Articles | Volume 22, issue 20
https://doi.org/10.5194/acp-22-13725-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-22-13725-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A new methodology for measuring traveling quasi-5-day oscillations during sudden stratospheric warming events based on satellite observations
School of Electronic Information, Wuhan University, Wuhan, China
Hubei Luojia Laboratory, Wuhan, China
Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan, China
School of Electronic Information, Wuhan University, Wuhan, China
Hubei Luojia Laboratory, Wuhan, China
Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan, China
Shaodong Zhang
School of Electronic Information, Wuhan University, Wuhan, China
Hubei Luojia Laboratory, Wuhan, China
Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan, China
State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China
Guizhou Normal University, Guiyang, China
Qiao Xiao
School of Electronic Information, Wuhan University, Wuhan, China
Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan, China
Chunming Huang
School of Electronic Information, Wuhan University, Wuhan, China
Hubei Luojia Laboratory, Wuhan, China
Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan, China
Kaiming Huang
School of Electronic Information, Wuhan University, Wuhan, China
Hubei Luojia Laboratory, Wuhan, China
Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan, China
Related authors
No articles found.
Qihou Zhou, Yanlin Li, and Yun Gong
Atmos. Meas. Tech., 17, 4197–4209, https://doi.org/10.5194/amt-17-4197-2024, https://doi.org/10.5194/amt-17-4197-2024, 2024
Short summary
Short summary
We discuss several robust estimators to compute the variance of a normally distributed random variable to deal with interference. Compared to rank-based estimators, the methods based on the geometric mean are more accurate and are computationally more efficient. We apply three robust estimators to incoherent scatter power and velocity processing, along with the traditional sample mean estimator. The best estimator is a hybrid estimator that combines the sample mean and a robust estimator.
Zirui Zhang, Kaiming Huang, Fan Yi, Fuchao Liu, Jian Zhang, and Yue Jia
EGUsphere, https://doi.org/10.5194/egusphere-2024-933, https://doi.org/10.5194/egusphere-2024-933, 2024
Short summary
Short summary
The CBLH is related to our health due to its crucial role in pollutant dispersion. The vertical velocity from MMCR can capture the CBLH evolution, especially the initial stage of CBLH rise and the final stage of CBLH dissipation due to little blind range and less impact by residual layer, thus the MMCR observation can clearly identify the diurnal evolution of CBLH. The study shows that the CBLH has an obvious seasonal feature, and is affected by radiation, humidity, cloud and precipitation.
Jia Shao, Jian Zhang, Wuke Wang, Shaodong Zhang, Tao Yu, and Wenjun Dong
Atmos. Chem. Phys., 23, 12589–12607, https://doi.org/10.5194/acp-23-12589-2023, https://doi.org/10.5194/acp-23-12589-2023, 2023
Short summary
Short summary
Kelvin–Helmholtz instability (KHI) is indicated by the critical value of the Richardson (Ri) number, which is usually predicted to be 1/4. Compared to high-resolution radiosondes, the threshold value of Ri could be approximated as 1 rather than 1/4 when using ERA5-based Ri as a proxy for KHI. The occurrence frequency of subcritical Ri exhibits significant seasonal cycles over all climate zones and is closely associated with gravity waves and background flows.
Xiansi Huang, Kaiming Huang, Hao Cheng, Shaodong Zhang, Wei Cheng, Chunming Huang, and Yun Gong
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-407, https://doi.org/10.5194/acp-2022-407, 2022
Revised manuscript not accepted
Short summary
Short summary
Using radar observations and reanalysis data for 9 years, we demonstrate clearly for the first time that resonant interactions between tides and annual and semiannual oscillations do occur in the mesosphere and lower thermosphere. The resonant matching conditions of frequency and wavenumber are exactly satisfied for the interacting triad. At some altitudes, the secondary waves are stronger than the tides, thus in tidal studies, the secondary waves may be mistaken for the tides if no carefully.
Jianping Guo, Jian Zhang, Kun Yang, Hong Liao, Shaodong Zhang, Kaiming Huang, Yanmin Lv, Jia Shao, Tao Yu, Bing Tong, Jian Li, Tianning Su, Steve H. L. Yim, Ad Stoffelen, Panmao Zhai, and Xiaofeng Xu
Atmos. Chem. Phys., 21, 17079–17097, https://doi.org/10.5194/acp-21-17079-2021, https://doi.org/10.5194/acp-21-17079-2021, 2021
Short summary
Short summary
The planetary boundary layer (PBL) is the lowest part of the troposphere, and boundary layer height (BLH) is the depth of the PBL and is of critical importance to the dispersion of air pollution. The study presents the first near-global BLH climatology by using high-resolution (5-10 m) radiosonde measurements. The variations in BLH exhibit large spatial and temporal dependence, with a peak at 17:00 local solar time. The most promising reanalysis product is ERA-5 in terms of modeling BLH.
Minkang Du, Kaiming Huang, Shaodong Zhang, Chunming Huang, Yun Gong, and Fan Yi
Atmos. Chem. Phys., 21, 13553–13569, https://doi.org/10.5194/acp-21-13553-2021, https://doi.org/10.5194/acp-21-13553-2021, 2021
Short summary
Short summary
El Niño has an important influence on climate systems. There are obviously negative water vapor anomalies from radiosonde observations in the tropical western Pacific during El Niño. The tropical Hadley, Walker, and monsoon circulation variations are revealed to play different roles in the observed water vapor anomaly in different types of El Niños. The Walker (monsoon) circulation anomaly made a major contribution in the 2015/16 (2009/10) strong eastern Pacific (central Pacific) El Niño event.
Lei Qiao, Gang Chen, Shaodong Zhang, Qi Yao, Wanlin Gong, Mingkun Su, Feilong Chen, Erxiao Liu, Weifan Zhang, Huangyuan Zeng, Xuesi Cai, Huina Song, Huan Zhang, and Liangliang Zhang
Atmos. Meas. Tech., 13, 5697–5713, https://doi.org/10.5194/amt-13-5697-2020, https://doi.org/10.5194/amt-13-5697-2020, 2020
Feilong Chen, Gang Chen, Yufang Tian, Shaodong Zhang, Kaiming Huang, Chen Wu, and Weifan Zhang
Ann. Geophys., 37, 631–643, https://doi.org/10.5194/angeo-37-631-2019, https://doi.org/10.5194/angeo-37-631-2019, 2019
Short summary
Short summary
Using the Beijing MST radar echo-power observations collected during the period November 2011–May 2017, the structure and variability of the tropopause over Xianghe, China (39.75° N, 116.96° E), was presented. Our comparison results showed a good agreement between the radar and thermal tropopauses during all seasons. In contrast, the consistency between the radar and dynamical tropopauses is poor during summer. Diurnal oscillation in tropopause height is commonly observed during all seasons.
Jian Zhang, Shao Dong Zhang, Chun Ming Huang, Kai Ming Huang, Ye Hui Zhang, Yun Gong, and Quan Gan
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2018-114, https://doi.org/10.5194/angeo-2018-114, 2018
Publication in ANGEO not foreseen
Short summary
Short summary
Turbulence dissipation rate has inter-annual variations and follows a lognormal distribution. The magnitudes of turbulence detected by radiosonde and radar are roughly comparable. Turbulence cannot predicted by instabilities well but trends to be vigorous under the instability condition. The propagating gravity waves in the lower atmosphere can enhance atmospheric instabilities, and the temporal variations of waves can roughly estimate the turbulence dissipation rate at different height.
Feilong Chen, Gang Chen, Chunhua Shi, Yufang Tian, Shaodong Zhang, and Kaiming Huang
Ann. Geophys., 36, 1403–1417, https://doi.org/10.5194/angeo-36-1403-2018, https://doi.org/10.5194/angeo-36-1403-2018, 2018
Short summary
Short summary
Downward stratospheric intrusions are well known as an important source of tropospheric ozone. In the light of the present understanding, several unanswered questions remain regarding the use of VHF radars to identify stratospheric intrusions. Our study found that the radar-observed strong downdrafts preceding the rapid tropopause ascent are a strong diagnostic for possible intrusions. This will have important implications for air-quality monitoring and long-term estimation of troposphere ozone.
