Articles | Volume 22, issue 4
https://doi.org/10.5194/acp-22-2467-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-2467-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Free amino acid quantification in cloud water at the Puy de Dôme station (France)
Pascal Renard
Université Clermont Auvergne, Laboratoire de Météorologie
Physique, OPGC/CNRS UMR 6016, Clermont-Ferrand, France
Maxence Brissy
Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de
Chimie de Clermont-Ferrand (ICCF), Clermont-Ferrand, France
Florent Rossi
Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de
Chimie de Clermont-Ferrand (ICCF), Clermont-Ferrand, France
Martin Leremboure
Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de
Chimie de Clermont-Ferrand (ICCF), Clermont-Ferrand, France
Saly Jaber
Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de
Chimie de Clermont-Ferrand (ICCF), Clermont-Ferrand, France
Jean-Luc Baray
Université Clermont Auvergne, Laboratoire de Météorologie
Physique, OPGC/CNRS UMR 6016, Clermont-Ferrand, France
Université Clermont Auvergne, Observatoire de Physique du Globe
de Clermont-Ferrand, UAR 833, Clermont-Ferrand, France
Angelica Bianco
Université Clermont Auvergne, Laboratoire de Météorologie
Physique, OPGC/CNRS UMR 6016, Clermont-Ferrand, France
Anne-Marie Delort
CORRESPONDING AUTHOR
Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de
Chimie de Clermont-Ferrand (ICCF), Clermont-Ferrand, France
Laurent Deguillaume
CORRESPONDING AUTHOR
Université Clermont Auvergne, Laboratoire de Météorologie
Physique, OPGC/CNRS UMR 6016, Clermont-Ferrand, France
Université Clermont Auvergne, Observatoire de Physique du Globe
de Clermont-Ferrand, UAR 833, Clermont-Ferrand, France
Related authors
Maud Leriche, Pierre Tulet, Laurent Deguillaume, Frédéric Burnet, Aurélie Colomb, Agnès Borbon, Corinne Jambert, Valentin Duflot, Stéphan Houdier, Jean-Luc Jaffrezo, Mickaël Vaïtilingom, Pamela Dominutti, Manon Rocco, Camille Mouchel-Vallon, Samira El Gdachi, Maxence Brissy, Maroua Fathalli, Nicolas Maury, Bert Verreyken, Crist Amelynck, Niels Schoon, Valérie Gros, Jean-Marc Pichon, Mickael Ribeiro, Eric Pique, Emmanuel Leclerc, Thierry Bourrianne, Axel Roy, Eric Moulin, Joël Barrie, Jean-Marc Metzger, Guillaume Péris, Christian Guadagno, Chatrapatty Bhugwant, Jean-Mathieu Tibere, Arnaud Tournigand, Evelyn Freney, Karine Sellegri, Anne-Marie Delort, Pierre Amato, Muriel Joly, Jean-Luc Baray, Pascal Renard, Angelica Bianco, Anne Réchou, and Guillaume Payen
Atmos. Chem. Phys., 24, 4129–4155, https://doi.org/10.5194/acp-24-4129-2024, https://doi.org/10.5194/acp-24-4129-2024, 2024
Short summary
Short summary
Aerosol particles in the atmosphere play a key role in climate change and air pollution. A large number of aerosol particles are formed from the oxidation of volatile organic compounds (VOCs and secondary organic aerosols – SOA). An important field campaign was organized on Réunion in March–April 2019 to understand the formation of SOA in a tropical atmosphere mostly influenced by VOCs emitted by forest and in the presence of clouds. This work synthesizes the results of this campaign.
Pamela A. Dominutti, Pascal Renard, Mickaël Vaïtilingom, Angelica Bianco, Jean-Luc Baray, Agnès Borbon, Thierry Bourianne, Frédéric Burnet, Aurélie Colomb, Anne-Marie Delort, Valentin Duflot, Stephan Houdier, Jean-Luc Jaffrezo, Muriel Joly, Martin Leremboure, Jean-Marc Metzger, Jean-Marc Pichon, Mickaël Ribeiro, Manon Rocco, Pierre Tulet, Anthony Vella, Maud Leriche, and Laurent Deguillaume
Atmos. Chem. Phys., 22, 505–533, https://doi.org/10.5194/acp-22-505-2022, https://doi.org/10.5194/acp-22-505-2022, 2022
Short summary
Short summary
We present here the results obtained during an intensive field campaign conducted in March to April 2019 in Reunion. Our study integrates a comprehensive chemical and microphysical characterization of cloud water. Our investigations reveal that air mass history and cloud microphysical properties do not fully explain the variability observed in their chemical composition. This highlights the complexity of emission sources, multiphasic exchanges, and transformations in clouds.
