Articles | Volume 21, issue 11
https://doi.org/10.5194/acp-21-8809-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-8809-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Revisiting the reaction of dicarbonyls in aerosol proxy solutions containing ammonia: the case of butenedial
School of Engineering and Applied Sciences, Harvard University,
Cambridge, MA, USA
Adam W. Birdsall
Department of Chemistry and Chemical Biology, Harvard University,
Cambridge, MA, USA
now at: Goodyear, Akron, OH, USA
Gregory Valtierra
Harvard College, Cambridge, MA, USA
Joshua L. Cox
Department of Chemistry and Chemical Biology, Harvard University,
Cambridge, MA, USA
Frank N. Keutsch
CORRESPONDING AUTHOR
School of Engineering and Applied Sciences, Harvard University,
Cambridge, MA, USA
Department of Chemistry and Chemical Biology, Harvard University,
Cambridge, MA, USA
Department of Earth and Planetary Sciences, Harvard University,
Cambridge, MA, USA
Related authors
No articles found.
Dan Topa, Berthold Stoeger, Frank N. Keutsch, and Gheorghe Ilinca
Eur. J. Mineral., 37, 591–616, https://doi.org/10.5194/ejm-37-591-2025, https://doi.org/10.5194/ejm-37-591-2025, 2025
Short summary
Short summary
We conducted this research to gain understanding of the mineral rouxelite, which contains elements like antimony, copper, mercury, and lead. Using advanced X-ray techniques, we re-examined its crystal structure and discovered new details, such as unit-cell parameters, symmetry, and substitutions. These findings provide accurate information about how the mineral forms and behaves. This work not only updates scientific knowledge of rouxelite but also offers insights into its chemical complexity.
Zhaojin An, Rujing Yin, Xinyan Zhao, Xiaoxiao Li, Yuyang Li, Yi Yuan, Junchen Guo, Yiqi Zhao, Xue Li, Dandan Li, Yaowei Li, Dongbin Wang, Chao Yan, Kebin He, Douglas R. Worsnop, Frank N. Keutsch, and Jingkun Jiang
Atmos. Chem. Phys., 24, 13793–13810, https://doi.org/10.5194/acp-24-13793-2024, https://doi.org/10.5194/acp-24-13793-2024, 2024
Short summary
Short summary
Online Vocus-PTR measurements show the compositions and seasonal variations in organic vapors in urban Beijing. With enhanced sensitivity and mass resolution, various species at a level of sub-parts per trillion (ppt) and organics with multiple oxygens (≥ 3) were observed. The fast photooxidation process in summer leads to an increase in both concentration and proportion of organics with multiple oxygens, while, in other seasons, the variations in them could be influenced by mixed sources.
Sandro Vattioni, Rahel Weber, Aryeh Feinberg, Andrea Stenke, John A. Dykema, Beiping Luo, Georgios A. Kelesidis, Christian A. Bruun, Timofei Sukhodolov, Frank N. Keutsch, Thomas Peter, and Gabriel Chiodo
Geosci. Model Dev., 17, 7767–7793, https://doi.org/10.5194/gmd-17-7767-2024, https://doi.org/10.5194/gmd-17-7767-2024, 2024
Short summary
Short summary
We quantified impacts and efficiency of stratospheric solar climate intervention via solid particle injection. Microphysical interactions of solid particles with the sulfur cycle were interactively coupled to the heterogeneous chemistry scheme and the radiative transfer code of an aerosol–chemistry–climate model. Compared to injection of SO2 we only find a stronger cooling efficiency for solid particles when normalizing to the aerosol load but not when normalizing to the injection rate.
Yaowei Li, Corey Pedersen, John Dykema, Jean-Paul Vernier, Sandro Vattioni, Amit Kumar Pandit, Andrea Stenke, Elizabeth Asher, Troy Thornberry, Michael A. Todt, Thao Paul Bui, Jonathan Dean-Day, and Frank N. Keutsch
Atmos. Chem. Phys., 23, 15351–15364, https://doi.org/10.5194/acp-23-15351-2023, https://doi.org/10.5194/acp-23-15351-2023, 2023
Short summary
Short summary
In 2021, the eruption of La Soufrière released sulfur dioxide into the stratosphere, resulting in a spread of volcanic aerosol over the Northern Hemisphere. We conducted extensive aircraft and balloon-borne measurements after that, revealing enhanced particle concentration and altered size distribution due to the eruption. The eruption's impact on ozone depletion was minimal, contributing ~0.6 %, and its global radiative forcing effect was modest, mainly affecting tropical and midlatitude areas.