Shao Dong Zhang, Chun Ming Huang, Kai Ming Huang, Ye Hui Zhang, Yun Gong, and Quan Gan
Ann. Geophys., 35, 107–116, https://doi.org/10.5194/angeo-35-107-2017, https://doi.org/10.5194/angeo-35-107-2017, 2017
Short summary
Short summary
We present the first statistical results of vertical wind fluctuation spectra, which revealed a very shallow spectral structure, with mean slopes of −0.58 and −0.23 in the troposphere and lower stratosphere, respectively. No existing spectral theories can comprehensively explain the observed three-dimensional wind spectra, indicating that the spectral features of atmospheric fluctuations are far from fully understood.
Yue Jia, Shao Dong Zhang, Fan Yi, Chun Ming Huang, Kai Ming Huang, Yun Gong, and Quan Gan
Ann. Geophys., 34, 331–345, https://doi.org/10.5194/angeo-34-331-2016, https://doi.org/10.5194/angeo-34-331-2016, 2016
K. M. Huang, A. Z. Liu, S. D. Zhang, F. Yi, C. M. Huang, Q. Gan, Y. Gong, Y. H. Zhang, and R. Wang
Ann. Geophys., 33, 1321–1330, https://doi.org/10.5194/angeo-33-1321-2015, https://doi.org/10.5194/angeo-33-1321-2015, 2015
Q. Gan, J. Yue, L. C. Chang, W. B. Wang, S. D. Zhang, and J. Du
Ann. Geophys., 33, 913–922, https://doi.org/10.5194/angeo-33-913-2015, https://doi.org/10.5194/angeo-33-913-2015, 2015
Short summary
Short summary
The 6.5-day traveling planetary wave is able to impact the ionosphere/thermosphere via a dissipation mechanism. Ionospheric TEC and thermosphere O/N2 exhibit an apparent decrease as the result of extra meridional circulation induced by 6.5-day wave dissipation. Our work suggests that the modulation of E-dynamo is not the unique pathway through which planetary waves substantially influence the IT system.
C. Huang, S. Zhang, Q. Zhou, F. Yi, K. Huang, Y. Gong, Y. Zhang, and Q. Gan
Ann. Geophys., 33, 865–874, https://doi.org/10.5194/angeo-33-865-2015, https://doi.org/10.5194/angeo-33-865-2015, 2015
Short summary
Short summary
The diurnal tide and its variability in the lower atmosphere over Chongyang (114.14ºE,29.53ºN) were studied based on the newly established Wuhan University VHF radar observations in the whole year of 2012. We find that the diurnal tide was the dominant tidal component and showed remarkable height and season variations, as well as dramatic short-term variability.
S. D. Zhang, C. M. Huang, K. M. Huang, F. Yi, Y. H. Zhang, Y. Gong, and Q. Gan
Ann. Geophys., 32, 1129–1143, https://doi.org/10.5194/angeo-32-1129-2014, https://doi.org/10.5194/angeo-32-1129-2014, 2014
K. M. Huang, S. D. Zhang, F. Yi, C. M. Huang, Q. Gan, Y. Gong, and Y. H. Zhang
Ann. Geophys., 32, 263–275, https://doi.org/10.5194/angeo-32-263-2014, https://doi.org/10.5194/angeo-32-263-2014, 2014
K. M. Huang, A. Z. Liu, S. D. Zhang, F. Yi, C. M. Huang, Q. Gan, Y. Gong, and Y. H. Zhang
Ann. Geophys., 31, 2039–2048, https://doi.org/10.5194/angeo-31-2039-2013, https://doi.org/10.5194/angeo-31-2039-2013, 2013
C. M. Huang, S. D. Zhang, F. Yi, K. M. Huang, Y. H. Zhang, Q. Gan, and Y. Gong
Ann. Geophys., 31, 1731–1743, https://doi.org/10.5194/angeo-31-1731-2013, https://doi.org/10.5194/angeo-31-1731-2013, 2013
Y. Y. Huang, S. D. Zhang, F. Yi, C. M. Huang, K. M. Huang, Q. Gan, and Y. Gong
Ann. Geophys., 31, 1061–1075, https://doi.org/10.5194/angeo-31-1061-2013, https://doi.org/10.5194/angeo-31-1061-2013, 2013
Related subject area
Subject: Dynamics | Research Activity: Remote Sensing | Altitude Range: Stratosphere | Science Focus: Physics (physical properties and processes)
Aeolus wind lidar observations of the 2019/2020 quasi-biennial oscillation disruption with comparison to radiosondes and reanalysis
Convective gravity wave events during summer near 54° N, present in both AIRS and Rayleigh–Mie–Raman (RMR) lidar observations
Observational perspective on SSWs and blocking from EP fluxes
Signatures of the Madden–Julian oscillation in middle-atmosphere zonal mean temperature: triggering the interhemispheric coupling pattern
The quasi-biennial oscillation (QBO) and global-scale tropical waves in Aeolus wind observations, radiosonde data, and reanalyses
Vertical structure of the lower-stratospheric moist bias in the ERA5 reanalysis and its connection to mixing processes
Intermittency of gravity wave potential energies and absolute momentum fluxes derived from infrared limb sounding satellite observations
The evolution and dynamics of the Hunga Tonga–Hunga Ha'apai sulfate aerosol plume in the stratosphere
Stratospheric water vapour and ozone response to the quasi-biennial oscillation disruptions in 2016 and 2020
The middle atmospheric meridional circulation for 2002–2012 derived from MIPAS observations
Stratospheric gravity waves over the mountainous island of South Georgia: testing a high-resolution dynamical model with 3-D satellite observations and radiosondes
Smoke-charged vortices in the stratosphere generated by wildfires and their behaviour in both hemispheres: comparing Australia 2020 to Canada 2017
Using a network of temperature lidars to identify temperature biases in the upper stratosphere in ECMWF reanalyses
Direct inversion of circulation from tracer measurements – Part 2: Sensitivity studies and model recovery tests
Record low ozone values over the Arctic in boreal spring 2020
New insights into Rossby wave packet properties in the extratropical UTLS using GNSS radio occultations
Superposition of gravity waves with different propagation characteristics observed by airborne and space-borne infrared sounders
First measurements of tides in the stratosphere and lower mesosphere by ground-based Doppler microwave wind radiometry
Gravity waves in the winter stratosphere over the Southern Ocean: high-resolution satellite observations and 3-D spectral analysis
Comparison of equatorial wave activity in the tropical tropopause layer and stratosphere represented in reanalyses
Investigation of Arctic middle-atmospheric dynamics using 3 years of H2O and O3 measurements from microwave radiometers at Ny-Ålesund
Influence of ENSO and MJO on the zonal structure of tropical tropopause inversion layer using high-resolution temperature profiles retrieved from COSMIC GPS Radio Occultation
How well do stratospheric reanalyses reproduce high-resolution satellite temperature measurements?