Mickael Vaitilingom, Christophe Bernard, Mickael Ribeiro, Christophe Verhaege, Christophe Gourbeyre, Christophe Berthod, Angelica Bianco, and Laurent Deguillaume
Atmos. Meas. Tech., 18, 1073–1090, https://doi.org/10.5194/amt-18-1073-2025, https://doi.org/10.5194/amt-18-1073-2025, 2025
Short summary
Short summary
The new collector BOOGIE has been designed to sample cloud droplets and evaluated. Computational fluid dynamics simulations are performed to evaluate the sampling efficiency for different droplet sizes. In situ measurements show very good water collection rates and sampling efficiency. BOOGIE is compared to other cloud collectors and the efficiency is comparable, as are the chemical and biological compositions.
Lucas Pailler, Laurent Deguillaume, Hélène Lavanant, Isabelle Schmitz, Marie Hubert, Edith Nicol, Mickaël Ribeiro, Jean-Marc Pichon, Mickaël Vaïtilingom, Pamela Dominutti, Frédéric Burnet, Pierre Tulet, Maud Leriche, and Angelica Bianco
Atmos. Chem. Phys., 24, 5567–5584, https://doi.org/10.5194/acp-24-5567-2024, https://doi.org/10.5194/acp-24-5567-2024, 2024
Short summary
Short summary
The composition of dissolved organic matter of cloud water has been investigated through non-targeted high-resolution mass spectrometry on only a few samples collected in the Northern Hemisphere. In this work, the chemical composition of samples collected at Réunion Island (SH) is investigated and compared to samples collected at Puy de Dôme (NH). Sampling, analysis and data treatment with the same methodology produced a unique dataset for investigating the molecular composition of clouds.
Maud Leriche, Pierre Tulet, Laurent Deguillaume, Frédéric Burnet, Aurélie Colomb, Agnès Borbon, Corinne Jambert, Valentin Duflot, Stéphan Houdier, Jean-Luc Jaffrezo, Mickaël Vaïtilingom, Pamela Dominutti, Manon Rocco, Camille Mouchel-Vallon, Samira El Gdachi, Maxence Brissy, Maroua Fathalli, Nicolas Maury, Bert Verreyken, Crist Amelynck, Niels Schoon, Valérie Gros, Jean-Marc Pichon, Mickael Ribeiro, Eric Pique, Emmanuel Leclerc, Thierry Bourrianne, Axel Roy, Eric Moulin, Joël Barrie, Jean-Marc Metzger, Guillaume Péris, Christian Guadagno, Chatrapatty Bhugwant, Jean-Mathieu Tibere, Arnaud Tournigand, Evelyn Freney, Karine Sellegri, Anne-Marie Delort, Pierre Amato, Muriel Joly, Jean-Luc Baray, Pascal Renard, Angelica Bianco, Anne Réchou, and Guillaume Payen
Atmos. Chem. Phys., 24, 4129–4155, https://doi.org/10.5194/acp-24-4129-2024, https://doi.org/10.5194/acp-24-4129-2024, 2024
Short summary
Short summary
Aerosol particles in the atmosphere play a key role in climate change and air pollution. A large number of aerosol particles are formed from the oxidation of volatile organic compounds (VOCs and secondary organic aerosols – SOA). An important field campaign was organized on Réunion in March–April 2019 to understand the formation of SOA in a tropical atmosphere mostly influenced by VOCs emitted by forest and in the presence of clouds. This work synthesizes the results of this campaign.
Romain Salignat, Matti Rissanen, Siddharth Iyer, Jean-Luc Baray, Pierre Tulet, Jean-Marc Metzger, Jérôme Brioude, Karine Sellegri, and Clémence Rose
Atmos. Chem. Phys., 24, 3785–3812, https://doi.org/10.5194/acp-24-3785-2024, https://doi.org/10.5194/acp-24-3785-2024, 2024
Short summary
Short summary
Using mass spectrometry data collected at the Maïdo Observatory (2160 m a.s.l., Réunion), we provide the first detailed analysis of molecular cluster chemical composition specifically in the marine free troposphere. The abundance of the identified species is related both to in situ meteorological parameters and air mass history, which also provide insight into their origin. Our work makes an important contribution to documenting the chemistry and physics of the marine free troposphere.
