Articles | Volume 21, issue 9
https://doi.org/10.5194/acp-21-6721-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-6721-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Isotopic compositions of atmospheric total gaseous mercury in 10 Chinese cities and implications for land surface emissions
State Key Laboratory of Environmental Geochemistry, Institute of
Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
CAS Center for Excellence in Quaternary Science and Global Change,
Xi'an 710061, China
Chen Liu
State Key Laboratory of Environmental Geochemistry, Institute of
Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
University of Chinese Academy of Sciences, Beijing 100049, China
Hui Zhang
State Key Laboratory of Environmental Geochemistry, Institute of
Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
University of Chinese Academy of Sciences, Beijing 100049, China
Yue Xu
State Key Laboratory of Environmental Geochemistry, Institute of
Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
Hui Zhang
State Key Laboratory of Environmental Geochemistry, Institute of
Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
State Key Laboratory of Organic Geochemistry, Guangzhou Institute of
Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
Xiaopu Lyu
Department of Civil and Environmental Engineering, The Hong Kong
Polytechnic University, Hong Kong SAR, China
Gan Zhang
State Key Laboratory of Organic Geochemistry, Guangzhou Institute of
Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
Department of Civil and Environmental Engineering, The Hong Kong
Polytechnic University, Hong Kong SAR, China
State Key Laboratory of Environmental Geochemistry, Institute of
Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
Leiming Zhang
Air Quality Research Division, Science and Technology Branch,
Environment and Climate Change Canada, Toronto, Ontario, Canada
State Key Laboratory of Environmental Geochemistry, Institute of
Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
CAS Center for Excellence in Quaternary Science and Global Change,
Xi'an 710061, China
University of Chinese Academy of Sciences, Beijing 100049, China
Related authors
Hui Zhang, Xuewu Fu, Ben Yu, Baoxin Li, Peng Liu, Guoqing Zhang, Leiming Zhang, and Xinbin Feng
Atmos. Chem. Phys., 21, 15847–15859, https://doi.org/10.5194/acp-21-15847-2021, https://doi.org/10.5194/acp-21-15847-2021, 2021
Short summary
Short summary
Our observations of speciated atmospheric mercury at the Waliguan GAW Baseline Observatory show that concentrations of gaseous elemental mercury (GEM) and particulate bound mercury (PBM) were elevated compared to the Northern Hemisphere background. We propose that the major sources of GEM and PBM were mainly related to anthropogenic emissions and desert dust sources. This study highlights that dust-related sources played an important role in the variations of PBM in the Tibetan Plateau.
Irene Cheng, Amanda Cole, Leiming Zhang, and Alexandra Steffen
Atmos. Chem. Phys., 25, 8591–8611, https://doi.org/10.5194/acp-25-8591-2025, https://doi.org/10.5194/acp-25-8591-2025, 2025
Short summary
Short summary
Using the positive matrix factorization (PMF) model and observations, we showed that natural surface emission (wildfires and re-emitted Hg) dominated anthropogenic contributions to total gaseous mercury (TGM). Decreasing TGM was due to reduced shipping, local combustion, and regional emissions. Relative contributions from natural surface emissions increased by 0.3–1.8 % yr-1. Results showed Hg control measures have been effective, but greater attention is needed for monitoring surface re-emissions.
Anam M. Khan, Olivia E. Clifton, Jesse O. Bash, Sam Bland, Nathan Booth, Philip Cheung, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christian Hogrefe, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Donna Schwede, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, Leiming Zhang, and Paul C. Stoy
Atmos. Chem. Phys., 25, 8613–8635, https://doi.org/10.5194/acp-25-8613-2025, https://doi.org/10.5194/acp-25-8613-2025, 2025
Short summary
Short summary
Vegetation removes tropospheric ozone through stomatal uptake, and accurately modeling the stomatal uptake of ozone is important for modeling dry deposition and air quality. We evaluated the stomatal component of ozone dry deposition modeled by atmospheric chemistry models at six sites. We find that models and observation-based estimates agree at times during the growing season at all sites, but some models overestimated the stomatal component during the dry summers at a seasonally dry site.