First tomographic observations of gravity waves by the infrared limb imager GLORIA
Shift of subtropical transport barriers explains observed hemispheric asymmetry of decadal trends of age of air
Exploring gravity wave characteristics in 3-D using a novel S-transform technique: AIRS/Aqua measurements over the Southern Andes and Drake Passage
A decadal satellite record of gravity wave activity in the lower stratosphere to study polar stratospheric cloud formation
Evolution of the eastward shift in the quasi-stationary minimum of the Antarctic total ozone column
Tropical temperature variability and Kelvin-wave activity in the UTLS from GPS RO measurements
The major stratospheric final warming in 2016: dispersal of vortex air and termination of Arctic chemical ozone loss
The tropical tropopause inversion layer: variability and modulation by equatorial waves
Satellite observations of middle atmosphere gravity wave absolute momentum flux and of its vertical gradient during recent stratospheric warmings
Stratospheric gravity waves at Southern Hemisphere orographic hotspots: 2003–2014 AIRS/Aqua observations
Global temperature response to the major volcanic eruptions in multiple reanalysis data sets
Reassessment of MIPAS age of air trends and variability
Enhanced internal gravity wave activity and breaking over the northeastern Pacific–eastern Asian region
Global distributions of overlapping gravity waves in HIRDLS data
The southern stratospheric gravity wave hot spot: individual waves and their momentum fluxes measured by COSMIC GPS-RO
Methane as a diagnostic tracer of changes in the Brewer–Dobson circulation of the stratosphere
The influence of the North Atlantic Oscillation and El Niño–Southern Oscillation on mean and extreme values of column ozone over the United States
Short vertical-wavelength inertia-gravity waves generated by a jet–front system at Arctic latitudes – VHF radar, radiosondes and numerical modelling
A climatology of the diurnal variations in stratospheric and mesospheric ozone over Bern, Switzerland
Long-term changes in the upper stratospheric ozone at Syowa, Antarctica
Estimates of turbulent diffusivities and energy dissipation rates from satellite measurements of spectra of stratospheric refractivity perturbations
Observations of filamentary structures near the vortex edge in the Arctic winter lower stratosphere
Impact of land convection on temperature diurnal variation in the tropical lower stratosphere inferred from COSMIC GPS radio occultations
Observation of horizontal winds in the middle-atmosphere between 30° S and 55° N during the northern winter 2009–2010
Variability in the speed of the Brewer–Dobson circulation as observed by Aura/MLS
Simultaneous occurrence of polar stratospheric clouds and upper-tropospheric clouds caused by blocking anticyclones in the Southern Hemisphere
Quantification of structural uncertainty in climate data records from GPS radio occultation
Timothy P. Banyard, Corwin J. Wright, Scott M. Osprey, Neil P. Hindley, Gemma Halloran, Lawrence Coy, Paul A. Newman, Neal Butchart, Martina Bramberger, and M. Joan Alexander
Atmos. Chem. Phys., 24, 2465–2490, https://doi.org/10.5194/acp-24-2465-2024, https://doi.org/10.5194/acp-24-2465-2024, 2024
Short summary
Short summary
In 2019/2020, the tropical stratospheric wind phenomenon known as the quasi-biennial oscillation (QBO) was disrupted for only the second time in the historical record. This was poorly forecasted, and we want to understand why. We used measurements from the first Doppler wind lidar in space, Aeolus, to observe the disruption in an unprecedented way. Our results reveal important differences between Aeolus and the ERA5 reanalysis that affect the timing of the disruption's onset and its evolution.
Eframir Franco-Diaz, Michael Gerding, Laura Holt, Irina Strelnikova, Robin Wing, Gerd Baumgarten, and Franz-Josef Lübken
Atmos. Chem. Phys., 24, 1543–1558, https://doi.org/10.5194/acp-24-1543-2024, https://doi.org/10.5194/acp-24-1543-2024, 2024
Short summary
Short summary
We use satellite, lidar, and ECMWF data to study storm-related waves that propagate above Kühlungsborn, Germany, during summer. Although these events occur in roughly half of the years of the satellite data we analyzed, we focus our study on two case study years (2014 and 2015). These events could contribute significantly to middle atmospheric circulation and are not accounted for in weather and climate models.
Kamilya Yessimbet, Andrea K. Steiner, Florian Ladstädter, and Albert C. Ossó
EGUsphere, https://doi.org/10.5194/egusphere-2023-2916, https://doi.org/10.5194/egusphere-2023-2916, 2024
Short summary
Short summary
Major sudden stratospheric warmings (SSWs) and atmospheric blocking can significantly influence winter extratropical surface weather. To study the relationship between SSWs and blocking, we examine dynamic stratosphere-troposphere coupling using vertically high-resolved observations from Global Navigation Satellite System radio occultation for 2007–2019. Our results provide a purely observational view on the evolution of the major SSWs, their link to blocking, and effect on the polar tropopause.
Christoph G. Hoffmann, Lena G. Buth, and Christian von Savigny
Atmos. Chem. Phys., 23, 12781–12799, https://doi.org/10.5194/acp-23-12781-2023, https://doi.org/10.5194/acp-23-12781-2023, 2023
Short summary
Short summary
The Madden–Julian oscillation is an important feature of weather in the tropics. Although it is mainly active in the troposphere, we show that it systematically influences the air temperature in the layers above, up to about 100 km altitude and from pole to pole. We have linked this to another known far-reaching process, interhemispheric coupling. This is basic research on atmospheric couplings and variability but might also be of interest for intraseasonal weather forecasting models.
Manfred Ern, Mohamadou A. Diallo, Dina Khordakova, Isabell Krisch, Peter Preusse, Oliver Reitebuch, Jörn Ungermann, and Martin Riese
Atmos. Chem. Phys., 23, 9549–9583, https://doi.org/10.5194/acp-23-9549-2023, https://doi.org/10.5194/acp-23-9549-2023, 2023
Short summary
Short summary
Quasi-biennial oscillation (QBO) of the stratospheric tropical winds is an important mode of climate variability but is not well reproduced in free-running climate models. We use the novel global wind observations by the Aeolus satellite and radiosondes to show that the QBO is captured well in three modern reanalyses (ERA-5, JRA-55, and MERRA-2). Good agreement is also found also between Aeolus and reanalyses for large-scale tropical wave modes in the upper troposphere and lower stratosphere.
Konstantin Krüger, Andreas Schäfler, Martin Wirth, Martin Weissmann, and George C. Craig
Atmos. Chem. Phys., 22, 15559–15577, https://doi.org/10.5194/acp-22-15559-2022, https://doi.org/10.5194/acp-22-15559-2022, 2022
Short summary
Short summary
A comprehensive data set of airborne lidar water vapour profiles is compared with ERA5 reanalyses for a robust characterization of the vertical structure of the mid-latitude lower-stratospheric moist bias. We confirm a moist bias of up to 55 % at 1.3 km altitude above the tropopause and uncover a decreasing bias beyond. Collocated O3 and H2O observations reveal a particularly strong bias in the mixing layer, indicating insufficiently modelled transport processes fostering the bias.
Manfred Ern, Peter Preusse, and Martin Riese
Atmos. Chem. Phys., 22, 15093–15133, https://doi.org/10.5194/acp-22-15093-2022, https://doi.org/10.5194/acp-22-15093-2022, 2022
Short summary
Short summary
Based on data from the HIRDLS and SABER infrared limb sounding satellite instruments, we investigate the intermittency of global distributions of gravity wave (GW) potential energies and GW momentum fluxes in the stratosphere and mesosphere using probability distribution functions (PDFs) and Gini coefficients. We compare GW intermittency in different regions, seasons, and altitudes. These results can help to improve GW parameterizations and the distributions of GWs resolved in models.
Bernard Legras, Clair Duchamp, Pasquale Sellitto, Aurélien Podglajen, Elisa Carboni, Richard Siddans, Jens-Uwe Grooß, Sergey Khaykin, and Felix Ploeger
Atmos. Chem. Phys., 22, 14957–14970, https://doi.org/10.5194/acp-22-14957-2022, https://doi.org/10.5194/acp-22-14957-2022, 2022
Short summary
Short summary
The long-duration atmospheric impact of the Tonga eruption in January 2022 is a plume of water and sulfate aerosols in the stratosphere that persisted for more than 6 months. We study this evolution using several satellite instruments and analyse the unusual behaviour of this plume as sulfates and water first moved down rapidly and then separated into two layers. We also report the self-organization in compact and long-lived patches.
Mohamadou A. Diallo, Felix Ploeger, Michaela I. Hegglin, Manfred Ern, Jens-Uwe Grooß, Sergey Khaykin, and Martin Riese
Atmos. Chem. Phys., 22, 14303–14321, https://doi.org/10.5194/acp-22-14303-2022, https://doi.org/10.5194/acp-22-14303-2022, 2022
Short summary
Short summary
The quasi-biennial oacillation disruption events in both 2016 and 2020 decreased lower-stratospheric water vapour and ozone. Differences in the strength and depth of the anomalous lower-stratospheric circulation and ozone are due to differences in tropical upwelling and cold-point temperature induced by lower-stratospheric planetary and gravity wave breaking. The differences in water vapour are due to higher cold-point temperature in 2020 induced by Australian wildfire.
Thomas von Clarmann, Udo Grabowski, Gabriele P. Stiller, Beatriz M. Monge-Sanz, Norbert Glatthor, and Sylvia Kellmann
Atmos. Chem. Phys., 21, 8823–8843, https://doi.org/10.5194/acp-21-8823-2021, https://doi.org/10.5194/acp-21-8823-2021, 2021
Short summary
Short summary
Measurements of long-lived trace gases (SF6, CFC-11, CFC-12, HCFC-12, CCl4, N2O, CH4, H2O, and CO) performed with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) have been used to infer the stratospheric and mesospheric meridional circulation. The MIPAS data set covers the time period from July 2002 to April 2012. The method used for this purpose was the direct inversion of the two-dimensional continuity equation. Multiannual monthly mean circulation fields are presented.