Brandon Bottorff, Michelle M. Lew, Youngjun Woo, Pamela Rickly, Matthew D. Rollings, Benjamin Deming, Daniel C. Anderson, Ezra Wood, Hariprasad D. Alwe, Dylan B. Millet, Andrew Weinheimer, Geoff Tyndall, John Ortega, Sebastien Dusanter, Thierry Leonardis, James Flynn, Matt Erickson, Sergio Alvarez, Jean C. Rivera-Rios, Joshua D. Shutter, Frank Keutsch, Detlev Helmig, Wei Wang, Hannah M. Allen, Johnathan H. Slade, Paul B. Shepson, Steven Bertman, and Philip S. Stevens
Atmos. Chem. Phys., 23, 10287–10311, https://doi.org/10.5194/acp-23-10287-2023, https://doi.org/10.5194/acp-23-10287-2023, 2023
Short summary
Short summary
The hydroxyl (OH), hydroperoxy (HO2), and organic peroxy (RO2) radicals play important roles in atmospheric chemistry and have significant air quality implications. Here, we compare measurements of OH, HO2, and total peroxy radicals (XO2) made in a remote forest in Michigan, USA, to predictions from a series of chemical models. Lower measured radical concentrations suggest that the models may be missing an important radical sink and overestimating the rate of ozone production in this forest.
Vigneshkumar Balamurugan, Jia Chen, Adrian Wenzel, and Frank N. Keutsch
Atmos. Chem. Phys., 23, 10267–10285, https://doi.org/10.5194/acp-23-10267-2023, https://doi.org/10.5194/acp-23-10267-2023, 2023
Short summary
Short summary
In this study, machine learning models are employed to model NO2 and O3 concentrations. We employed a wide range of sources of data, including meteorological and column satellite measurements, to model NO2 and O3 concentrations. The spatial and temporal variability, and their drivers, were investigated. Notably, the machine learning model established the relationship between NOx and O3. Despite the fact that metropolitan regions are NO2 hotspots, rural areas have high O3 concentrations.
Qing Ye, Matthew B. Goss, Jordan E. Krechmer, Francesca Majluf, Alexander Zaytsev, Yaowei Li, Joseph R. Roscioli, Manjula Canagaratna, Frank N. Keutsch, Colette L. Heald, and Jesse H. Kroll
Atmos. Chem. Phys., 22, 16003–16015, https://doi.org/10.5194/acp-22-16003-2022, https://doi.org/10.5194/acp-22-16003-2022, 2022
Short summary
Short summary
The atmospheric oxidation of dimethyl sulfide (DMS) is a major natural source of sulfate particles in the atmosphere. However, its mechanism is poorly constrained. In our work, laboratory measurements and mechanistic modeling were conducted to comprehensively investigate DMS oxidation products and key reaction rates. We find that the peroxy radical (RO2) has a controlling effect on product distribution and aerosol yield, with the isomerization of RO2 leading to the suppression of aerosol yield.
Vigneshkumar Balamurugan, Jia Chen, Zhen Qu, Xiao Bi, and Frank N. Keutsch
Atmos. Chem. Phys., 22, 7105–7129, https://doi.org/10.5194/acp-22-7105-2022, https://doi.org/10.5194/acp-22-7105-2022, 2022
Short summary
Short summary
In this study, we investigated the response of secondary pollutants to changes in precursor emissions, focusing on the formation of secondary PM, during the COVID-19 lockdown period. We show that, due to the decrease in primary NOx emissions, atmospheric oxidizing capacity is increased. The nighttime increase in ozone, caused by less NO titration, results in higher NO3 radicals, which contribute significantly to the formation of PM nitrates. O3 should be limited in order to control PM pollution.