Pingyang Li, Boji Lin, Zhineng Cheng, Jing Li, Jun Li, Duohong Chen, Tao Zhang, Run Lin, Sanyuan Zhu, Jun Liu, Yujun Lin, Shizhen Zhao, Guangcai Zhong, Zhenchuan Niu, Ping Ding, and Gan Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1931, https://doi.org/10.5194/egusphere-2025-1931, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Our study indicates fossil fuel CO2 (CO2ff) reductions in Chinese megacities via atmospheric Δ(14CO2) and δ(13CO2) measurements, driven by coal-to-gas transitions and combustion efficiency improvement. Three-decade data show steeper declined urban RCO/CO2ff ratios than inventory estimates, implying underestimation of efficiency improvements and CO reductions. Integrating top-down observations with inventories is critical to track policy-driven emission shifts and optimize co-benefit strategies.
Hongxing Jiang, Yuanghang Deng, Yunxi Huo, Fengwen Wang, Yingjun Chen, and Hai Guo
EGUsphere, https://doi.org/10.5194/egusphere-2025-2264, https://doi.org/10.5194/egusphere-2025-2264, 2025
Short summary
Short summary
We combined the use of a series of online and offline high-resolution mass spectrometer to characterize the chemical composition and sources of organic aerosols in a background site of south China from bulk to molecular levels. We suggested that anthropogenic source dominated the OA origins, and the gas-phase and particle-phase oxidation processes are conducive to the formation of sulfur-containing and nitrogen-containing compounds, respectively.
Yuying Wu, Yuhan Wang, Wenzheng Yang, Jie Zhang, Yanhong Wu, Jun Li, Gan Zhang, and Haijian Bing
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-302, https://doi.org/10.5194/essd-2025-302, 2025
Revised manuscript under review for ESSD
Short summary
Short summary
We developed a large, open-access dataset of mountain soil chemistry in China, based on over 1,300 samples from 166 sites across diverse climates and vegetation types. The dataset includes concentrations of 24 elements and key environmental variables like temperature, rainfall, and soil properties. This dataset offers a valuable resource for studying mountain ecosystems, supporting Earth system modeling, and predicting how soils respond to environmental change.
Ashu Dastoor, Hélène Angot, Johannes Bieser, Flora Brocza, Brock Edwards, Aryeh Feinberg, Xinbin Feng, Benjamin Geyman, Charikleia Gournia, Yipeng He, Ian M. Hedgecock, Ilia Ilyin, Jane Kirk, Che-Jen Lin, Igor Lehnherr, Robert Mason, David McLagan, Marilena Muntean, Peter Rafaj, Eric M. Roy, Andrei Ryjkov, Noelle E. Selin, Francesco De Simone, Anne L. Soerensen, Frits Steenhuisen, Oleg Travnikov, Shuxiao Wang, Xun Wang, Simon Wilson, Rosa Wu, Qingru Wu, Yanxu Zhang, Jun Zhou, Wei Zhu, and Scott Zolkos
Geosci. Model Dev., 18, 2747–2860, https://doi.org/10.5194/gmd-18-2747-2025, https://doi.org/10.5194/gmd-18-2747-2025, 2025
Short summary
Short summary
This paper introduces the Multi-Compartment Mercury (Hg) Modeling and Analysis Project (MCHgMAP) aimed at informing the effectiveness evaluations of two multilateral environmental agreements: the Minamata Convention on Mercury and the Convention on Long-Range Transboundary Air Pollution. The experimental design exploits a variety of models (atmospheric, land, oceanic ,and multimedia mass balance models) to assess the short- and long-term influences of anthropogenic Hg releases into the environment.
Qiang Pu, Bo Meng, Jen-How Huang, Kun Zhang, Jiang Liu, Yurong Liu, Mahmoud A. Abdelhafiz, and Xinbin Feng
Biogeosciences, 22, 1543–1556, https://doi.org/10.5194/bg-22-1543-2025, https://doi.org/10.5194/bg-22-1543-2025, 2025
Short summary
Short summary
This study examines the effect of dissolved organic matter (DOM) on microbial mercury (Hg) methylation in paddy soils. It uncovers that DOM regulates Hg methylation mainly through altering core Hg-methylating microbiome composition and boosting the growth of core Hg-methylating microorganisms. The study highlights that in the regulation of methylmercury formation in paddy soils, more attention should be paid to changes in DOM concentration and composition.
