Articles | Volume 22, issue 5
https://doi.org/10.5194/acp-22-3097-2022
https://doi.org/10.5194/acp-22-3097-2022
Technical note
 | 
08 Mar 2022
Technical note |  | 08 Mar 2022

Technical note: Real-time diagnosis of the hygroscopic growth micro-dynamics of nanoparticles with Fourier transform infrared spectroscopy

Xiuli Wei, Haosheng Dai, Huaqiao Gui, Jiaoshi Zhang, Yin Cheng, Jie Wang, Yixin Yang, Youwen Sun, and Jianguo Liu

Related authors

Fine particles from Independence Day fireworks events: chemical characterization and source apportionment
Jie Zhang, Sara Lance, Jeffrey M. Freedman, Yele Sun, Brian A. Crandall, Xiuli Wei, and James J. Schwab
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-529,https://doi.org/10.5194/acp-2018-529, 2018
Preprint retracted
Short summary

Related subject area

Subject: Aerosols | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Exometabolomic exploration of culturable airborne microorganisms from an urban atmosphere
Rui Jin, Wei Hu, Peimin Duan, Ming Sheng, Dandan Liu, Ziye Huang, Mutong Niu, Libin Wu, Junjun Deng, and Pingqing Fu
Atmos. Chem. Phys., 25, 1805–1829, https://doi.org/10.5194/acp-25-1805-2025,https://doi.org/10.5194/acp-25-1805-2025, 2025
Short summary
Measurement Report: Changes in ammonia emissions since the 18th century in south-eastern Europe inferred from an Elbrus (Caucasus, Russia) ice-core record
Michel Legrand, Mstislav Vorobyev, Daria Bokuchava, Stanislav Kutuzov, Andreas Plach, Andreas Stohl, Alexandra Khairedinova, Vladimir Mikhalenko, Maria Vinogradova, Sabine Eckhardt, and Susanne Preunkert
Atmos. Chem. Phys., 25, 1385–1399, https://doi.org/10.5194/acp-25-1385-2025,https://doi.org/10.5194/acp-25-1385-2025, 2025
Short summary
Atmospheric oxidation of 1,3-butadiene: influence of seed aerosol acidity and relative humidity on SOA composition and the production of air toxic compounds
Mohammed Jaoui, Klara Nestorowicz, Krzysztof J. Rudzinski, Michael Lewandowski, Tadeusz E. Kleindienst, Julio Torres, Ewa Bulska, Witold Danikiewicz, and Rafal Szmigielski
Atmos. Chem. Phys., 25, 1401–1432, https://doi.org/10.5194/acp-25-1401-2025,https://doi.org/10.5194/acp-25-1401-2025, 2025
Short summary
Enhanced sulfate formation in mixed biomass burning and sea-salt interactions mediated by photosensitization: effects of chloride, nitrogen-containing compounds, and atmospheric aging
Rongzhi Tang, Jialiang Ma, Ruifeng Zhang, Weizhen Cui, Yuanyuan Qin, Yangxi Chu, Yiming Qin, Alexander L. Vogel, and Chak K. Chan
Atmos. Chem. Phys., 25, 425–439, https://doi.org/10.5194/acp-25-425-2025,https://doi.org/10.5194/acp-25-425-2025, 2025
Short summary
Heterogeneous formation and light absorption of secondary organic aerosols from acetone photochemical reactions: remarkably enhancing effects of seeds and ammonia
Si Zhang, Yining Gao, Xinbei Xu, Luyao Chen, Can Wu, Zheng Li, Rongjie Li, Binyu Xiao, Xiaodi Liu, Rui Li, Fan Zhang, and Gehui Wang
Atmos. Chem. Phys., 24, 14177–14190, https://doi.org/10.5194/acp-24-14177-2024,https://doi.org/10.5194/acp-24-14177-2024, 2024
Short summary

Cited articles

Abbott, T. H. and Cronin, T. W.: Aerosol invigoration of atmospheric convection through increases in humidity, Science, 371, 83–85, https://doi.org/10.1126/science.abc5181, 2021. 
Braban, C. F., Carroll, M. F., Styler, S. A., and Abbatt, J. P. D.: Phase Transitions of Malonic and Oxalic Acid Aerosols, J. Phys. Chem. A, 107, 6594–6602, https://doi.org/10.1021/jp034483f, 2003. 
Carlton, A. G., Christiansen, A. E., Flesch, M. M., Hennigan, C. J., and Sareen, N.: Multiphase Atmospheric Chemistry in Liquid Water: Impacts and Controllability of Organic Aerosol, Accounts Chem. Res., 53, 1715–1723, https://doi.org/10.1021/acs.accounts.0c00301, 2020. 
Cruz, C. N. and Pandis, S. N.: Deliquescence and Hygroscopic Growth of Mixed Inorganic-Organic Atmospheric Aerosol, Environ. Sci. Technol., 34, 4313–4319, https://doi.org/10.1021/es9907109, 2000. 
Dong, J.-L., Li, X.-H., Zhao, L.-J., Xiao, H.-S., Wang, F., Guo, X., and Zhang, Y.-H.: Raman Observation of the Interactions between NH4+, SO42-, and H2O in Supersaturated (NH4)2SO4 Droplets, J. Phys. Chem. B, 111, 12170–12176, https://doi.org/10.1021/jp072772o, 2007. 
Download
Short summary
We demonstrated the usage of the Fourier transform infrared (FTIR) spectroscopic technique to characterize in real time the hygroscopic growth properties of nanoparticles and their phase transition micro-dynamics at the molecular level. We first realize real-time measurements of water content and dry nanoparticle mass to characterize hygroscopic growth factors. We then identify in real time the hydration interactions and the dynamic hygroscopic growth process of the functional groups.
Share
Altmetrics
Final-revised paper
Preprint