Dandan Wei, Hariprasad D. Alwe, Dylan B. Millet, Brandon Bottorff, Michelle Lew, Philip S. Stevens, Joshua D. Shutter, Joshua L. Cox, Frank N. Keutsch, Qianwen Shi, Sarah C. Kavassalis, Jennifer G. Murphy, Krystal T. Vasquez, Hannah M. Allen, Eric Praske, John D. Crounse, Paul O. Wennberg, Paul B. Shepson, Alexander A. T. Bui, Henry W. Wallace, Robert J. Griffin, Nathaniel W. May, Megan Connor, Jonathan H. Slade, Kerri A. Pratt, Ezra C. Wood, Mathew Rollings, Benjamin L. Deming, Daniel C. Anderson, and Allison L. Steiner
Geosci. Model Dev., 14, 6309–6329, https://doi.org/10.5194/gmd-14-6309-2021, https://doi.org/10.5194/gmd-14-6309-2021, 2021
Short summary
Short summary
Over the past decade, understanding of isoprene oxidation has improved, and proper representation of isoprene oxidation and isoprene-derived SOA (iSOA) formation in canopy–chemistry models is now recognized to be important for an accurate understanding of forest–atmosphere exchange. The updated FORCAsT version 2.0 improves the estimation of some isoprene oxidation products and is one of the few canopy models currently capable of simulating SOA formation from monoterpenes and isoprene.
Eleni Dovrou, Kelvin H. Bates, Jean C. Rivera-Rios, Joshua L. Cox, Joshua D. Shutter, and Frank N. Keutsch
Atmos. Chem. Phys., 21, 8999–9008, https://doi.org/10.5194/acp-21-8999-2021, https://doi.org/10.5194/acp-21-8999-2021, 2021
Short summary
Short summary
We examined the mechanism and products of oxidation of dissolved sulfur dioxide with the main isomers of isoprene hydroxyl hydroperoxides, via laboratory and model analysis. Two chemical mechanism pathways are proposed and the results provide an improved understanding of the broader atmospheric chemistry and role of multifunctional organic hydroperoxides, which should be the dominant VOC oxidation products under low-NO conditions, highlighting their significant contribution to sulfate formation.
Alexander Zaytsev, Martin Breitenlechner, Anna Novelli, Hendrik Fuchs, Daniel A. Knopf, Jesse H. Kroll, and Frank N. Keutsch
Atmos. Meas. Tech., 14, 2501–2513, https://doi.org/10.5194/amt-14-2501-2021, https://doi.org/10.5194/amt-14-2501-2021, 2021
Short summary
Short summary
We have developed an online method for speciated measurements of organic peroxy radicals and stabilized Criegee intermediates using chemical derivatization combined with chemical ionization mass spectrometry. Chemical derivatization prevents secondary radical reactions and eliminates potential interferences. Comparison between our measurements and results from numeric modeling shows that the method can be used for the quantification of a wide range of atmospheric radicals and intermediates.
Lei Zhu, Gonzalo González Abad, Caroline R. Nowlan, Christopher Chan Miller, Kelly Chance, Eric C. Apel, Joshua P. DiGangi, Alan Fried, Thomas F. Hanisco, Rebecca S. Hornbrook, Lu Hu, Jennifer Kaiser, Frank N. Keutsch, Wade Permar, Jason M. St. Clair, and Glenn M. Wolfe
Atmos. Chem. Phys., 20, 12329–12345, https://doi.org/10.5194/acp-20-12329-2020, https://doi.org/10.5194/acp-20-12329-2020, 2020
Short summary
Short summary
We develop a validation platform for satellite HCHO retrievals using in situ observations from 12 aircraft campaigns. The platform offers an alternative way to quickly assess systematic biases in HCHO satellite products over large domains and long periods, facilitating optimization of retrieval settings and the minimization of retrieval biases. Application to the NASA operational HCHO product indicates that relative biases range from −44.5 % to +112.1 % depending on locations and seasons.
Cited articles
Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, https://doi.org/10.5194/acp-6-3131-2006, 2006.
Arey, J., Obermeyer, G., Aschmann, S. M., Chattopadhyay, S., Cusick, R. D.,
and Atkinson, R.: Dicarbonyl Products of the OH Radical-Initiated Reaction
of a Series of Aromatic Hydrocarbons, Environ. Sci. Technol., 43, 683–689,
https://doi.org/10.1021/es8019098, 2009.
