Langerock, B., Bauer Aquino, C. A., Blumenstock, T., Cheng, Z., De Mazière, M., De Smedt, I., Grutter, M., Hannigan, J. W., Jones, N., Kivi, R., Loyola, D., Lutsch, E., Mahieu, E., Makarova, M., Metzger, J.-M., Morino, I., Murata, I., Nagahama, T., Notholt, J., Ortega, I., Palm, M., Pinardi, G., Röhling, A., Smale, D., Stremme, W., Strong, K., Sussmann, R., Té, Y., van Roozendael, M., Wang, P., and Winkler, H.: TROPOMI–Sentinel-5 Precursor formaldehyde validation using an extensive network of ground-based Fourier-transform infrared stations, Atmos. Meas. Tech., 13, 3751–3767, https://doi.org/10.5194/amt-13-3751-2020, 2020b.
Warneke, C., De Gouw, J. A., Holloway, J. S., Peischl, J., Ryerson, T. B.,
Atlas, E., Blake, D., Trainer, M., Parrish, D. D., Warneke, C., De Gouw,
J. A., Holloway, J. S., Peischl, J., Ryerson, T. B., Atlas, E., Blake, D.,
Trainer, M., and Parrish, D. D.: Multiyear trends in volatile organic
compounds in Los Angeles, California: Five decades of decreasing emissions,
J. Geophys. Res.-Atmos., 117, 0–17, https://doi.org/10.1029/2012JD017899, 2012.
Weaver, C. P., Liang, X. Z., Zhu, J., Adams, P. J., Amar, P., Avise, J.,
Caughey, M., Chen, J., Cohen, R. C., Cooter, E., Dawson, J. P., Gilliam, R.,
Gilliland, A., Goldstein, A. H., Grambsch, A., Grano, D., Guenther, A.,
Gustafson, W. I., Harley, R. A., He, S., Hemming, B., Hogrefe, C., Huang, H.
C., Hunt, S. W., Jacob, D. J., Kinney, P. L., Kunkel, K., Lamarque, J. F.,
Lamb, B., Larkin, N. K., Leung, L. R., Liao, K. J., Lin, J. T., Lynn, B. H.,
Manomaiphiboon, K., Mass, C., Mckenzie, D., Mickley, L. J., O'Neill, S. M.,
Nolte, C., Pandis, S. N., Racherla, P. N., Rosenzweig, C., Russell, A. G.,
Salathé, E., Steiner, A. L., Tagaris, E., Tao, Z., Tonse, S.,
Wiedinmyer, C., Williams, A., Winner, D. A., Woo, J. H., Wu, S., and
Wuebbles, D. J.: A preliminary synthesis of modeled climate change impacts
on U.S. regional ozone concentrations, B. Am. Meteorol. Soc., 90,
1843–1863, https://doi.org/10.1175/2009BAMS2568.1, 2009.
Wu, S., Lee, H. J., Anderson, A., Liu, S., Kuwayama, T., Seinfeld, J. H., and Kleeman, M. J.: Direct measurements of ozone response to emissions perturbations in California, Dryad [data set], https://datadryad.org/stash/share/ktJh3AxAs0K7y8Iku8-VL3v7ZuGwBGQodYhRT-wHZ04 (Last access 12 April 2022), 2022.
Ying, Q., Fraser, M. P., Griffin, R. J., Chen, J., and Kleeman, M. J.:
Verification of a source-oriented externally mixed air quality model during
a severe photochemical smog episode, Atmos. Environ., 41, 1521–1538,
https://doi.org/10.1016/J.ATMOSENV.2006.10.004, 2007.
Zhang, Q., Zhou, S., Collier, S., Jaffe, D., Onasch, T., Shilling, J.,
Kleinman, L., and Sedlacek, A.: Understanding composition, formation, and
aging of organic aerosols in wildfire emissions via combined mountain top
and airborne measurements, ACS Symp. Ser., 1299, 363–385,
https://doi.org/10.1021/bk-2018-1299.ch018, 2018.
Short summary
An ozone control experiment usually conducted in the laboratory was installed in a trailer and moved to the outdoor environment to directly confirm that we are controlling the right sources in order to lower ambient ozone concentrations. Adding small amounts of precursor oxides of nitrogen and volatile organic compounds to ambient air showed that the highest ozone concentrations are best controlled by reducing concentrations of oxides of nitrogen. The results confirm satellite measurements.
An ozone control experiment usually conducted in the laboratory was installed in a trailer and...
Altmetrics
Final-revised paper
Preprint