Fanny Noirmain, Jean-Luc Baray, Frédéric Tridon, Philippe Cacault, Hermine Billard, Guillaume Voyard, Joël Van Baelen, and Delphine Latour
Biogeosciences, 19, 5729–5749, https://doi.org/10.5194/bg-19-5729-2022, https://doi.org/10.5194/bg-19-5729-2022, 2022
Short summary
Short summary
We present a study linking rain, meteorology, and mountain lake phytoplankton dynamics on the basis of a case study at Aydat (France) in September 2020. The air mass origin mainly influences the rain chemical composition, which depends on the type of rain, convective or stratiform. Our results also highlighted a non-negligible presence of photosynthetic cells in rainwater. The impact of the atmospheric forcing on the lake could play a key role in phytoplankton dynamics in the temperate zone.
Pamela A. Dominutti, Pascal Renard, Mickaël Vaïtilingom, Angelica Bianco, Jean-Luc Baray, Agnès Borbon, Thierry Bourianne, Frédéric Burnet, Aurélie Colomb, Anne-Marie Delort, Valentin Duflot, Stephan Houdier, Jean-Luc Jaffrezo, Muriel Joly, Martin Leremboure, Jean-Marc Metzger, Jean-Marc Pichon, Mickaël Ribeiro, Manon Rocco, Pierre Tulet, Anthony Vella, Maud Leriche, and Laurent Deguillaume
Atmos. Chem. Phys., 22, 505–533, https://doi.org/10.5194/acp-22-505-2022, https://doi.org/10.5194/acp-22-505-2022, 2022
Short summary
Short summary
We present here the results obtained during an intensive field campaign conducted in March to April 2019 in Reunion. Our study integrates a comprehensive chemical and microphysical characterization of cloud water. Our investigations reveal that air mass history and cloud microphysical properties do not fully explain the variability observed in their chemical composition. This highlights the complexity of emission sources, multiphasic exchanges, and transformations in clouds.
Minghui Zhang, Amina Khaled, Pierre Amato, Anne-Marie Delort, and Barbara Ervens
Atmos. Chem. Phys., 21, 3699–3724, https://doi.org/10.5194/acp-21-3699-2021, https://doi.org/10.5194/acp-21-3699-2021, 2021
Short summary
Short summary
Although primary biological aerosol particles (PBAPs, bioaerosols) represent a small fraction of total atmospheric aerosol burden, they might affect climate and public health. We summarize which PBAP properties are important to affect their inclusion in clouds and interaction with light and might also affect their residence time and transport in the atmosphere. Our study highlights that not only chemical and physical but also biological processes can modify these physicochemical properties.
Amina Khaled, Minghui Zhang, Pierre Amato, Anne-Marie Delort, and Barbara Ervens
Atmos. Chem. Phys., 21, 3123–3141, https://doi.org/10.5194/acp-21-3123-2021, https://doi.org/10.5194/acp-21-3123-2021, 2021
Saly Jaber, Muriel Joly, Maxence Brissy, Martin Leremboure, Amina Khaled, Barbara Ervens, and Anne-Marie Delort
Biogeosciences, 18, 1067–1080, https://doi.org/10.5194/bg-18-1067-2021, https://doi.org/10.5194/bg-18-1067-2021, 2021
Short summary
Short summary
Our study is of interest to atmospheric scientists and environmental microbiologists, as we show that clouds can be considered a medium where bacteria efficiently degrade and transform amino acids, in competition with chemical processes. As current atmospheric multiphase models are restricted to chemical degradation of organic compounds, our conclusions motivate further model development.
Cited articles
Abe, R. Y., Akutsu, Y., and Kagemoto, H.: Protein amino acids as
markers for biological sources in urban aerosols, Environ. Chem. Lett., 14,
155–161, 2016.
Addinsoft: XLSTAT Statistical and Data Analysis Solution, New York, NY, USA,
https://www.xlstat.com, last access: 23 May 2020.
Amato, P., Besaury, L., Joly, M., Penaud, B., Deguillaume, L., and Delort,
A.-M.: Metatranscriptomic exploration of microbial functioning in clouds,
Sci. Rep., 9, 4383, https://doi.org/10.1038/s41598-019-41032-4, 2019.
Bader, M.: A systematic approach to standard addition methods in
instrumental analysis, J. Chem. Educ., 57, 703–706,
https://doi.org/10.1021/ed057p703, 1980.