Aschmann, S. M., Nishino, N., Arey, J., and Atkinson, R.: Kinetics of the
Reactions of OH Radicals with 2- and 3-Methylfuran, 2,3- and
2,5-Dimethylfuran, and E - and Z -3-Hexene-2,5-dione, and Products of OH +
2,5-Dimethylfuran, Environ. Sci. Technol., 45, 1859–1865,
https://doi.org/10.1021/es103207k, 2011.
Aschmann, S. M., Nishino, N., Arey, J., and Atkinson, R.: Products of the OH
Radical-Initiated Reactions of Furan, 2- and 3-Methylfuran, and 2,3- and
2,5-Dimethylfuran in the Presence of NO, J. Phys. Chem. A, 118, 457–466,
https://doi.org/10.1021/jp410345k, 2014.
Avenati, M. and Vogel, P.: Face Selectivity of theDiels-Alder Additions of
2-Substituted 5,6-bis((E)-chloromethylidene)bicyclo[2.2.2]octanes, Helv.
Chim. Acta, 65, 204–216, https://doi.org/10.1002/hlca.19820650119, 1982.
Berndt, T. and Böge, O.: Formation of phenol and carbonyls from the
atmospheric reaction of OH radicals with benzene, Phys. Chem. Chem. Phys.,
8, 1205, https://doi.org/10.1039/b514148f, 2006.
Bierbach, A., Barnes, I., Becker, K. H., and Wiesen, E.:
Atmospheric Chemistry of Unsaturated Carbonyls: Butenedial,
4-Oxo-2-pentenal, 3-Hexene-2,5-dione, Maleic Anhydride, 3H-Furan-2-one, and
5-Methyl-3H-furan-2-one, Environ. Sci. Technol., 28, 715–729,
https://doi.org/10.1021/es00053a028, 1994.
Birdsall, A. W., Krieger, U. K., and Keutsch, F. N.: Electrodynamic balance–mass spectrometry of single particles as a new platform for atmospheric chemistry research, Atmos. Meas. Tech., 11, 33–47, https://doi.org/10.5194/amt-11-33-2018, 2018.
Birdsall, A. W., Hensley, J. C., Kotowitz, P. S., Huisman, A. J., and Keutsch, F. N.: Single-particle experiments measuring humidity and inorganic salt effects on gas-particle partitioning of butenedial, Atmos. Chem. Phys., 19, 14195–14209, https://doi.org/10.5194/acp-19-14195-2019, 2019.
Bond, T. C., Bhardwaj, E., Dong, R., Jogani, R., Jung, S., Roden, C.,
Streets, D. G., and Trautmann, N. M.: Historical emissions of black and
organic carbon aerosol from energy-related combustion, 1850–2000: HISTORICAL
BC/OC EMISSIONS, Global Biogeochem. Cy., 21, GB2018,
https://doi.org/10.1029/2006GB002840, 2007.
Coggon, M. M., Lim, C. Y., Koss, A. R., Sekimoto, K., Yuan, B., Gilman, J. B., Hagan, D. H., Selimovic, V., Zarzana, K. J., Brown, S. S., Roberts, J. M., Müller, M., Yokelson, R., Wisthaler, A., Krechmer, J. E., Jimenez, J. L., Cappa, C., Kroll, J. H., de Gouw, J., and Warneke, C.: OH chemistry of non-methane organic gases (NMOGs) emitted from laboratory and ambient biomass burning smoke: evaluating the influence of furans and oxygenated aromatics on ozone and secondary NMOG formation, Atmos. Chem. Phys., 19, 14875–14899, https://doi.org/10.5194/acp-19-14875-2019, 2019.
Debus, H.: Ueber die Einwirkung des Ammoniaks auf Glyoxal, Liebigs Ann. Chem., 107, 199–208,
https://doi.org/10.1002/jlac.18581070209, 1858.
De Haan, D. O., Hawkins, L. N., Welsh, H. G., Pednekar, R., Casar, J. R.,
Pennington, E. A., de Loera, A., Jimenez, N. G., Symons, M. A., Zauscher,
M., Pajunoja, A., Caponi, L., Cazaunau, M., Formenti, P., Gratien, A.,
Pangui, E., and Doussin, J.-F.: Brown Carbon Production in Ammonium- or
Amine-Containing Aerosol Particles by Reactive Uptake of Methylglyoxal and
Photolytic Cloud Cycling, Environ. Sci. Technol., 51, 7458–7466,
https://doi.org/10.1021/acs.est.7b00159, 2017.