Tao Cao, Cuncun Xu, Hao Chen, Jianzhong Song, Jun Li, Haiyan Song, Bin Jiang, Yin Zhong, and Ping’an Peng
EGUsphere, https://doi.org/10.5194/egusphere-2025-561, https://doi.org/10.5194/egusphere-2025-561, 2025
Short summary
Short summary
This study investigated the evolution of biomass and coal combustion-derived WSOM during aqueous photochemical process. The results indicate that photochemical aging induces distinct changes in the optical and molecular properties of WSOM and more pronounced alterations were observed during ·OH photooxidation than direct photolysis. Notably, our results also demostrated that atmospheric photooxidation may represent a significant source of BC-like substances.
Tamara Emmerichs, Abdulla Al Mamun, Lisa Emberson, Huiting Mao, Leiming Zhang, Limei Ran, Clara Betancourt, Anthony Wong, Gerbrand Koren, Giacomo Gerosa, Min Huang, and Pierluigi Guaita
EGUsphere, https://doi.org/10.5194/egusphere-2025-429, https://doi.org/10.5194/egusphere-2025-429, 2025
Short summary
Short summary
The risk of ozone pollution to plants is estimated based on the flux through the plant pores which still has uncertainties. In this study, we estimate this quantity with 9 models at different land types worldwide. The input data stems from a database. The models estimated mostly reasonable summertime ozone deposition. The different results of the models varied by land cover which were mostly related to the moisture deficit. This is an important step for assessing the ozone impact on vegetation.
Zihan Song, Leiming Zhang, Chongguo Tian, Qiang Fu, Zhenxing Shen, Renjian Zhang, Dong Liu, and Song Cui
Atmos. Chem. Phys., 24, 13101–13113, https://doi.org/10.5194/acp-24-13101-2024, https://doi.org/10.5194/acp-24-13101-2024, 2024
Short summary
Short summary
A novel concept integrating crop cycle information into fire spot extraction was proposed. Spatiotemporal variations of open straw burning in Northeast China are revealed. Open straw burning in Northeast China emitted a total of 218 Tg of CO2-eq during 2001–2020. The policy of banning straw burning effectively reduced greenhouse gas emissions.
Pierluigi Renan Guaita, Riccardo Marzuoli, Leiming Zhang, Steven Turnock, Gerbrand Koren, Oliver Wild, Paola Crippa, and Giacomo Alessandro Gerosa
EGUsphere, https://doi.org/10.5194/egusphere-2024-2573, https://doi.org/10.5194/egusphere-2024-2573, 2024
Preprint archived
Short summary
Short summary
This study assesses the global impact of tropospheric ozone on wheat crops in the 21st century under various climate scenarios. The research highlights that ozone damage to wheat varies by region and depends on both ozone levels and climate. Vulnerable regions include East Asia, Northern Europe, and the Southern and Eastern edges of the Tibetan Plateau. Our results emphasize the need of policies to reduce ozone levels and mitigate climate change to protect global food security.
Xiaohong Yao and Leiming Zhang
Atmos. Chem. Phys., 24, 7773–7791, https://doi.org/10.5194/acp-24-7773-2024, https://doi.org/10.5194/acp-24-7773-2024, 2024
Short summary
Short summary
This study investigates long-term trends of criteria air pollutants, including NO2, CO, SO2, O3 and PM2.5, and NO2+O3 measured in 10 Canadian cities during the last 2 to 3 decades. We also investigate associated driving forces in terms of emission reductions, perturbations from varying weather conditions and large-scale wildfires, as well as changes in O3 sources and sinks.