Baray, J.-L., Deguillaume, L., Colomb, A., Sellegri, K., Freney, E., Rose, C., Van Baelen, J., Pichon, J.-M., Picard, D., Fréville, P., Bouvier, L., Ribeiro, M., Amato, P., Banson, S., Bianco, A., Borbon, A., Bourcier, L., Bras, Y., Brigante, M., Cacault, P., Chauvigné, A., Charbouillot, T., Chaumerliac, N., Delort, A.-M., Delmotte, M., Dupuy, R., Farah, A., Febvre, G., Flossmann, A., Gourbeyre, C., Hervier, C., Hervo, M., Huret, N., Joly, M., Kazan, V., Lopez, M., Mailhot, G., Marinoni, A., Masson, O., Montoux, N., Parazols, M., Peyrin, F., Pointin, Y., Ramonet, M., Rocco, M., Sancelme, M., Sauvage, S., Schmidt, M., Tison, E., Vaïtilingom, M., Villani, P., Wang, M., Yver-Kwok, C., and Laj, P.: Cézeaux-Aulnat-Opme-Puy De Dôme: a multi-site for the long-term survey of the tropospheric composition and climate change, Atmos. Meas. Tech., 13, 3413–3445, https://doi.org/10.5194/amt-13-3413-2020, 2020.
Barbaro, E., Zangrando, R., Moret, I., Barbante, C., Cescon, P., and Gambaro,
A.: Free amino acids in atmospheric particulate matter of Venice, Italy,
Atmos. Environ., 45, 5050–5057, 2011.
Barbaro, E., Zangrando, R., Vecchiato, M., Piazza, R., Cairns, W. R. L., Capodaglio, G., Barbante, C., and Gambaro, A.: Free amino acids in Antarctic aerosol: potential markers for the evolution and fate of marine aerosol, Atmos. Chem. Phys., 15, 5457–5469, https://doi.org/10.5194/acp-15-5457-2015, 2015.
Barbaro, E., Morabito, E., Gregoris, E., Feltracco, M., Gabrieli, J.,
Vardè, M., Cairns, W. R. L., Dallo, F., De Blasi, F., Zangrando, R.,
Barbante, C., and Gambaro, A.: Col Margherita Observatory: A background site in
the Eastern Italian Alps for investigating the chemical composition of
atmospheric aerosols, Atmos. Environ., 221, 117071, https://doi.org/10.1016/j.atmosenv.2019.117071, 2020.
Berger, P., Karpel Vel Leitner, N., Doré, M., and Legube, B.: Ozone and
hydroxyl radicals induced oxidation of glycine, Water Res., 33, 433–441,
1999.
Berto, S., De Laurentiis, E., Tota, T., Chiavazza, E., Daniele, P. G.,
Minella, M., Isaia, M., Brigante, M., and Vione, D.: Properties of
the humic-like material arising from the photo-transformation of
L-tyrosine,
Sci. Total Environ., 545–546, 434–444, 2016.
Bianco, A., Passananti, M., Deguillaume, L., Mailhot, G., and Brigante, M.:
Tryptophan and tryptophan-like substances in cloud water: Occurrence and
photochemical fate, Atmos. Environ., 137, 53–61, 2016a.
Bianco, A., Voyard, G., Deguillaume, L., Mailhot, G., and Brigante, M.:
Improving the characterization of dissolved organic carbon in cloud water:
Amino acids and their impact on the oxidant capacity, Sci. Rep., 6, 37420, https://doi.org/10.1038/srep37420,
2016b.
Bianco, A., Deguillaume, L., Vaïtilingom, M., Nicol, E., Baray, J.-L.,
Chaumerliac, N., and Bridoux, M.: Molecular characterization of cloud water
samples collected at the puy de Dôme (France) by Fourier Transform Ion
Cyclotron Resonance Mass Spectrometry, Environ. Sci. Technol., 52,
10275–10285, 2018.
Bianco, A., Deguillaume, L., Chaumerliac, N., Vaïtilingom, M., Wang,
M., Delort, A.-M., and Bridoux, M. C.: Effect of endogenous microbiota on the molecular composition of cloud water: a study by Fourier-transform ion
cyclotron resonance mass spectrometry (FT-ICR MS), Sci. Rep., 9, 7663, https://doi.org/10.1038/s41598-019-44149-8, 2019.
Bogatyreva, N. S., Finkelstein, A. V., and Galzitskaya, O. V.: Trend of amino acid
composition of proteins of different taxa, J. Bioinf.
Comput. Biol., 04, 597–608, https://doi.org/10.1142/S0219720006002016, 2006.