De Haan, D. O., Jimenez, N. G., de Loera, A., Cazaunau, M., Gratien, A.,
Pangui, E., and Doussin, J.-F.: Methylglyoxal Uptake Coefficients on Aqueous
Aerosol Surfaces, J. Phys. Chem. A, 122, 4854–4860,
https://doi.org/10.1021/acs.jpca.8b00533, 2018.
Ervens, B.: Modeling the Processing of Aerosol and Trace Gases in Clouds and
Fogs, Chem. Rev., 115, 4157–4198, https://doi.org/10.1021/cr5005887, 2015.
Ervens, B. and Volkamer, R.: Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles, Atmos. Chem. Phys., 10, 8219–8244, https://doi.org/10.5194/acp-10-8219-2010, 2010.
Fratzke, A. R. and Reilly, P. J.: Kinetic analysis of the disproportionation
of aqueous glyoxal, Int. J. Chem. Kinet., 18, 757–773,
https://doi.org/10.1002/kin.550180704, 1986.
Galloway, M. M., Chhabra, P. S., Chan, A. W. H., Surratt, J. D., Flagan, R. C., Seinfeld, J. H., and Keutsch, F. N.: Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions, Atmos. Chem. Phys., 9, 3331–3345, https://doi.org/10.5194/acp-9-3331-2009, 2009.
Galloway, M. M., Loza, C. L., Chhabra, P. S., Chan, A. W. H., Yee, L. D.,
Seinfeld, J. H., and Keutsch, F. N.: Analysis of photochemical and dark
glyoxal uptake: Implications for SOA formation: PHOTOCHEMICAL AND DARK
GLYOXAL UPTAKE, Geophys. Res. Lett., 38, L17811,
https://doi.org/10.1029/2011GL048514, 2011.
Gómez Alvarez, E., Viidanoja, J., Muñoz, A., Wirtz, K., and Hjorth,
J.: Experimental Confirmation of the Dicarbonyl Route in the Photo-oxidation
of Toluene and Benzene, Environ. Sci. Technol., 41, 8362–8369,
https://doi.org/10.1021/es0713274, 2007.
Gómez Alvarez, E., Borrás, E., Viidanoja, J., and Hjorth, J.:
Unsaturated dicarbonyl products from the OH-initiated photo-oxidation of
furan, 2-methylfuran and 3-methylfuran, Atmos. Environ., 43,
1603–1612, https://doi.org/10.1016/j.atmosenv.2008.12.019, 2009.
Grace, D. N., Lugos, E. N., Ma, S., Griffith, D. R., Hendrickson, H. P.,
Woo, J. L., and Galloway, M. M.: Brown Carbon Formation Potential of the
Biacetyl–Ammonium Sulfate Reaction System, ACS Earth Space Chem., 4,
1104–1113, https://doi.org/10.1021/acsearthspacechem.0c00096, 2020.
Hamilton, J. F., Lewis, A. C., Bloss, C., Wagner, V., Henderson, A. P., Golding, B. T., Wirtz, K., Martin-Reviejo, M., and Pilling, M. J.: Measurements of photo-oxidation products from the reaction of a series of alkyl-benzenes with hydroxyl radicals during EXACT using comprehensive gas chromatography, Atmos. Chem. Phys., 3, 1999–2014, https://doi.org/10.5194/acp-3-1999-2003, 2003.
Hardy, P. M., Nicholls, A. C., and Rydon, H. N.: The hydration and
polymerisation of succinaldehyde, glutaraldehyde, and adipaldehyde, J. Chem. Soc., Perkin Trans., 2, 2270–2278, https://doi.org/10.1039/p29720002270, 1972.
Hensley, J. C.: Code and raw data for analysis, GitHub [code], available at: https://github.com/jackattack1415/pyrosolchem, last access: 23 February 2021a.
Hensley, J. C.: pyrosolchem opening release, Zenodo [code], https://doi.org/10.5281/zenodo.4912343, 2021b.
Hensley, J. C., Birdsall, A. W., and Keutsch, F. N.: Competition of partitioning and reaction controls brown carbon formation from butenedial in particles, in preparation, 2021.
Kampf, C. J., Jakob, R., and Hoffmann, T.: Identification and characterization of aging products in the glyoxal/ammonium sulfate system – implications for light-absorbing material in atmospheric aerosols, Atmos. Chem. Phys., 12, 6323–6333, https://doi.org/10.5194/acp-12-6323-2012, 2012.
Kampf, C. J., Waxman, E. M., Slowik, J. G., Dommen, J., Pfaffenberger, L.,
Praplan, A. P., Prévôt, A. S. H., Baltensperger, U., Hoffmann, T.,
and Volkamer, R.: Effective Henry's Law Partitioning and the Salting
Constant of Glyoxal in Aerosols Containing Sulfate, Environ. Sci. Technol.,
47, 4236–4244, https://doi.org/10.1021/es400083d, 2013.
Kampf, C. J., Filippi, A., Zuth, C., Hoffmann, T., and Opatz, T.: Secondary
brown carbon formation via the dicarbonyl imine pathway: nitrogen
heterocycle formation and synergistic effects, Phys. Chem. Chem. Phys., 18,
18353–18364, https://doi.org/10.1039/C6CP03029G, 2016.
Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E., Stephanou, E. G., and Wilson, J.: Organic aerosol and global climate modelling: a review, Atmos. Chem. Phys., 5, 1053–1123, https://doi.org/10.5194/acp-5-1053-2005, 2005.
Kroll, J. H., Ng, N. L., Murphy, S. M., Varutbangkul, V., Flagan, R. C., and
Seinfeld, J. H.: Chamber studies of secondary organic aerosol growth by
reactive uptake of simple carbonyl compounds, J. Geophys. Res., 110, D23207,
https://doi.org/10.1029/2005JD006004, 2005.
Kulshrestha, U. C., Kulshrestha, M. J., Sekar, R., Vairamani, M., Sarkar, A.
K., and Parashar, D. C.: Investigation of Alkaline Nature of Rain Water in
India, Water Air Soil Poll., 130, 1685–1690,
https://doi.org/10.1023/A:1013937906261, 2001.
Kuttippurath, J., Singh, A., Dash, S. P., Mallick, N., Clerbaux, C., Van
Damme, M., Clarisse, L., Coheur, P.-F., Raj, S., Abbhishek, K., and
Varikoden, H.: Record high levels of atmospheric ammonia over India: Spatial
and temporal analyses, Sci. Total Environ., 740, 139986,
https://doi.org/10.1016/j.scitotenv.2020.139986, 2020.
Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of Atmospheric
Brown Carbon, Chem. Rev., 115, 4335–4382,
https://doi.org/10.1021/cr5006167, 2015.
Lee, A. K. Y., Zhao, R., Li, R., Liggio, J., Li, S.-M., and Abbatt,
Jonathan. P. D.: Formation of Light Absorbing Organo-Nitrogen Species from
Evaporation of Droplets Containing Glyoxal and Ammonium Sulfate, Environ.
Sci. Technol., 47, 12819–12826, https://doi.org/10.1021/es402687w, 2013.
Loeffler, K. W., Koehler, C. A., Paul, N. M., and De Haan, D. O.: Oligomer
Formation in Evaporating Aqueous Glyoxal and Methyl Glyoxal Solutions,
Environ. Sci. Technol., 40, 6318–6323, https://doi.org/10.1021/es060810w,
2006.
Matsunaga, S., Mochida, M., and Kawamura, K.: High abundance of gaseous and
particulate 4-oxopentanal in the forestal atmosphere, Chemosphere, 55,
1143–1147, https://doi.org/10.1016/j.chemosphere.2003.10.004, 2004.
Maxut, A.: Formation mechanisms and yields of small imidazoles from
reactions of glyoxal with NH in water at neutral pH, Phys. Chem. Chem. Phys., 17, 20416–20424, https://doi.org/10.1039/C5CP03113C, 2015.
McNeill, V. F.: Aqueous Organic Chemistry in the Atmosphere: Sources and
Chemical Processing of Organic Aerosols, Environ. Sci. Technol., 49,
1237–1244, https://doi.org/10.1021/es5043707, 2015.
Müller, M., Anderson, B. E., Beyersdorf, A. J., Crawford, J. H., Diskin, G. S., Eichler, P., Fried, A., Keutsch, F. N., Mikoviny, T., Thornhill, K. L., Walega, J. G., Weinheimer, A. J., Yang, M., Yokelson, R. J., and Wisthaler, A.: In situ measurements and modeling of reactive trace gases in a small biomass burning plume, Atmos. Chem. Phys., 16, 3813–3824, https://doi.org/10.5194/acp-16-3813-2016, 2016.
Newland, M. J., Rea, G. J., Thüner, L. P., Henderson, A. P., Golding, B.
T., Rickard, A. R., Barnes, I., and Wenger, J.: Photochemistry of
2-butenedial and 4-oxo-2-pentenal under atmospheric boundary layer
conditions, Phys. Chem. Chem. Phys., 21, 1160–1171,
https://doi.org/10.1039/C8CP06437G, 2019.
Nozière, B., Dziedzic, P., and Córdova, A.: Formation of secondary
light-absorbing “fulvic-like” oligomers: A common process in aqueous and
ionic atmospheric particles?, Geophys. Res. Lett., 34, L21812,
https://doi.org/10.1029/2007GL031300, 2007.
Nozière, B., Dziedzic, P., and Córdova, A.: Products and Kinetics of
the Liquid-Phase Reaction of Glyoxal Catalyzed by Ammonium Ions (NH 4
+ ), J. Phys. Chem. A, 113, 231–237,
https://doi.org/10.1021/jp8078293, 2009.
Obermeyer, G., Aschmann, S. M., Atkinson, R., and Arey, J.: Carbonyl
atmospheric reaction products of aromatic hydrocarbons in ambient air,
Atmos. Environ., 43, 3736–3744,
https://doi.org/10.1016/j.atmosenv.2009.04.015, 2009.
Pöschl, U.: Atmospheric Aerosols: Composition, Transformation, Climate
and Health Effects, Angew. Chem. Int. Ed., 44, 7520–7540,
https://doi.org/10.1002/anie.200501122, 2005.
Powelson, M. H., Espelien, B. M., Hawkins, L. N., Galloway, M. M., and De
Haan, D. O.: Brown Carbon Formation by Aqueous-Phase Carbonyl Compound
Reactions with Amines and Ammonium Sulfate, Environ. Sci. Technol., 48,
985–993, https://doi.org/10.1021/es4038325, 2014.
Raoult, S., Rayez, M.-T., Rayez, J.-C., and Lesclaux, R.: Gas phase
oxidation of benzene: Kinetics, thermochemistry and mechanism of initial
steps, Phys. Chem. Chem. Phys., 6, 2245, https://doi.org/10.1039/b315953a,
2004.
Saleh, R.: From Measurements to Models: Toward Accurate Representation of
Brown Carbon in Climate Calculations, Curr. Pollution Rep., 6, 90–104,
https://doi.org/10.1007/s40726-020-00139-3, 2020.
Sareen, N., Schwier, A. N., Shapiro, E. L., Mitroo, D., and McNeill, V. F.: Secondary organic material formed by methylglyoxal in aqueous aerosol mimics, Atmos. Chem. Phys., 10, 997–1016, https://doi.org/10.5194/acp-10-997-2010, 2010.
Sedehi, N., Takano, H., Blasic, V. A., Sullivan, K. A., and De Haan, D. O.:
Temperature- and pH-dependent aqueous-phase kinetics of the reactions of
glyoxal and methylglyoxal with atmospheric amines and ammonium sulfate,
Atmos. Environ., 77, 656–663,
https://doi.org/10.1016/j.atmosenv.2013.05.070, 2013.
Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From
Air Pollution to Climate Change, John Wiley & Sons, Inc., New
York, USA, 2016.
Shapiro, E. L., Szprengiel, J., Sareen, N., Jen, C. N., Giordano, M. R., and McNeill, V. F.: Light-absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics, Atmos. Chem. Phys., 9, 2289–2300, https://doi.org/10.5194/acp-9-2289-2009, 2009.
Smith, D. F., Kleindienst, T. E., and McIver, C. D.: Primary Product
Distributions from the Reaction of OH with m-, p-Xylene, 1,2,4- and
1,3,5-Trimethylbenzene, J. Atmos. Chem., 34, 339–364,
https://doi.org/10.1023/A:1006277328628, 1999.
Stockwell, C. E., Veres, P. R., Williams, J., and Yokelson, R. J.: Characterization of biomass burning emissions from cooking fires, peat, crop residue, and other fuels with high-resolution proton-transfer-reaction time-of-flight mass spectrometry, Atmos. Chem. Phys., 15, 845–865, https://doi.org/10.5194/acp-15-845-2015, 2015.
Strollo, C. M. and Ziemann, P. J.: Products and mechanism of secondary
organic aerosol formation from the reaction of 3-methylfuran with OH
radicals in the presence of NOx, Atmos. Environ., 77, 534–543,
https://doi.org/10.1016/j.atmosenv.2013.05.033, 2013.
Tao, W., Su, H., Zheng, G., Wang, J., Wei, C., Liu, L., Ma, N., Li, M., Zhang, Q., Pöschl, U., and Cheng, Y.: Aerosol pH and chemical regimes of sulfate formation in aerosol water during winter haze in the North China Plain, Atmos. Chem. Phys., 20, 11729–11746, https://doi.org/10.5194/acp-20-11729-2020, 2020.
Volkamer, R., Platt, U., and Wirtz, K.: Primary and Secondary Glyoxal
Formation from Aromatics: Experimental Evidence for the Bicycloalkyl-Radical
Pathway from Benzene, Toluene, and p-Xylene, J. Phys. Chem. A, 105,
7865–7874, https://doi.org/10.1021/jp010152w, 2001.
Volkamer, R., San Martini, F., Molina, L. T., Salcedo, D., Jimenez, J. L.,
and Molina, M. J.: A missing sink for gas-phase glyoxal in Mexico City:
Formation of secondary organic aerosol, Geophys. Res. Lett., 34, L19807,
https://doi.org/10.1029/2007GL030752, 2007.
Wang, C., Lei, Y. D., Endo, S., and Wania, F.: Measuring and Modeling the
Salting-out Effect in Ammonium Sulfate Solutions, Environ. Sci. Technol.,
48, 13238–13245, https://doi.org/10.1021/es5035602, 2014.
Waxman, E. M., Elm, J., Kurtén, T., Mikkelsen, K. V., Ziemann, P. J.,
and Volkamer, R.: Glyoxal and Methylglyoxal Setschenow Salting Constants in
Sulfate, Nitrate, and Chloride Solutions: Measurements and Gibbs Energies,
Environ. Sci. Technol., 49, 11500–11508,
https://doi.org/10.1021/acs.est.5b02782, 2015.
Yan, X., Bain, R. M., and Cooks, R. G.: Organic Reactions in Microdroplets:
Reaction Acceleration Revealed by Mass Spectrometry, Angew. Chem. Int. Ed.,
55, 12960–12972, https://doi.org/10.1002/anie.201602270, 2016.
Yu, G., Bayer, A. R., Galloway, M. M., Korshavn, K. J., Fry, C. G., and
Keutsch, F. N.: Glyoxal in Aqueous Ammonium Sulfate Solutions: Products,
Kinetics and Hydration Effects, Environ. Sci. Technol., 45, 6336–6342,
https://doi.org/10.1021/es200989n, 2011.
Yuan, Y., Zhao, X., Wang, S., and Wang, L.: Atmospheric Oxidation of Furan
and Methyl-Substituted Furans Initiated by Hydroxyl Radicals, J. Phys. Chem.
A, 121, 9306–9319, https://doi.org/10.1021/acs.jpca.7b09741, 2017.
Zhang, Y., Dore, A. J., Ma, L., Liu, X. J., Ma, W. Q., Cape, J. N., and
Zhang, F. S.: Agricultural ammonia emissions inventory and spatial
distribution in the North China Plain, 158, 490–501,
https://doi.org/10.1016/j.envpol.2009.08.033, 2010.
Short summary
We measured reactions of butenedial, an atmospheric dicarbonyl, in aqueous mixtures that mimic the conditions of aerosol particles. Major reaction products and rates were determined to assess their atmospheric relevance and to compare against other well-studied dicarbonyls. We suggest that the structure of the carbon backbone, not just the dominant functional group, plays a major role in dicarbonyl reactivity, influencing the fate and ability of dicarbonyls to produce brown carbon.
We measured reactions of butenedial, an atmospheric dicarbonyl, in aqueous mixtures that mimic...
Altmetrics
Final-revised paper
Preprint