Neil P. Hindley, Corwin J. Wright, Alan M. Gadian, Lars Hoffmann, John K. Hughes, David R. Jackson, John C. King, Nicholas J. Mitchell, Tracy Moffat-Griffin, Andrew C. Moss, Simon B. Vosper, and Andrew N. Ross
Atmos. Chem. Phys., 21, 7695–7722, https://doi.org/10.5194/acp-21-7695-2021, https://doi.org/10.5194/acp-21-7695-2021, 2021
Short summary
Short summary
One limitation of numerical atmospheric models is spatial resolution. For atmospheric gravity waves (GWs) generated over small mountainous islands, the driving effect of these waves on atmospheric circulations can be underestimated. Here we use a specialised high-resolution model over South Georgia island to compare simulated stratospheric GWs to colocated 3-D satellite observations. We find reasonable model agreement with observations, with some GW amplitudes much larger than expected.
Hugo Lestrelin, Bernard Legras, Aurélien Podglajen, and Mikail Salihoglu
Atmos. Chem. Phys., 21, 7113–7134, https://doi.org/10.5194/acp-21-7113-2021, https://doi.org/10.5194/acp-21-7113-2021, 2021
Short summary
Short summary
Following the 2020 Australian fires, it was recently discovered that stratospheric wildfire smoke plumes self-organize as anticyclonic vortices that persist for months and rise by 10 km due to the radiative heating from the absorbing smoke. In this study, we show that smoke-charged vortices previously occurred in the aftermath of the 2017 Canadian fires. We use meteorological analysis to characterize this new object in geophysical fluid dynamics, which likely impacts radiation and climate.
Graeme Marlton, Andrew Charlton-Perez, Giles Harrison, Inna Polichtchouk, Alain Hauchecorne, Philippe Keckhut, Robin Wing, Thierry Leblanc, and Wolfgang Steinbrecht
Atmos. Chem. Phys., 21, 6079–6092, https://doi.org/10.5194/acp-21-6079-2021, https://doi.org/10.5194/acp-21-6079-2021, 2021
Short summary
Short summary
A network of Rayleigh lidars have been used to infer the upper-stratosphere temperature bias in ECMWF ERA-5 and ERA-Interim reanalyses during 1990–2017. Results show that ERA-Interim exhibits a cold bias of −3 to −4 K between 10 and 1 hPa. Comparisons with ERA-5 found a smaller bias of 1 K which varies between cold and warm between 10 and 3 hPa, indicating a good thermal representation of the atmosphere to 3 hPa. These biases must be accounted for in stratospheric studies using these reanalyses.
Thomas von Clarmann and Udo Grabowski
Atmos. Chem. Phys., 21, 2509–2526, https://doi.org/10.5194/acp-21-2509-2021, https://doi.org/10.5194/acp-21-2509-2021, 2021
Short summary
Short summary
The direct inversion of the 2D continuity equation allows us to infer the effective meridional transport velocity of trace gases in the middle stratosphere. This method exploits the information both given by the displacement of patterns in measured trace gas distributions and by the approximate balance between sinks and horizontal as well as vertical advection. The robustness of this method has been tested and characterized using model recovery tests and sensitivity studies.
Martin Dameris, Diego G. Loyola, Matthias Nützel, Melanie Coldewey-Egbers, Christophe Lerot, Fabian Romahn, and Michel van Roozendael
Atmos. Chem. Phys., 21, 617–633, https://doi.org/10.5194/acp-21-617-2021, https://doi.org/10.5194/acp-21-617-2021, 2021
Short summary
Short summary
Record low ozone values were observed in March 2020. Dynamical and chemical circumstances leading to low ozone values in spring 2020 are discussed and are compared to similar dynamical conditions in the Northern Hemisphere in 1996/1997 and 2010/2011. 2019/2020 showed an unusual persistent polar vortex with low stratospheric temperatures, which were permanently below 195 K at 50 hPa. This enabled enhanced formation of polar stratospheric clouds and a subsequent clear reduction of total ozone.
Robin Pilch Kedzierski, Katja Matthes, and Karl Bumke
Atmos. Chem. Phys., 20, 11569–11592, https://doi.org/10.5194/acp-20-11569-2020, https://doi.org/10.5194/acp-20-11569-2020, 2020
Short summary
Short summary
Rossby wave packet (RWP) dynamics are crucial for weather forecasting, climate change projections and stratosphere–troposphere interactions. Our study is a first attempt to describe RWP behavior in the UTLS with global coverage directly from observations, using GNSS-RO data. Our novel results show an interesting relation of RWP vertical propagation with sudden stratospheric warmings and provide very useful information to improve RWP diagnostics in models and reanalysis.
Isabell Krisch, Manfred Ern, Lars Hoffmann, Peter Preusse, Cornelia Strube, Jörn Ungermann, Wolfgang Woiwode, and Martin Riese
Atmos. Chem. Phys., 20, 11469–11490, https://doi.org/10.5194/acp-20-11469-2020, https://doi.org/10.5194/acp-20-11469-2020, 2020
Short summary
Short summary
In 2016, a scientific research flight above Scandinavia acquired various atmospheric data (temperature, gas composition, etc.). Through advanced 3-D reconstruction methods, a superposition of multiple gravity waves was identified. An in-depth analysis enabled the characterisation of these waves as well as the identification of their sources. This work will enable a better understanding of atmosphere dynamics and could lead to improved climate projections.
Jonas Hagen, Klemens Hocke, Gunter Stober, Simon Pfreundschuh, Axel Murk, and Niklaus Kämpfer
Atmos. Chem. Phys., 20, 2367–2386, https://doi.org/10.5194/acp-20-2367-2020, https://doi.org/10.5194/acp-20-2367-2020, 2020
Short summary
Short summary
The middle atmosphere (30 to 70 km altitude) is stratified and, despite very strong horizontal winds, there is less mixing between the horizontal layers. An important driver for the energy exchange between the layers in this regime is atmospheric tides, which are waves that are driven by the diurnal cycle of solar heating. We measure these tides in the wind field for the first time using a ground-based passive instrument. Ultimately, such measurements could be used to improve atmospheric models.
Neil P. Hindley, Corwin J. Wright, Nathan D. Smith, Lars Hoffmann, Laura A. Holt, M. Joan Alexander, Tracy Moffat-Griffin, and Nicholas J. Mitchell
Atmos. Chem. Phys., 19, 15377–15414, https://doi.org/10.5194/acp-19-15377-2019, https://doi.org/10.5194/acp-19-15377-2019, 2019
Short summary
Short summary
In this study, a 3–D Stockwell transform is applied to AIRS–Aqua satellite observations in the first extended 3–D study of stratospheric gravity waves over the Southern Ocean during winter. A dynamic environment is revealed that contains some of the most intense gravity wave sources on Earth. A particularly striking result is a large–scale meridional convergence of gravity wave momentum flux towards latitudes near 60 °S, something which is not normally considered in model parameterisations.
Young-Ha Kim, George N. Kiladis, John R. Albers, Juliana Dias, Masatomo Fujiwara, James A. Anstey, In-Sun Song, Corwin J. Wright, Yoshio Kawatani, François Lott, and Changhyun Yoo
Atmos. Chem. Phys., 19, 10027–10050, https://doi.org/10.5194/acp-19-10027-2019, https://doi.org/10.5194/acp-19-10027-2019, 2019
Short summary
Short summary
Reanalyses are widely used products of meteorological variables, generated using observational data and assimilation systems. We compare six modern reanalyses, with focus on their representation of equatorial waves which are important in stratospheric variability and stratosphere–troposphere exchange. Agreement/spreads among the reanalyses in the spectral properties and spatial distributions of the waves are examined, and satellite impacts on the wave representation in reanalyses are discussed.
Franziska Schranz, Brigitte Tschanz, Rolf Rüfenacht, Klemens Hocke, Mathias Palm, and Niklaus Kämpfer
Atmos. Chem. Phys., 19, 9927–9947, https://doi.org/10.5194/acp-19-9927-2019, https://doi.org/10.5194/acp-19-9927-2019, 2019
Short summary
Short summary
The dynamics of the Arctic middle atmosphere above Ny-Ålesund, Svalbard (79° N, 12° E) is investigated using 3 years of H2O and O3 measurements from ground-based microwave radiometers. We found the signals of atmospheric phenomena like sudden stratospheric warmings, polar vortex shifts, effective descent rates of water vapour and periodicities in our data. Additionally, a comprehensive intercomparison is performed with models and measurements from ground-based, in situ and satellite instruments.