Cape, J. N., Cornell, S. E., Jickells, T. D., and Nemitz, E.: Organic nitrogen in
the atmosphere — Where does it come from? A review of sources and methods,
Atmos. Res., 102, 30–48, 2011.
Chan, M. N., Choi, M. Y., Ng, N. L., and Chan, C. K.: Hygroscopicity of
water-soluble organic compounds in atmospheric aerosols: Amino acids and
biomass burning derived organic species, Environ. Sci. Tech., 39, 1555–1562,
2005.
Chin, W. W. and Newsted, P. R.: Structural equation modeling analysis with small samples using partial least squares, in: Statistical Strategies for Small Sample Research, edited by: Hoyle, R., Sage Publications, Thousand Oaks, CA, 307–341, https://www.researchgate.net/publication/242370645 (last access: 10 January 2022), 1999.
Chuecas, L. and Riley, J. P.: The component combined amino acids of some marine
diatoms, J. Mar. Biol. Assoc. UK,
49, 117–120, 1969.
Cook, R. D., Lin, Y.-H., Peng, Z., Boone, E., Chu, R. K., Dukett, J. E., Gunsch, M. J., Zhang, W., Tolic, N., Laskin, A., and Pratt, K. A.: Biogenic, urban, and wildfire influences on the molecular composition of dissolved organic compounds in cloud water, Atmos. Chem. Phys., 17, 15167–15180, https://doi.org/10.5194/acp-17-15167-2017, 2017.
Deguillaume, L., Charbouillot, T., Joly, M., Vaïtilingom, M., Parazols, M., Marinoni, A., Amato, P., Delort, A.-M., Vinatier, V., Flossmann, A., Chaumerliac, N., Pichon, J. M., Houdier, S., Laj, P., Sellegri, K., Colomb, A., Brigante, M., and Mailhot, G.: Classification of clouds sampled at the puy de Dôme (France) based on 10 yr of monitoring of their physicochemical properties, Atmos. Chem. Phys., 14, 1485–1506, https://doi.org/10.5194/acp-14-1485-2014, 2014.
De Haan, D. O., Hawkins, L. N., Kononenko, J. A., Turley, J. J., Corrigan, A. L.,
Tolbert, M. A., and Jimenez, J. L.: Formation of nitrogen-containing oligomers by
methylglyoxal and amines in simulated evaporating cloud droplets,
Environ. Sci. Technol., 45, 984–991, 2011.
Després, V. R., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A. S.,
Buryak, G., Fröhlich-Nowoisky, J., Elbert, W., Andreae, M. O.,
Pöschl, U., and Jaenicke, R.: Primary biological aerosol particles in the
atmosphere: a review, Tellus B, 64, 15598, https://doi.org/10.3402/tellusb.v64i0.15598, 2012.
Di Filippo, P., Pomata, D., Riccardi, C., Buiarelli, F., Gallo, V., and
Quaranta, A.: Free and combined amino acids in size-segregated atmospheric
aerosol samples, Atmos. Environ., 98, 179–189, 2014.
Feltracco, M., Barbaro, E., Kirchgeorg, T., Spolaor, A., Turetta, C.,
Zangrando, R., Barbante, C., and Gambaro, A.: Free and combined L- and D-amino
acids in Arctic aerosol, Chemosphere, 220, 412–421, 2019.
Fröhlich-Nowoisky, J., Kampf, C. J., Weber, B., Huffman, J. A.,
Pöhlker, C., Andreae, M. O., Lang-Yona, N., Burrows, S. M., Gunthe, S. S.,
Elbert, W., Su, H., Hoor, P., Thines, E., Hoffmann, T., Després, V. R., and
Pöschl, U.: Bioaerosols in the Earth system: Climate, health, and
ecosystem interactions, Atmos. Res., 182, 346–376, 2016.
Gaur, R. K.: Amino acid frequency distribution among Eukaryotic proteins, Institute of Integrative Omics and Applied Biotechnology (IIOAB) Journal, 5, 6–11, 2014.
Ge, P., Luo, G., Luo, Y., Huang, W., Xie, H., Chen, J., and Qu, J.: Molecular
understanding of the interaction of amino acids with sulfuric acid in the
presence of water and the atmospheric implication, Chemosphere, 210,
215–223, 2018.
Gerber, H.: Direct measurement of suspended particulate volume concentration
and far-infrared extinction coefficient with a laser-diffraction instrument,
Appl. Opt., 30, 4824–4831, 1991.
Gorzelska, K., Galloway, J. N., Watterson, K., and Keene, W. C.: Water-soluble
primary amine compounds in rural continental precipitation, Atmos. Environ.,
26, 1005–1018, 1992.