Yangzhi Mo, Jun Li, Guangcai Zhong, Sanyuan Zhu, Shizhen Zhao, Jiao Tang, Hongxing Jiang, Zhineng Cheng, Chongguo Tian, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 24, 7755–7772, https://doi.org/10.5194/acp-24-7755-2024, https://doi.org/10.5194/acp-24-7755-2024, 2024
Short summary
Short summary
In this study, we found that biomass burning (31.0 %) and coal combustion (31.1 %) were the dominant sources of water-insoluble organic carbon in China, with coal combustion sources exhibiting the strongest light-absorbing capacity. Additionally, we propose a light-absorbing carbonaceous continuum, revealing that components enriched with fossil sources tend to have stronger light-absorbing capacity, higher aromaticity, higher molecular weights, and greater recalcitrance in the atmosphere.
Juanjuan Qin, Leiming Zhang, Yuanyuan Qin, Shaoxuan Shi, Jingnan Li, Zhao Shu, Yuwei Gao, Ting Qi, Jihua Tan, and Xinming Wang
Atmos. Chem. Phys., 24, 7575–7589, https://doi.org/10.5194/acp-24-7575-2024, https://doi.org/10.5194/acp-24-7575-2024, 2024
Short summary
Short summary
The present research unveiled that acidity dominates while transition metal ions harmonize with the light absorption properties of humic-like substances (HULIS). Cu2+ has quenching effects on HULIS by complexation, hydrogen substitution, or electrostatic adsorption, with aromatic structures of HULIS. Such effects are less pronounced if from Mn2+, Ni2+, Zn2+, and Cu2+. Oxidized HULIS might contain electron-donating groups, whereas N-containing compounds might contain electron-withdrawing groups.
Hongyong Li, Xiaopu Lyu, Likun Xue, Yunxi Huo, Dawen Yao, Haoxian Lu, and Hai Guo
Atmos. Chem. Phys., 24, 7085–7100, https://doi.org/10.5194/acp-24-7085-2024, https://doi.org/10.5194/acp-24-7085-2024, 2024
Short summary
Short summary
Organic aerosol is ubiquitous in the atmosphere and largely explains the gap between current levels of fine particulate matter in many cities and the World Health Organization guideline values. This study highlights the dominant contributions of cooking emissions to organic aerosol when marine air prevailed in Hong Kong, which were occasionally overwhelmed by aromatics-derived secondary organic aerosol in continental ouflows.
Wenwen Ma, Rong Sun, Xiaoping Wang, Zheng Zong, Shizhen Zhao, Zeyu Sun, Chongguo Tian, Jianhui Tang, Song Cui, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 24, 1509–1523, https://doi.org/10.5194/acp-24-1509-2024, https://doi.org/10.5194/acp-24-1509-2024, 2024
Short summary
Short summary
This is the first report of long-term atmospheric PAH monitoring around the Bohai Sea. The results showed that the concentrations of PAHs in the atmosphere around the Bohai Sea decreased from June 2014 to May 2019, especially the concentrations of highly toxic PAHs. This indicates that the contributions from PAH sources changed to a certain extent in different areas, and it also led to reductions in the related health risk and medical costs following pollution prevention and control.
Yongliang She, Jingyi Li, Xiaopu Lyu, Hai Guo, Momei Qin, Xiaodong Xie, Kangjia Gong, Fei Ye, Jianjiong Mao, Lin Huang, and Jianlin Hu
Atmos. Chem. Phys., 24, 219–233, https://doi.org/10.5194/acp-24-219-2024, https://doi.org/10.5194/acp-24-219-2024, 2024
Short summary
Short summary
In this study, we use multi-site volatile organic compound (VOC) measurements to evaluate the CMAQ-model-predicted VOCs and assess the impacts of VOC bias on O3 simulation. Our results demonstrate that current modeling setups and emission inventories are likely to underpredict VOC concentrations, and this underprediction of VOCs contributes to lower O3 predictions in China.
Zeyu Sun, Zheng Zong, Yang Tan, Chongguo Tian, Zeyu Liu, Fan Zhang, Rong Sun, Yingjun Chen, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 23, 12851–12865, https://doi.org/10.5194/acp-23-12851-2023, https://doi.org/10.5194/acp-23-12851-2023, 2023
Short summary
Short summary
This is the first report of ship-emitted nitrogen stable isotope composition (δ15N) of nitrogen oxides (NOx). The results showed that δ15N–NOx from ships was −18.5 ± 10.9 ‰ and increased monotonically with tightening emission regulations. The selective catalytic reduction system was the most vital factor. The temporal variation in δ15N–NOx was evaluated and can be used to select suitable δ15N–NOx for a more accurate assessment of the contribution of ship-emitted exhaust to atmospheric NOx.