Noersomadi, Toshitaka Tsuda, and Masatomo Fujiwara
Atmos. Chem. Phys., 19, 6985–7000, https://doi.org/10.5194/acp-19-6985-2019, https://doi.org/10.5194/acp-19-6985-2019, 2019
Short summary
Short summary
Characteristics of static stability (N2) in the tropical tropopause are analyzed using 0.1 km vertical resolution temperature profiles retrieved from COSMIC GNSS-RO. We define the tropopause inversion layer (TIL) by the sharp increase in N2 across the cold point tropopause (CPT) and the thickness of the enhanced peak in N2 just above the CPT. We investigated the TIL at the intraseasonal to interannual timescales above the Maritime Continent and Pacific Ocean with different land–sea distribution.
Corwin J. Wright and Neil P. Hindley
Atmos. Chem. Phys., 18, 13703–13731, https://doi.org/10.5194/acp-18-13703-2018, https://doi.org/10.5194/acp-18-13703-2018, 2018
Short summary
Short summary
Reanalyses (RAs) are models which assimilate observations and are widely used as proxies for the true atmospheric state. Here, we resample six leading RAs using the weighting functions of four high-res satellite instruments, allowing a like-for-like comparison. We find that the RAs generally reproduce the satellite data well, except at high altitudes and in the tropics. However, we also find that the RAs more tightly correlate with each other than with observations, even those they assimilate.
Isabell Krisch, Peter Preusse, Jörn Ungermann, Andreas Dörnbrack, Stephen D. Eckermann, Manfred Ern, Felix Friedl-Vallon, Martin Kaufmann, Hermann Oelhaf, Markus Rapp, Cornelia Strube, and Martin Riese
Atmos. Chem. Phys., 17, 14937–14953, https://doi.org/10.5194/acp-17-14937-2017, https://doi.org/10.5194/acp-17-14937-2017, 2017
Short summary
Short summary
Using the infrared limb imager GLORIA, the 3-D structure of mesoscale gravity waves in the lower stratosphere was measured for the first time, allowing for a complete 3-D characterization of the waves. This enables the precise determination of the sources of the waves in the mountain regions of Iceland with backward ray tracing. Forward ray tracing shows oblique propagation, an effect generally neglected in global atmospheric models.
Gabriele P. Stiller, Federico Fierli, Felix Ploeger, Chiara Cagnazzo, Bernd Funke, Florian J. Haenel, Thomas Reddmann, Martin Riese, and Thomas von Clarmann
Atmos. Chem. Phys., 17, 11177–11192, https://doi.org/10.5194/acp-17-11177-2017, https://doi.org/10.5194/acp-17-11177-2017, 2017
Short summary
Short summary
The discrepancy between modelled and observed 25-year trends of the strength of the stratospheric Brewer–Dobson circulation (BDC) is still not resolved. With our paper we trace the observed hemispheric dipole structure of age of air trends back to natural variability in shorter-term (decadal) time frames. Beyond this we demonstrate that after correction for the decadal natural variability the remaining trend for the first decade of the 21st century is consistent with model simulations.
Corwin J. Wright, Neil P. Hindley, Lars Hoffmann, M. Joan Alexander, and Nicholas J. Mitchell
Atmos. Chem. Phys., 17, 8553–8575, https://doi.org/10.5194/acp-17-8553-2017, https://doi.org/10.5194/acp-17-8553-2017, 2017
Short summary
Short summary
We introduce a novel 3-D method of measuring atmospheric gravity waves, based around a 3-D Stockwell transform. Our method lets us measure new properties, including wave intrinsic frequencies and phase and group velocities. We apply it to data from the AIRS satellite instrument over the Southern Andes for two consecutive winters. Our results show clear evidence that the waves measured are primarily orographic in origin, and that their group velocity vectors are focused into the polar night jet.
Lars Hoffmann, Reinhold Spang, Andrew Orr, M. Joan Alexander, Laura A. Holt, and Olaf Stein
Atmos. Chem. Phys., 17, 2901–2920, https://doi.org/10.5194/acp-17-2901-2017, https://doi.org/10.5194/acp-17-2901-2017, 2017
Short summary
Short summary
We introduce a 10-year record (2003–2012) of AIRS/Aqua observations of gravity waves in the polar lower stratosphere. The data set was optimized to study the impact of gravity waves on the formation of polar stratospheric clouds (PSCs). We discuss the temporal and spatial patterns of gravity wave activity, validate explicitly resolved small-scale temperature fluctuations in the ECMWF data, and present a survey of gravity-wave-induced PSC formation events using joint AIRS and MIPAS observations.
Asen Grytsai, Andrew Klekociuk, Gennadi Milinevsky, Oleksandr Evtushevsky, and Kane Stone
Atmos. Chem. Phys., 17, 1741–1758, https://doi.org/10.5194/acp-17-1741-2017, https://doi.org/10.5194/acp-17-1741-2017, 2017
Short summary
Short summary
Twenty years ago we discovered that the ozone hole shape is asymmetric. This asymmetry is minimum over the Weddell Sea region and maximum over the Ross Sea area. Later we detected that the position of the ozone minimum is shifting east. We have continued to follow this event, and a couple years ago we revealed that the shift is slowing down and starting to move back. We connect all this movement with ozone hole increase; since 2000 the ozone layer has been stabilizing and recently recovering.
Barbara Scherllin-Pirscher, William J. Randel, and Joowan Kim
Atmos. Chem. Phys., 17, 793–806, https://doi.org/10.5194/acp-17-793-2017, https://doi.org/10.5194/acp-17-793-2017, 2017
Short summary
Short summary
Tropical temperature variability and associated Kelvin-wave activity are investigated from 10 km to 30 km using 13 years of high-resolution observational data. Strongest temperature variability is found in the tropical tropopause region between about 16 km and 20 km, where peaks of Kelvin-wave activity are irregularly distributed in time. Detailed knowledge of dynamical processes in the tropical tropopause region is an essential part of better understanding climate variability and change.
Gloria L. Manney and Zachary D. Lawrence
Atmos. Chem. Phys., 16, 15371–15396, https://doi.org/10.5194/acp-16-15371-2016, https://doi.org/10.5194/acp-16-15371-2016, 2016
Short summary
Short summary
The 2015/16 Arctic winter stratosphere was the coldest on record through late February, raising the possibility of extensive chemical ozone loss. However, a major final sudden stratospheric warming in early March curtailed ozone destruction. We used Aura MLS satellite trace gas data and MERRA-2 meteorological data to show the details of transport, mixing, and dispersal of chemically processed air during the major final warming, and how these processes limited Arctic chemical ozone loss.
Robin Pilch Kedzierski, Katja Matthes, and Karl Bumke
Atmos. Chem. Phys., 16, 11617–11633, https://doi.org/10.5194/acp-16-11617-2016, https://doi.org/10.5194/acp-16-11617-2016, 2016
Short summary
Short summary
This study provides a detailed overview of the daily variability of the tropopause inversion layer (TIL) in the tropics, where TIL research had focused little. The vertical and horizontal structures of this atmospheric layer are described and linked to near-tropopause horizontal wind divergence, the QBO and especially to equatorial waves. Our results increase the knowledge about the observed properties of the tropical TIL, mainly using satellite GPS radio-occultation measurements.
Manfred Ern, Quang Thai Trinh, Martin Kaufmann, Isabell Krisch, Peter Preusse, Jörn Ungermann, Yajun Zhu, John C. Gille, Martin G. Mlynczak, James M. Russell III, Michael J. Schwartz, and Martin Riese
Atmos. Chem. Phys., 16, 9983–10019, https://doi.org/10.5194/acp-16-9983-2016, https://doi.org/10.5194/acp-16-9983-2016, 2016
Short summary
Short summary
Sudden stratospheric warmings (SSWs) influence the atmospheric circulation over a large range of altitudes and latitudes. We investigate the global distribution of small-scale gravity waves (GWs) during SSWs as derived from 13 years of satellite observations.
We find that GWs may play an important role for triggering SSWs by preconditioning the polar vortex, as well as during long-lasting vortex recovery phases after SSWs. The GW distribution during SSWs displays strong day-to-day variability.