Hashioka, T., Vogt, M., Yamanaka, Y., Le Quéré, C., Buitenhuis, E. T., Aita, M. N., Alvain, S., Bopp, L., Hirata, T., Lima, I., Sailley, S., and Doney, S. C.: Phytoplankton competition during the spring bloom in four plankton functional type models, Biogeosciences, 10, 6833–6850, https://doi.org/10.5194/bg-10-6833-2013, 2013.
Hecky, R. E., Mopper, K., Kilham, P., and Degens, E. T.: The amino acid and sugar
composition of diatom cell-walls, Mar. Biol., 19, 323–331, 1973.
Helin, A., Sietiö, O.-M., Heinonsalo, J., Bäck, J., Riekkola, M.-L., and Parshintsev, J.: Characterization of free amino acids, bacteria and fungi in size-segregated atmospheric aerosols in boreal forest: seasonal patterns, abundances and size distributions, Atmos. Chem. Phys., 17, 13089–13101, https://doi.org/10.5194/acp-17-13089-2017, 2017.
Hewavitharana, A. K., Abu Kassim, N. S., and Shaw, P. N.: Standard addition with
internal standardisation as an alternative to using stable isotope labelled
internal standards to correct for matrix effects—Comparison and validation
using liquid chromatography-tandem mass spectrometric assay of vitamin D, J.
Chromatogr. A, 1553, 101–107, https://doi.org/10.1016/j.chroma.2018.04.026, 2018.
Ittekkot, V.: Variations of dissolved organic matter during a plankton
bloom: qualitative aspects, based on sugar and amino acid analyses, Mar.
Chem., 11, 143–158, 1982.
Jaber, S., Joly, M., Brissy, M., Leremboure, M., Khaled, A., Ervens, B., and Delort, A.-M.: Biotic and abiotic transformation of amino acids in cloud water: experimental studies and atmospheric implications, Biogeosciences, 18, 1067–1080, https://doi.org/10.5194/bg-18-1067-2021, 2021.
Jordan, I. K., Kondrashov, F. A., Adzhubei, I. A., Wolf, Y. I., Koonin, E. V.,
Kondrashov, A. S., and Sunyaev, S.: A universal trend of amino acid gain and loss
in protein evolution, Nature, 433, 633–638, 2005.
Koutny, M., Sancelme, M., Dabin, C., Pichon, N., Delort, A.-M., and Lemaire, J.:
Acquired biodegradability of polyethylenes containing pro-oxidant additives,
Polym. Degrad. Stabil., 91, 1495–1503, 2006.
Kristensson, A., Rosenørn, T., and Bilde, M.: Cloud droplet activation of
amino acid aerosol particles, J. Phys. Chem. A, 114, 379–386, 2010.
Li, X., Hede, T., Tu, Y., Leck, C., and Ågren, H.: Cloud droplet activation
mechanisms of amino acid aerosol particles: insight from molecular dynamics
simulations, Tellus B, 65, 20476, https://doi.org/10.3402/tellusb.v65i0.20476, 2013.
Lundeen, R. A., Janssen, E. M., Chu, C., and McNeill, K.: Environmental
photochemistry of amino acids, peptides and proteins, CHIMIA, 68,
812–817, https://doi.org/10.2533/chimia.2014.812, 2014.
Mace, K. A., Duce, R. A., and Tindale, N. W.: Organic nitrogen in rain and aerosol
at Cape Grim, Tasmania, Australia, J. Geophys. Res.-Atmos., 108, 4338, https://doi.org/10.1029/2002JD003051,
2003a.
Mace, K. A., Kubilay, N., and Duce, R. A.: Organic nitrogen in rain and aerosol in
the eastern Mediterranean atmosphere: An association with atmospheric dust,
J. Geophys. Res.-Atmos., 108, 4320, https://doi.org/10.1029/2002JD002997, 2003b.
Mandalakis, M., Apostolaki, M., Tziaras, T., Polymenakou, P., and Stephanou,
E. G.: Free and combined amino acids in marine background atmospheric
aerosols over the Eastern Mediterranean, Atmos. Environ., 45, 1003–1009,
2011.
Marion, A., Brigante, M., and Mailhot, G.: A new source of ammonia and
carboxylic acids in cloud water: The first evidence of photochemical process
involving an iron-amino acid complex, Atmos. Environ., 195, 179–186, 2018.