Olivia E. Clifton, Donna Schwede, Christian Hogrefe, Jesse O. Bash, Sam Bland, Philip Cheung, Mhairi Coyle, Lisa Emberson, Johannes Flemming, Erick Fredj, Stefano Galmarini, Laurens Ganzeveld, Orestis Gazetas, Ignacio Goded, Christopher D. Holmes, László Horváth, Vincent Huijnen, Qian Li, Paul A. Makar, Ivan Mammarella, Giovanni Manca, J. William Munger, Juan L. Pérez-Camanyo, Jonathan Pleim, Limei Ran, Roberto San Jose, Sam J. Silva, Ralf Staebler, Shihan Sun, Amos P. K. Tai, Eran Tas, Timo Vesala, Tamás Weidinger, Zhiyong Wu, and Leiming Zhang
Atmos. Chem. Phys., 23, 9911–9961, https://doi.org/10.5194/acp-23-9911-2023, https://doi.org/10.5194/acp-23-9911-2023, 2023
Short summary
Short summary
A primary sink of air pollutants is dry deposition. Dry deposition estimates differ across the models used to simulate atmospheric chemistry. Here, we introduce an effort to examine dry deposition schemes from atmospheric chemistry models. We provide our approach’s rationale, document the schemes, and describe datasets used to drive and evaluate the schemes. We also launch the analysis of results by evaluating against observations and identifying the processes leading to model–model differences.
Xiangyun Zhang, Jun Li, Sanyuan Zhu, Junwen Liu, Ping Ding, Shutao Gao, Chongguo Tian, Yingjun Chen, Ping'an Peng, and Gan Zhang
Atmos. Chem. Phys., 23, 7495–7502, https://doi.org/10.5194/acp-23-7495-2023, https://doi.org/10.5194/acp-23-7495-2023, 2023
Short summary
Short summary
The results show that 14C elemental carbon (EC) was not only related to the isolation method but also to the types and proportions of the biomass sources in the sample. The hydropyrolysis (Hypy) method, which can be used to isolate a highly stable portion of ECHypy and avoid charring, is a more effective and stable approach for the matrix-independent 14C quantification of EC in aerosols, and the 13C–ECHypy and non-fossil ECHypy values of SRM1649b were –24.9 ‰ and 11 %, respectively.
Tingting Li, Jun Li, Zeyu Sun, Hongxing Jiang, Chongguo Tian, and Gan Zhang
Atmos. Chem. Phys., 23, 6395–6407, https://doi.org/10.5194/acp-23-6395-2023, https://doi.org/10.5194/acp-23-6395-2023, 2023
Short summary
Short summary
N-NH4+ and N-NO3- were vital components in nitrogenous aerosols and contributed 69 % to total nitrogen in PM2.5. Coal combustion was still the most important source of urban atmospheric NO3-. However, the non-agriculture sources play an increasingly important role in NH4+ emissions.
Jiao Tang, Jun Li, Shizhen Zhao, Guangcai Zhong, Yangzhi Mo, Hongxing Jiang, Bin Jiang, Yingjun Chen, Jianhui Tang, Chongguo Tian, Zheng Zong, Jabir Hussain Syed, Jianzhong Song, and Gan Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2023-403, https://doi.org/10.5194/egusphere-2023-403, 2023
Preprint archived
Short summary
Short summary
This study provides a comprehensive molecular identification of atmospheric common fluorescent components and deciphers their related formation pathways. The fluorescent components varied in molecular composition, and a dominant oxidation pathway for the formation of humic-like fluorescent components was suggested, notwithstanding their different precursor types. Our findings are expected to be helpful to further studies using the EEM-PARAFAC as a tool to study atmospheric BrC.
Tao Cao, Meiju Li, Cuncun Xu, Jianzhong Song, Xingjun Fan, Jun Li, Wanglu Jia, and Ping'an Peng
Atmos. Chem. Phys., 23, 2613–2625, https://doi.org/10.5194/acp-23-2613-2023, https://doi.org/10.5194/acp-23-2613-2023, 2023
Short summary
Short summary
This work comprehensively investigated the fluorescence data of light-absorbing organic compounds, water-soluble organic matter in different types of aerosol samples, soil dust, and fulvic and humic acids using an excitation–emission matrix (EEM) method and parallel factor modeling. The results revealed which light-absorbing species can be detected by EEM and also provided important information for identifying the chemical composition and possible sources of these species in atmospheric samples.
Buqing Xu, Jiao Tang, Tiangang Tang, Shizhen Zhao, Guangcai Zhong, Sanyuan Zhu, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 23, 1565–1578, https://doi.org/10.5194/acp-23-1565-2023, https://doi.org/10.5194/acp-23-1565-2023, 2023
Short summary
Short summary
We analyzed compound-specific dual-carbon isotope signatures (Δ14C and δ13C) of dominant secondary organic aerosol (SOA) tracer molecules (i.e., oxalic acid) to investigate the fates of SOAs in the atmosphere at five emission hotspots in China. The results indicated that SOA carbon sources and chemical processes producing SOAs vary spatially and seasonally, and these variations need to be included in Chinese climate projection models and air quality management practices.
Chunlin Zou, Tao Cao, Meiju Li, Jianzhong Song, Bin Jiang, Wanglu Jia, Jun Li, Xiang Ding, Zhiqiang Yu, Gan Zhang, and Ping'an Peng
Atmos. Chem. Phys., 23, 963–979, https://doi.org/10.5194/acp-23-963-2023, https://doi.org/10.5194/acp-23-963-2023, 2023
Short summary
Short summary
In this study, PM2.5 samples were obtained during a winter haze event in Guangzhou, China, and light absorption and molecular composition of humic-like substances (HULIS) were investigated by UV–Vis spectrophotometry and ultrahigh-resolution mass spectrometry. The findings obtained present some differences from the results reported in other regions of China and significantly enhanced our understanding of HULIS evolution during haze bloom-decay processes in the subtropic region of southern China.
Yu Lin, Leiming Zhang, Qinchu Fan, He Meng, Yang Gao, Huiwang Gao, and Xiaohong Yao
Atmos. Chem. Phys., 22, 16073–16090, https://doi.org/10.5194/acp-22-16073-2022, https://doi.org/10.5194/acp-22-16073-2022, 2022
Short summary
Short summary
In this study, we analyzed 7-year (from May 2014 to April 2021) concentration data of six criteria air pollutants (PM2.5, PM10, O3, NO2, CO and SO2) as well as the sum of NO2 and O3 in six cities in South China. Three different analysis methods were used to identify emission-driven interannual variations and perturbations from varying weather conditions. In addition, a self-developed method was further introduced to constrain analysis uncertainties.
Irene Cheng, Leiming Zhang, Zhuanshi He, Hazel Cathcart, Daniel Houle, Amanda Cole, Jian Feng, Jason O'Brien, Anne Marie Macdonald, Julian Aherne, and Jeffrey Brook
Atmos. Chem. Phys., 22, 14631–14656, https://doi.org/10.5194/acp-22-14631-2022, https://doi.org/10.5194/acp-22-14631-2022, 2022
Short summary
Short summary
Nitrogen (N) and sulfur (S) deposition decreased significantly at 14 Canadian sites during 2000–2018. The greatest decline was observed in southeastern Canada owing to regional SO2 and NOx reductions. Wet deposition was more important than dry deposition, comprising 71–95 % of total N and 45–89 % of total S deposition. While critical loads (CLs) were exceeded at a few sites in the early 2000s, acidic deposition declined below CLs after 2012, which signifies recovery from legacy acidification.
Hongxing Jiang, Jun Li, Jiao Tang, Min Cui, Shizhen Zhao, Yangzhi Mo, Chongguo Tian, Xiangyun Zhang, Bin Jiang, