Articles | Volume 21, issue 10
https://doi.org/10.5194/acp-21-8111-2021
https://doi.org/10.5194/acp-21-8111-2021
Research article
 | 
27 May 2021
Research article |  | 27 May 2021

The role of coarse aerosol particles as a sink of HNO3 in wintertime pollution events in the Salt Lake Valley

Amy Hrdina, Jennifer G. Murphy, Anna Gannet Hallar, John C. Lin, Alexander Moravek, Ryan Bares, Ross C. Petersen, Alessandro Franchin, Ann M. Middlebrook, Lexie Goldberger, Ben H. Lee, Munkh Baasandorj, and Steven S. Brown

Related authors

Choosing an optimal β factor for relaxed eddy accumulation applications across vegetated and non-vegetated surfaces
Teresa Vogl, Amy Hrdina, and Christoph K. Thomas
Biogeosciences, 18, 5097–5115, https://doi.org/10.5194/bg-18-5097-2021,https://doi.org/10.5194/bg-18-5097-2021, 2021
Short summary
Wintertime spatial distribution of ammonia and its emission sources in the Great Salt Lake region
Alexander Moravek, Jennifer G. Murphy, Amy Hrdina, John C. Lin, Christopher Pennell, Alessandro Franchin, Ann M. Middlebrook, Dorothy L. Fibiger, Caroline C. Womack, Erin E. McDuffie, Randal Martin, Kori Moore, Munkhbayar Baasandorj, and Steven S. Brown
Atmos. Chem. Phys., 19, 15691–15709, https://doi.org/10.5194/acp-19-15691-2019,https://doi.org/10.5194/acp-19-15691-2019, 2019
Short summary

Related subject area

Subject: Aerosols | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Morphological features and water solubility of iron in aged fine aerosol particles over the Indian Ocean
Sayako Ueda, Yoko Iwamoto, Fumikazu Taketani, Mingxu Liu, and Hitoshi Matsui
Atmos. Chem. Phys., 23, 10117–10135, https://doi.org/10.5194/acp-23-10117-2023,https://doi.org/10.5194/acp-23-10117-2023, 2023
Short summary
What chemical species are responsible for new particle formation and growth in the Netherlands? A hybrid positive matrix factorization (PMF) analysis using aerosol composition (ACSM) and size (SMPS)
Farhan R. Nursanto, Roy Meinen, Rupert Holzinger, Maarten C. Krol, Xinya Liu, Ulrike Dusek, Bas Henzing, and Juliane L. Fry
Atmos. Chem. Phys., 23, 10015–10034, https://doi.org/10.5194/acp-23-10015-2023,https://doi.org/10.5194/acp-23-10015-2023, 2023
Short summary
Measurement report: Stoichiometry of dissolved iron and aluminum as an indicator of the factors controlling the fractional solubility of aerosol iron – results of the annual observations of size-fractionated aerosol particles in Japan
Kohei Sakata, Aya Sakaguchi, Yoshiaki Yamakawa, Chihiro Miyamoto, Minako Kurisu, and Yoshio Takahashi
Atmos. Chem. Phys., 23, 9815–9836, https://doi.org/10.5194/acp-23-9815-2023,https://doi.org/10.5194/acp-23-9815-2023, 2023
Short summary
In-depth study of the formation processes of single atmospheric particles in the south-eastern margin of the Tibetan Plateau
Li Li, Qiyuan Wang, Jie Tian, Huikun Liu, Yong Zhang, Steven Sai Hang Ho, Weikang Ran, and Junji Cao
Atmos. Chem. Phys., 23, 9597–9612, https://doi.org/10.5194/acp-23-9597-2023,https://doi.org/10.5194/acp-23-9597-2023, 2023
Short summary
Climatology of aerosol properties at an atmospheric monitoring site on the northern California coast
Erin K. Boedicker, Elisabeth Andrews, Patrick J. Sheridan, and Patricia K. Quinn
Atmos. Chem. Phys., 23, 9525–9547, https://doi.org/10.5194/acp-23-9525-2023,https://doi.org/10.5194/acp-23-9525-2023, 2023
Short summary

Cited articles

Ammann, M., Cox, R. A., Crowley, J. N., Jenkin, M. E., Mellouki, A., Rossi, M. J., Troe, J., and Wallington, T. J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VI – heterogeneous reactions with liquid substrates, Atmos. Chem. Phys., 13, 8045–8228, https://doi.org/10.5194/acp-13-8045-2013, 2013. 
Anlauf, K., Li, S. M., Leaitch, R., Brook, J., Hayden, K., Toom-Sauntry, D., and Wiebe, A.: Ionic composition and size characteristics of particles in the Lower Fraser Valley: Pacific 2001 field study, Atmos. Environ., 40, 2662–2675, https://doi.org/10.1016/j.atmosenv.2005.12.027, 2006. 
Baasandorj, M., Hoch, S. W., Bares, R., Lin, J. C., Brown, S. S., Millet, D. B., Martin, R., Kelly, K., Zarzana, K. J., Whiteman, C. D., Dube, W. P., Tonnesen, G., Jaramillo, I. C., and Sohl, J.: Coupling between Chemical and Meteorological Processes under Persistent Cold-Air Pool Conditions: Evolution of Wintertime PM2.5 Pollution Events and N2O5Observations in Utah's Salt Lake Valley, Environ. Sci. Technol., 51, 5941–5950, https://doi.org/10.1021/acs.est.6b06603, 2017. 
Bares, R., Lin, J. C., Hoch, S. W., Baasandorj, M., Mendoza, D. L., Fasoli, B., Mitchell, L., Catharine, D., and Stephens, B. B.: The Wintertime Covariation of CO2 and Criteria Pollutants in an Urban Valley of the Western United States, J. Geophys. Res.-Atmos., 123, 2684–2703, https://doi.org/10.1002/2017JD027917, 2018. 
Behera, S. N., Sharma, M., Aneja, V. P., and Balasubramanian, R.: Ammonia in the atmosphere: A review on emission sources, atmospheric chemistry and deposition on terrestrial bodies, Environ. Sci. Pollut. Res., 20, 8092–8131, https://doi.org/10.1007/s11356-013-2051-9, 2013. 
Download
Short summary
Wintertime air pollution in the Salt Lake Valley is primarily composed of ammonium nitrate, which is formed when gas-phase ammonia and nitric acid react. The major point in this work is that the chemical composition of snow tells a very different story to what we measured in the atmosphere. With the dust–sea salt cations observed in PM2.5 and particle sizing data, we can estimate how much nitric acid may be lost to dust–sea salt that is not accounted for and how much more PM2.5 this could form.
Altmetrics
Final-revised paper
Preprint