Mashayekhy Rad, F., Zurita, J., Gilles, P., Rutgeerts, L. A. J., Nilsson, U.,
Ilag, L. L., and Leck, C.: Measurements of atmospheric proteinaceous aerosol in
the Arctic using a selective UHPLC/ESI-MS/MS strategy, J.
Am. Soc. Mass Spectr., 30, 161–173, 2019.
Matos, J. T. V., Duarte, R. M. B. O., and Duarte, A. C.: Challenges in the
identification and characterization of free amino acids and proteinaceous
compounds in atmospheric aerosols: A critical review, TrAC-Trend.
Anal. Chem., 75, 97–107, 2016.
Matsumoto, K. and Uematsu, M.: Free amino acids in marine aerosols over the
western North Pacific Ocean, Atmos. Environ., 39, 2163–2170, 2005.
McGregor, K. G. and Anastasio, C.: Chemistry of fog waters in California's
Central Valley: 2. Photochemical transformations of amino acids and alkyl
amines, Atmos. Environ., 35, 1091–1104, 2001.
Mopper, K. and Zika, R. G.: Free amino acids in marine rains: evidence for
oxidation and potential role in nitrogen cycling, Nature, 325, 246–249,
1987.
Pattison, D. I., Rahmanto, A. S., and Davies, M. J.: Photo-oxidation of proteins,
Photochem. Photobiol. Sci., 11, 38–53, 2012.
Pummer, B. G., Budke, C., Augustin-Bauditz, S., Niedermeier, D., Felgitsch, L., Kampf, C. J., Huber, R. G., Liedl, K. R., Loerting, T., Moschen, T., Schauperl, M., Tollinger, M., Morris, C. E., Wex, H., Grothe, H., Pöschl, U., Koop, T., and Fröhlich-Nowoisky, J.: Ice nucleation by water-soluble macromolecules, Atmos. Chem. Phys., 15, 4077–4091, https://doi.org/10.5194/acp-15-4077-2015, 2015.
Ren, L., Bai, H., Yu, X., Wu, F., Yue, S., Ren, H., Li, L., Lai, S., Sun,
Y., Wang, Z., and Fu, P.: Molecular composition and seasonal variation of amino
acids in urban aerosols from Beijing, China, Atmos. Res., 203, 28–35, 2018.
Renard, P., Bianco, A., Baray, J.-L., Bridoux, M., Delort, A.-M., and
Deguillaume, L.: Classification of clouds sampled at the puy de Dôme
station (France) based on chemical measurements and air mass history
matrices, Atmosphere, 11, 732, https://doi.org/10.3390/atmos11070732, 2020.
Ruiz-Jimenez, J., Okuljar, M., Sietiö, O.-M., Demaria, G., Liangsupree, T., Zagatti, E., Aalto, J., Hartonen, K., Heinonsalo, J., Bäck, J., Petäjä, T., and Riekkola, M.-L.: Determination of free amino acids, saccharides, and selected microbes in biogenic atmospheric aerosols – seasonal variations, particle size distribution, chemical and microbial relations, Atmos. Chem. Phys., 21, 8775–8790, https://doi.org/10.5194/acp-21-8775-2021, 2021.
Samy, S., Robinson, J., and Hays, M. D.: An advanced LC-MS (Q-TOF) technique for
the detection of amino acids in atmospheric aerosols, Anal.
Bioanal. Chem., 401, 3103–3113, 2011.
Samy, S., Robinson, J., Rumsey, I. C., Walker, J. T., and Hays, M. D.: Speciation
and trends of organic nitrogen in southeastern U.S. fine particulate matter
(PM2.5), J. Geophys. Res.-Atmos., 118, 1996-2006, 2013.
Scalabrin, E., Zangrando, R., Barbaro, E., Kehrwald, N. M., Gabrieli, J., Barbante, C., and Gambaro, A.: Amino acids in Arctic aerosols, Atmos. Chem. Phys., 12, 10453–10463, https://doi.org/10.5194/acp-12-10453-2012, 2012.
Song, T., Wang, S., Zhang, Y., Song, J., Liu, F., Fu, P., Shiraiwa, M., Xie,
Z., Yue, D., Zhong, L., Zheng, J., and Lai, S.: Proteins and amino acids in fine
particulate matter in rural Guangzhou, Southern China: seasonal cycles,
sources, and atmospheric processes, Environ. Sci. Technol., 51,
6773–6781, 2017.
Szyrmer, W. and Zawadzki, I.: Biogenic and anthropogenic sources of ice-forming
nuclei: A review, B. Am. Meteorol. Soc., 78,
209–228, 1997.
Triesch, N., van Pinxteren, M., Engel, A., and Herrmann, H.: Concerted measurements of free amino acids at the Cabo Verde islands: high enrichments in submicron sea spray aerosol particles and cloud droplets, Atmos. Chem. Phys., 21, 163–181, https://doi.org/10.5194/acp-21-163-2021, 2021.
Vaïtilingom, M., Attard, E., Gaiani, N., Sancelme, M., Deguillaume, L.,
Flossmann, A. I., Amato, P., and Delort, A.-M.: Long-term features of cloud
microbiology at the puy de Dôme (France), Atmos. Environ., 56, 88–100,
2012.
Violaki, K. and Mihalopoulos, N.: Water-soluble organic nitrogen (WSON) in
size-segregated atmospheric particles over the Eastern Mediterranean, Atmos.
Environ., 44, 4339–4345, 2010.
Vollmer, W., Blanot, D., and De Pedro, M. A.: Peptidoglycan structure and
architecture, FEMS Microbiol. Rev., 32, 149–167, 2008.
Wedyan, M. A. and Preston, M. R.: The coupling of surface seawater organic
nitrogen and the marine aerosol as inferred from enantiomer-specific amino
acid analysis, Atmos. Environ., 42, 8698–8705, 2008.
Wirgot, N., Vinatier, V., Deguillaume, L., Sancelme, M., and Delort, A.-M.: H2O2 modulates the energetic metabolism of the cloud microbiome, Atmos. Chem. Phys., 17, 14841–14851, https://doi.org/10.5194/acp-17-14841-2017, 2017.
Xu, Y., Wu, D., Xiao, H., and Zhou, J.: Dissolved hydrolyzed amino acids in
precipitation in suburban Guiyang, southwestern China: Seasonal variations
and potential atmospheric processes, Atmos. Environ., 211, 247–255, 2019.
Xu, Y., Xiao, H., Wu, D., and Long, C.: Abiotic and biological degradation of
atmospheric proteinaceous matter can contribute significantly to dissolved
amino acids in wet deposition, Environ. Sci. Technol., 54, 6551–6561,
2020.
Yan, G., Kim, G., Kim, J., Jeong, Y.-S., and Kim, Y. I.: Dissolved total
hydrolyzable enantiomeric amino acids in precipitation: Implications on
bacterial contributions to atmospheric organic matter, Geochim.
Cosmochim. Ac., 153, 1–14, https://doi.org/10.1016/j.gca.2015.01.005, 2015.
Zhang, Q. and Anastasio, C.: Conversion of fogwater and aerosol organic
nitrogen to ammonium, nitrate, and NOx during exposure to simulated sunlight
and ozone, Environ. Sci. Technol., 37, 3522–3530, 2003a.
Zhang, Q. and Anastasio, C.: Free and combined amino compounds in atmospheric
fine particles (PM2.5) and fog waters from Northern California, Atmos.
Environ., 37, 2247–2258, 2003b.
Zhao, Y., Hallar, A. G., and Mazzoleni, L. R.: Atmospheric organic matter in clouds: exact masses and molecular formula identification using ultrahigh-resolution FT-ICR mass spectrometry, Atmos. Chem. Phys., 13, 12343–12362, https://doi.org/10.5194/acp-13-12343-2013, 2013.
Zhu, R.-G., Xiao, H.-Y., Zhu, Y., Wen, Z., Fang, X., and Pan, Y.: Sources and
transformation processes of proteinaceous matter and free amino acids in
PM2.5, J. Geophys. Res.-Atmos., 125, e2020JD032375, https://doi.org/10.1029/2020JD032375, 2020.
Zhu, R.-G., Xiao, H.-Y., Luo, L., Xiao, H., Wen, Z., Zhu, Y., Fang, X., Pan, Y., and Chen, Z.: Measurement report: Hydrolyzed amino acids in fine and coarse atmospheric aerosol in Nanchang, China: concentrations, compositions, sources and possible bacterial degradation state, Atmos. Chem. Phys., 21, 2585–2600, https://doi.org/10.5194/acp-21-2585-2021, 2021.
Short summary
Amino acids (AAs) have been quantified in cloud water collected at the Puy de Dôme station (France). Concentrations and speciation of those compounds are highly variable among the samples. Sources from the sea surface and atmospheric transformations during the air mass transport, mainly in the free troposphere, have been shown to modulate AA levels in cloud water.
Amino acids (AAs) have been quantified in cloud water collected at the Puy de Dôme station...
Altmetrics
Final-revised paper
Preprint