Lars Hoffmann, Alison W. Grimsdell, and M. Joan Alexander
Atmos. Chem. Phys., 16, 9381–9397, https://doi.org/10.5194/acp-16-9381-2016, https://doi.org/10.5194/acp-16-9381-2016, 2016
Short summary
Short summary
We present a 12-year record (2003-2014) of stratospheric gravity wave activity at Southern Hemisphere orographic hotspots as observed by the AIRS/Aqua satellite instrument. We introduce a method to discriminate between gravity waves from orographic or other sources and propose a simple model to predict the occurrence of mountain waves using zonal wind thresholds. The prediction model can help to disentangle upper level wind effects from low level source and other influences.
M. Fujiwara, T. Hibino, S. K. Mehta, L. Gray, D. Mitchell, and J. Anstey
Atmos. Chem. Phys., 15, 13507–13518, https://doi.org/10.5194/acp-15-13507-2015, https://doi.org/10.5194/acp-15-13507-2015, 2015
Short summary
Short summary
This paper evaluates the temperature response in the troposphere and the stratosphere to the three major volcanic eruptions between the 1960s and the 1990s by comparing nine reanalysis data sets. It was found that the volcanic temperature response patterns differ among the major eruptions and that in general, more recent reanalysis data sets show a more consistent response pattern.
F. J. Haenel, G. P. Stiller, T. von Clarmann, B. Funke, E. Eckert, N. Glatthor, U. Grabowski, S. Kellmann, M. Kiefer, A. Linden, and T. Reddmann
Atmos. Chem. Phys., 15, 13161–13176, https://doi.org/10.5194/acp-15-13161-2015, https://doi.org/10.5194/acp-15-13161-2015, 2015
Short summary
Short summary
Stratospheric circulation is thought to change as a consequence of climate change. Empirical evidence, however, is sparse. In this paper we present latitude- and altitude-resolved trends of the mean age of stratospheric air as derived from SF6 measurements performed by the MIPAS satellite instrument. The mean of the age of stratospheric air is a measure of the intensity of the Brewer-Dobson circulation. In this paper we discuss differences with respect to a preceding analysis by Stiller et al.
P. Šácha, A. Kuchař, C. Jacobi, and P. Pišoft
Atmos. Chem. Phys., 15, 13097–13112, https://doi.org/10.5194/acp-15-13097-2015, https://doi.org/10.5194/acp-15-13097-2015, 2015
Short summary
Short summary
In this study, we present a discovery of an internal gravity wave activity and breaking hotspot collocated with an area of anomalously low annual cycle amplitude and specific dynamics in the stratosphere over the Northeastern Pacific/Eastern Asia coastal region. The reasons why this particular IGW activity hotspot was not discovered before nor the specific dynamics of this region pointed out are discussed together with possible consequences on the middle atmospheric dynamics and transport.
C. J. Wright, S. M. Osprey, and J. C. Gille
Atmos. Chem. Phys., 15, 8459–8477, https://doi.org/10.5194/acp-15-8459-2015, https://doi.org/10.5194/acp-15-8459-2015, 2015
Short summary
Short summary
Data from the HIRDLS instrument are used to study the numerical variability of gravity waves. Observed distributions are dominated by long-vertical-short-horizontal-wavelength waves, with a similar spectral form at all locations. We further divide our data into subspecies by wavelength, and investigate variation in these subspecies in time and space. We show that the variations associated with particular phenomena arise due to changes in specific parts of the spectrum.
N. P. Hindley, C. J. Wright, N. D. Smith, and N. J. Mitchell
Atmos. Chem. Phys., 15, 7797–7818, https://doi.org/10.5194/acp-15-7797-2015, https://doi.org/10.5194/acp-15-7797-2015, 2015
Short summary
Short summary
In nearly all GCMs, unresolved gravity wave (GW) drag may cause the southern stratospheric winter polar vortex to break down too late. Here, we characterise GWs in this region of the atmosphere using GPS radio occultation. We find GWs may propagate into the region from other latitudes. We develop a new quantitative wave identification method to learn about regional wave populations. We also find intense GW momentum fluxes over the southern Andes and Antarctic Peninsula GW hot spot.
E. E. Remsberg
Atmos. Chem. Phys., 15, 3739–3754, https://doi.org/10.5194/acp-15-3739-2015, https://doi.org/10.5194/acp-15-3739-2015, 2015
Short summary
Short summary
Time series of the satellite-observed stratospheric tracer, CH4, are analyzed to see whether they indicate a significant trend for the hemispheric Brewer--Dobson circulation (BDC) for 1992-2005. Trends in CH4 for the lower stratosphere are generally positive and equivalent to those of the troposphere. However, the Northern Hemisphere BDC is clearly accelerated in the mid-stratosphere (20 to 7hPa). Corresponding trends for the Southern Hemisphere are smaller and less significant.
I. Petropavlovskikh, R. Evans, G. McConville, G. L. Manney, and H. E. Rieder
Atmos. Chem. Phys., 15, 1585–1598, https://doi.org/10.5194/acp-15-1585-2015, https://doi.org/10.5194/acp-15-1585-2015, 2015
A. Réchou, S. Kirkwood, J. Arnault, and P. Dalin
Atmos. Chem. Phys., 14, 6785–6799, https://doi.org/10.5194/acp-14-6785-2014, https://doi.org/10.5194/acp-14-6785-2014, 2014
S. Studer, K. Hocke, A. Schanz, H. Schmidt, and N. Kämpfer
Atmos. Chem. Phys., 14, 5905–5919, https://doi.org/10.5194/acp-14-5905-2014, https://doi.org/10.5194/acp-14-5905-2014, 2014
K. Miyagawa, I. Petropavlovskikh, R. D. Evans, C. Long, J. Wild, G. L. Manney, and W. H. Daffer
Atmos. Chem. Phys., 14, 3945–3968, https://doi.org/10.5194/acp-14-3945-2014, https://doi.org/10.5194/acp-14-3945-2014, 2014
N. M. Gavrilov
Atmos. Chem. Phys., 13, 12107–12116, https://doi.org/10.5194/acp-13-12107-2013, https://doi.org/10.5194/acp-13-12107-2013, 2013
C. Kalicinsky, J.-U. Grooß, G. Günther, J. Ungermann, J. Blank, S. Höfer, L. Hoffmann, P. Knieling, F. Olschewski, R. Spang, F. Stroh, and M. Riese
Atmos. Chem. Phys., 13, 10859–10871, https://doi.org/10.5194/acp-13-10859-2013, https://doi.org/10.5194/acp-13-10859-2013, 2013
S. M. Khaykin, J.-P. Pommereau, and A. Hauchecorne
Atmos. Chem. Phys., 13, 6391–6402, https://doi.org/10.5194/acp-13-6391-2013, https://doi.org/10.5194/acp-13-6391-2013, 2013
P. Baron, D. P. Murtagh, J. Urban, H. Sagawa, S. Ochiai, Y. Kasai, K. Kikuchi, F. Khosrawi, H. Körnich, S. Mizobuchi, K. Sagi, and M. Yasui
Atmos. Chem. Phys., 13, 6049–6064, https://doi.org/10.5194/acp-13-6049-2013, https://doi.org/10.5194/acp-13-6049-2013, 2013
T. Flury, D. L. Wu, and W. G. Read
Atmos. Chem. Phys., 13, 4563–4575, https://doi.org/10.5194/acp-13-4563-2013, https://doi.org/10.5194/acp-13-4563-2013, 2013
M. Kohma and K. Sato
Atmos. Chem. Phys., 13, 3849–3864, https://doi.org/10.5194/acp-13-3849-2013, https://doi.org/10.5194/acp-13-3849-2013, 2013
A. K. Steiner, D. Hunt, S.-P. Ho, G. Kirchengast, A. J. Mannucci, B. Scherllin-Pirscher, H. Gleisner, A. von Engeln, T. Schmidt, C. Ao, S. S. Leroy, E. R. Kursinski, U. Foelsche, M. Gorbunov, S. Heise, Y.-H. Kuo, K. B. Lauritsen, C. Marquardt, C. Rocken, W. Schreiner, S. Sokolovskiy, S. Syndergaard, and J. Wickert
Atmos. Chem. Phys., 13, 1469–1484, https://doi.org/10.5194/acp-13-1469-2013, https://doi.org/10.5194/acp-13-1469-2013, 2013
Cited articles
Andrews, D. G., Holton, J. R., and Leovy, C. B.: Middle Atmosphere Dynamics,
1st ed., Academic Press, San Diego, California, eBook ISBN 9780080511672, Paperback ISBN 9780120585762,
1987.
Baldwin, M. P., Ayarzagüena, B., Birner, T., Butchart, N., Butler, A.
H., and Charlton-Perez, A. J.: Sudden stratospheric warmings, Rev.
Geophys., 58, e2020RG000708,
https://doi.org/10.1029/2020RG000708, 2021.
Butler, A. H., Seidel, D. J., Hardiman, S. C., Butchart, N., Birner, T., and
Match, A.: Defining Sudden Stratospheric Warmings, B. Am.
Meteorol. Soc., 96, 1913–1928,
https://doi.org/10.1175/BAMS-D-13-00173.1, 2015.
Butler, A. H., Sjoberg, J. P., Seidel, D. J., and Rosenlof, K. H.: A sudden stratospheric warming compendium, Earth Syst. Sci. Data, 9, 63–76, https://doi.org/10.5194/essd-9-63-2017, 2017.
Charlton, A. J. and Polvani, L. M.: A new look at stratospheric sudden
warmings. Part I: Climatology and modeling benchmarks, J. Climate, 20,
449–469, https://doi.org/10.1175/JCLI3996.1, 2007.
Choi, H., Kim, B. M., and Choi, W.: Type classification of sudden
stratospheric warming based on pre- and postwarming periods, J.
Climate, 32, 2349–2367,
https://doi.org/10.1175/JCLI-D-18-0223.1, 2019.
Davis, N. A., Richter, J. H., Glanville, A. A., Edwards, J., and LaJoie, E.:
Limited surface impacts of the January 2021 sudden stratospheric warming.
Nat. Commun., 13, 1136,
https://doi.org/10.1038/s41467-022-28836-1, 2022.
Domeisen, D. I. V., Butler, A. H., Charlton-Perez, A. J., Ayarzagüena,
B., Baldwin, M. P., Dunn-Sigouin, E., Furtado, J. C., Garfinkel, C. I.,
Hitchcock, P., Karpechko, A. Yu., Kim, H., Knight, J., Lang, A. L., Lim, E.,
Marshall, A., Roff, G., Schwartz, C., Simpson, I. R., Son, S., and Taguchi, M.:
The role of the stratosphere in subseasonal to seasonal prediction: 2.
Predictability arising from stratosphere-troposphere coupling, J.
Geophys. Res.-Atmos., 125, e2019JD030923,
https://doi.org/10.1029/2019JD030923, 2020.
Gong, Y., Li, C., Ma, Z., Zhang, S., Zhou, Q., Huang, C., Huang, K., Li, G.,
and Ning, B.: Study of the quasi-5-day wave in the MLT region by a meteor radar
chain, J. Geophys. Res.-Atmos., 123, 9474–9487,
https://doi.org/10.1029/2018JD029355, 2018.
Gong, Y., Wang, H., Ma, Z., Zhang, S., Zhou, Q., Huang, C., and Huang, K.: A
statistical analysis of the propagating quasi 16-day waves at high latitudes
and their response to sudden stratospheric warmings from 2005 to 2018,
J. Geophys. Res.-Atmos., 124, 12617–12630,
https://doi.org/10.1029/2019JD031482, 2019.
Harada, Y. and Hirooka, T.: Extraordinary features of the planetary wave
propagation during the boreal winter 2013/2014 and the zonal wave number two
predominance, J. Geophys. Res.-Atmos., 122,
11374–11387, https://doi.org/10.1002/2017JD027053, 2017.
Harvey, V. L., Randall, C. E., Goncharenko, L., Becker, E., and France, J.:
On the upward extension of the polar vortices into the mesosphere, J. Geophys. Res.-Atmos., 123, 9171–9191,
https://doi.org/10.1029/2018JD028815, 2018.
Huang, Y. Y., Zhang, S., Li, C. Y., Li, H. J., Huang, K., and Huang, C.:
Annual and inter-annual variations in global 6.5DWs from 20–110 km during
2002–2016 observed by TIMED/SABER, J. Geophys. Res.-Space, 122, 8985–9002, https://doi.org/10.1002/2017JA023886,
2017.
King, A. D., Butler, A. H., Jucker, M., Earl, N. O., and Rudeva, I.:
Observed relationships between sudden stratospheric warmings and European
climate extremes, J. Geophys. Res.-Atmos., 124,
13943–13961, https://doi.org/10.1029/2019JD030480, 2019.
Koushik, N., Kumar, K. K., Ramkumar, G., Subrehmanyam, K. V., Kishore Kumar,
G., Hocking, W. K., He, M., and Latteck, R.: Planetary waves in the mesosphere
lower thermosphere during stratospheric sudden warming: Observations using a
network of meteor radars from high to equatorial latitudes, Climate
Dynam., 54, 4059–4074, https://doi.org/10.1007/s00382-020-05214-5, 2020.
Kozubek, M., Krizan, P., and Lastovicka, J.: Northern Hemisphere stratospheric winds in higher midlatitudes: longitudinal distribution and long-term trends, Atmos. Chem. Phys., 15, 2203–2213, https://doi.org/10.5194/acp-15-2203-2015, 2015.
Lawrence, Z. D. and Manney, G. L.: Characterizing stratospheric polar
vortex variability with computer vision techniques, J. Geophys. Res.-Atmos., 123, 1510–1535, 2018.
Lin, J. T., Lin, C. H., Rajesh, P. K., Yue, J., Lin, C. Y., and Matsuo, T.:
Local-time and vertical characteristics of quasi-6-day oscillation in the
ionosphere during the 2019 Antarctic sudden stratospheric warming,
Geophys. Res. Lett., 47, e2020GL090345, https://doi.org/10.1029/2020GL090345, 2020.
Livesey, N. J., Read, W. G., Wagner, P. A., Froidevaux, L., Lambert, A., Manney, G. L., Millán, L. F., Pumphrey, H. C., Santee, M. L., Schwartz, M. J., Wang, S., Fuller, R. A., Jarnot, R. F., Knosp, B. W., Martinez, E., and Lay, R. R.: Earth Observing Sys tem (EOS) Aura Microwave Limb Sounder (MLS) Version 4.2x Level 2 and 3 data quality and description document, Jet Propul sion Laboratory, California Institute of Technology, 20 April, 2020.
Liu, H. L., Talaat, E. R., Roble, R. G., Lieberman, R. S., Riggin, D. M.,
and Yee, J. H.: The 6.5-day wave and its seasonal variability in the middle
and upper atmosphere, J. Geophys. Res., 109, D21112,
https://doi.org/10.1029/2004JD004795, 2004.
Liu, S.-M., Chen, Y.-H., Rao, J., Cao, C., Li, S.-Y., Ma, M.-H., and Wang,
Y.-B.: Parallel Comparison of Major Sudden Stratospheric Warming Events in
CESM1-WACCM and CESM2-WACCM, Atmosphere, 10, 679, https://doi.org/10.3390/atmos10110679, 2019.
Lu, X., Wu, H., Oberheide, J., Liu, H.-L., and McInerney, J. M.: Latitudinal
double-peak structure of stationary planetary wave 1 in the austral winter
middle atmosphere and its possible generation mechanism, J. Geophys. Res.-Atmos., 123, 11551–11568,
https://doi.org/10.1029/2018JD029172, 2018.
Ma, Z., Gong, Y., Zhang, S., Zhou, Q., Huang, C., Huang, K., Luo, J., Yu,
Y., Li, G.: Study of a quasi-4-day oscillation during the 2018/2019 SSW over
Mohe, China, J. Geophys. Res.-Space, 125,
e2019JA027687, https://doi.org/10.1029/2019JA027687, 2020.
Ma, Z., Gong, Y., Zhang, S., Xiao, Q., Xue, J., Huang, C., and Huang, K.:
Understanding the excitation of quasi-6-day waves in both hemispheres during
the September 2019 Antarctic SSW, J. Geophys. Res.-Atmos., 127, e2021JD035984, https://doi.org/10.1029/2021JD035984, 2022.
Manney, G. L., Schwartz, M. J., Krüger, K., Santee, M. L., Pawson, S.,
Lee, J. N., Daffer, W. H., Fuller, R. A., and Livesey, N. J.: Aura Microwave
Limb Sounder observations of dynamics and transport during the record
breaking 2009 Arctic stratospheric major warming, Geophys. Res. Lett.,
36, L12815, https://doi.org/10.1029/2009GL038586, 2009.
Matsuno, T.: A dynamical model of the stratospheric sudden warming, J.
Atmos. Sci., 28, 1479–1494, https://doi.org/10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2, 1971.
NASA: Aura/MLS geopotential height, Goddard Earth Sciences Data and Information Services Center [data set], https://acdisc.gesdisc.eosdis.nasa.gov/data/Aura_MLS_Level2/ML2GPH.004/, last access: 1 October 2022.
Okui, H., Sato, K., Koshin, D., and Watanabe, S.: Formation of a mesospheric
inversion layer and the subsequent elevated stratopause associated with the
major stratospheric sudden warming in 2018/19, J. Geophys. Res.-Atmos., 126, e2021JD034681, https://doi.org/10.1029/2021JD034681, 2021.
Pancheva, D., Mukhtarov, P., and Siskind, D. E.: The quasi-6-day waves in
NOGAPS-ALPHA forecast model and their climatology in MLS/Aura measurements
(2005–2014), J. Atmos. Sol.-Terr. Phy., 181,
19–37, https://doi.org/10.1016/j.jastp.2018.10.008, 2018.
Qin, Y., Gu, S.-Y., Teng, C.-K.-M., Dou, X.-K., Yu, Y., and Li, N.:
Comprehensive study of the climatology of the quasi-6-day wave in the MLT
region based on aura/MLS observations and SDWACCM-X simulations, J. Geophys. Res.-Space, 126, e2020JA028454, https://doi.org/10.1029/2020JA028454, 2021.
Rao, J., Ren, R., Chen, H., Yu, Y., and Zhou, Y.: The stratospheric sudden
warming event in February 2018 and its prediction by a climate system model,
J. Geophys. Res.-Atmos., 123, 13332–13345,
https://doi.org/10.1029/2018JD028908, 2018.
Rao, J., Ren, R., Chen, H., Liu, X., Yu, Y., Hu, J., and Zhou, Y.:
Predictability of stratospheric sudden warmings in the Beijing Climate
Center Forecast System with statistical error corrections, J. Geophys. Res.-Atmos., 124, 8385–8400, https://doi.org/10.1029/2019JD030900, 2019.
Rao, J., Garfinkel, C. I., and White, I. P.: Predicting the downward and
surface influence of the February 2018 and January 2019 sudden stratospheric
warming events in subseasonal to seasonal (S2S) models, J. Geophys. Res.-Atmos., 125, e2019JD031919, https://doi.org/10.1029/2019JD031919, 2020.
Rao, J., Garfinkel, C. I., Wu, T., Lu, Y., Lu, Q., and Liang, Z.: The
January 2021 sudden stratospheric warming and its prediction in subseasonal
to seasonal models, J. Geophys. Res.-Atmos., 126,
e2021JD035057, https://doi.org/10.1029/2021JD035057, 2021.
Rhodes, C. T., Limpasuvan, V., and Orsolini, Y. J.: Eastward-propagating
planetary waves prior to the january 2009 sudden stratospheric warming,
J. Geophys. Res.-Atmos., 126, e2020JD033696., https://doi.org/10.1029/2020JD033696, 2021.
Seviour, W. J. M., Mitchell, D. M., and Gray, L. J.: A practical method to
identify displaced and split stratospheric polar vortex events, Geophys.
Res. Lett., 40, 5268–5273, https://doi.org/10.1002/grl.50927, 2013.
Smith, A. K.: The origin of stationary planetary waves in the upper
mesosphere, J. Atmos. Sci., 60, 3033–3041,
https://doi.org/10.1175/1520-0469(2003)060<3033:TOOSPW>2.0.CO;2, 2003.
Tunbridge, V. M., Sandford, D. J., and Mitchell, N. J.: Zonal wave numbers
of the summertime 2 day planetary wave observed in the mesosphere by EOS
Aura Microwave Limb Sounder, J. Geophys. Res., 116, D11103,
https://doi.org/10.1029/2010JD014567, 2011.
Wang, J. C., Palo, S. E., Forbes, J. M., Marino, J., Moffat-Griffin, T., and
Mitchell, N. J.: Unusual quasi 10-day planetary wave activity and the
ionospheric response during the 2019 Southern Hemisphere sudden
stratospheric warming J. Geophys. Res.-Space, 126,
e2021JA029286, https://doi.org/10.1029/2021JA029286, 2021.
Wang, Y., Shulga, V., Milinevsky, G., Patoka, A., Evtushevsky, O., Klekociuk, A., Han, W., Grytsai, A., Shulga, D., Myshenko, V., and Antyufeyev, O.: Winter 2018 major sudden stratospheric warming impact on midlatitude mesosphere from microwave radiometer measurements, Atmos. Chem. Phys., 19, 10303–10317, https://doi.org/10.5194/acp-19-10303-2019, 2019.
White, I. P., Garfinkel, C. I., Cohen, J., Jucker, M., and Rao, J.: The
impact of split and displacement sudden stratospheric warmings on the
troposphere, J. Geophys. Res.-Atmos., 126,
e2020JD033989, https://doi.org/10.1029/2020JD033989, 2021.
Wright, C. J., Hall, R. J., Banyard, T. P., Hindley, N. P., Krisch, I.,
Mitchell, D. M., and Seviour, W. J. M.: Dynamical and surface impacts of the
January 2021 sudden stratospheric warming in novel Aeolus wind observations,
MLS and ERA5, Weather Clim. Dynam., 2, 1283–1301,
https://doi.org/10.5194/wcd-2-1283-2021, 2021.
Wu, D. L., Hays, P. B., and Skinner, W. R.: A least-squares method for
spectral-analysis of space-time series, J. Atmos. Sci., 52, 3501–3511,
https://doi.org/10.1175/1520-0469(1995)052<3501:ALSMFS>2.0.CO;2, 1995.
Xiong, J., Wan, W., Ding, F., Liu, L., Hu, L., and Yan, C.: Two day wave
traveling westward with wave number 1 during the sudden stratospheric
warming in January 2017, J. Geophys. Res.-Space,
123, 3005–3013, https://doi.org/10.1002/2017JA025171, 2018.
Xu, J., Smith, A. K., Wang, W., Jiang, G., Yuan, W., Gao, H., Yue, J.,
Funke, B., López-Puertas, M., Russell, I. I. I., and M, J.: An
observational and theoretical study of the longitudinal variation in neutral
temperature induced by aurora heating in the lower thermosphere, J. Geophys. Res.-Space, 118, 7410–7425, 2013.
Yamazaki, Y. and Matthias, V.: Large-amplitude quasi-10-day waves in the
middle atmosphere during final warmings, J. Geophys. Res.-Atmos., 124, 9874–9892, https://doi.org/10.1029/2019JD030634, 2019.
Yamazaki, Y., Matthias, V., Miyoshi, Y., Stolle, C., Siddiqui, T.,
Kervalishvili, G., Laštovička, J., Kozubek, M., Ward, W., Themens,
D. R., Kristoffersen, S., and Alken, P.: September 2019 Antarctic sudden
stratospheric warming: Quasi-6-day wave burst and ionospheric effects,
Geophys. Res. Lett., 47, e2019GL086577, https://doi.org/10.1029/2019GL086577, 2020.
Yamazaki, Y., Matthias, V., and Miyoshi, Y.: Quasi-4-day wave: Atmospheric
manifestation of the first symmetric Rossby normal mode of zonal wavenumber
2, J. Geophys. Res.-Atmos., 126, e2021JD034855,
https://doi.org/10.1029/2021JD034855, 2021.
Yu, F. R., Huang, K. M., Zhang, S. D., Huang, C. M., and Gong, Y.:
Observations of eastward propagating quasi 6-day waves from the troposphere
to the lower thermosphere during SSWs in early 2016, J. Geophys. Res.-Atmos., 127, e2021JD036017, https://doi.org/10.1029/2021JD036017, 2022.
Short summary
We present a novel method to measure the amplitudes of traveling quasi-5-day oscillations (Q5DOs) in the middle atmosphere during sudden stratospheric warming events based on satellite observations. Simulations and observations demonstrate that the previously reported traveling Q5DOs might be contaminated by stationary planetary waves (SPWs). The new fitting method is developed by inhibiting the effect of a rapid and large change in SPWs.
We present a novel method to measure the amplitudes of traveling quasi-5-day oscillations...
Altmetrics
Final-revised paper
Preprint