Articles | Volume 22, issue 5
https://doi.org/10.5194/acp-22-2975-2022
https://doi.org/10.5194/acp-22-2975-2022
Research article
 | 
07 Mar 2022
Research article |  | 07 Mar 2022

The 2019 Raikoke volcanic eruption – Part 2: Particle-phase dispersion and concurrent wildfire smoke emissions

Martin J. Osborne, Johannes de Leeuw, Claire Witham, Anja Schmidt, Frances Beckett, Nina Kristiansen, Joelle Buxmann, Cameron Saint, Ellsworth J. Welton, Javier Fochesatto, Ana R. Gomes, Ulrich Bundke, Andreas Petzold, Franco Marenco, and Jim Haywood

Related authors

Including ash in UKESM1 model simulations of the Raikoke volcanic eruption reveals improved agreement with observations
Alice F. Wells, Andy Jones, Martin Osborne, Lilly Damany-Pearce, Daniel G. Partridge, and James M. Haywood
Atmos. Chem. Phys., 23, 3985–4007, https://doi.org/10.5194/acp-23-3985-2023,https://doi.org/10.5194/acp-23-3985-2023, 2023
Short summary
Characterizing the performance of a POPS miniaturized optical particle counter when operated on a quadcopter drone
Zixia Liu, Martin Osborne, Karen Anderson, Jamie D. Shutler, Andy Wilson, Justin Langridge, Steve H. L. Yim, Hugh Coe, Suresh Babu, Sreedharan K. Satheesh, Paquita Zuidema, Tao Huang, Jack C. H. Cheng, and James Haywood
Atmos. Meas. Tech., 14, 6101–6118, https://doi.org/10.5194/amt-14-6101-2021,https://doi.org/10.5194/amt-14-6101-2021, 2021
Short summary
The 2019 Raikoke volcanic eruption – Part 1: Dispersion model simulations and satellite retrievals of volcanic sulfur dioxide
Johannes de Leeuw, Anja Schmidt, Claire S. Witham, Nicolas Theys, Isabelle A. Taylor, Roy G. Grainger, Richard J. Pope, Jim Haywood, Martin Osborne, and Nina I. Kristiansen
Atmos. Chem. Phys., 21, 10851–10879, https://doi.org/10.5194/acp-21-10851-2021,https://doi.org/10.5194/acp-21-10851-2021, 2021
Short summary
Saharan dust and biomass burning aerosols during ex-hurricane Ophelia: observations from the new UK lidar and sun-photometer network
Martin Osborne, Florent F. Malavelle, Mariana Adam, Joelle Buxmann, Jaqueline Sugier, Franco Marenco, and Jim Haywood
Atmos. Chem. Phys., 19, 3557–3578, https://doi.org/10.5194/acp-19-3557-2019,https://doi.org/10.5194/acp-19-3557-2019, 2019
Short summary

Related subject area

Subject: Aerosols | Research Activity: Remote Sensing | Altitude Range: Mesosphere | Science Focus: Physics (physical properties and processes)
Responses of CIPS/AIM noctilucent clouds to the interplanetary magnetic field
Liang Zhang, Brian Tinsley, and Limin Zhou
Atmos. Chem. Phys., 22, 13355–13370, https://doi.org/10.5194/acp-22-13355-2022,https://doi.org/10.5194/acp-22-13355-2022, 2022
Short summary
Solar and lunar tides in noctilucent clouds as determined by ground-based lidar
Jens Fiedler and Gerd Baumgarten
Atmos. Chem. Phys., 18, 16051–16061, https://doi.org/10.5194/acp-18-16051-2018,https://doi.org/10.5194/acp-18-16051-2018, 2018
Short summary
Measurements of global distributions of polar mesospheric clouds during 2005–2012 by MIPAS/Envisat
Maya García-Comas, Manuel López-Puertas, Bernd Funke, Á. Aythami Jurado-Navarro, Angela Gardini, Gabriele P. Stiller, Thomas von Clarmann, and Michael Höpfner
Atmos. Chem. Phys., 16, 6701–6719, https://doi.org/10.5194/acp-16-6701-2016,https://doi.org/10.5194/acp-16-6701-2016, 2016
Short summary
NLC and the background atmosphere above ALOMAR
J. Fiedler, G. Baumgarten, U. Berger, P. Hoffmann, N. Kaifler, and F.-J. Lübken
Atmos. Chem. Phys., 11, 5701–5717, https://doi.org/10.5194/acp-11-5701-2011,https://doi.org/10.5194/acp-11-5701-2011, 2011
Coincident measurements of PMSE and NLC above ALOMAR (69° N, 16° E) by radar and lidar from 1999–2008
N. Kaifler, G. Baumgarten, J. Fiedler, R. Latteck, F.-J. Lübken, and M. Rapp
Atmos. Chem. Phys., 11, 1355–1366, https://doi.org/10.5194/acp-11-1355-2011,https://doi.org/10.5194/acp-11-1355-2011, 2011

Cited articles

Adam, M., Buxmann, J., Freeman, N., Horseman, A., Salmon, C., Sugier, J., and Bennett, R.: The UK Lidar-sunphotometer operational volcanic ash monitoring network, EPJ Web Conf., 176, 09006, https://doi.org/10.1051/epjconf/201817609006, 2018. a
Adam, M., Nicolae, D., Stachlewska, I. S., Papayannis, A., and Balis, D.: Biomass burning events measured by lidars in EARLINET – Part 1: Data analysis methodology, Atmos. Chem. Phys., 20, 13905–13927, https://doi.org/10.5194/acp-20-13905-2020, 2020. a, b
Alvarez, J. M., Vaughan, M. A., Hostetler, C. A., Hunt, W. H., and Winker, D. M.: Calibration Technique for Polarization-Sensitive Lidars, J. Atmos. Ocean. Tech., 23, 683–699, https://doi.org/10.1175/JTECH1872.1, 2006. a
Ansmann, A., Wandinger, U., Riebesell, M., Weitkamp, C., and Michaelis, W.: Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar, Appl. Optics, 31, 7113–7131, https://doi.org/10.1364/AO.31.007113, 1992. a
Ansmann, A., Tesche, M., Seifert, P., Groß, S., Freudenthaler, V., Apituley, A., Wilson, K. M., Serikov, I., Linné, H., Heinold, B., Hiebsch, A., Schnell, F., Schmidt, J., Mattis, I., Wandinger, U., and Wiegner, M.: Ash and fine-mode particle mass profiles from EARLINET-AERONET observations over central Europe after the eruptions of the Eyjafjallajökull volcano in 2010, J. Geophys. Res.-Atmos., 116, D00U02, https://doi.org/10.1029/2010JD015567, 2011. a, b, c, d, e, f
Short summary
Using the Met Office NAME dispersion model, supported by satellite- and ground-based remote-sensing observations, we describe the dispersion of aerosols from the 2019 Raikoke eruption and the concurrent wildfires in Alberta Canada. We show how the synergy of dispersion modelling and multiple observation sources allowed observers in the London VAAC to arrive at a more complete picture of the aerosol loading at altitudes commonly used by aviation.
Altmetrics
Final-revised paper
Preprint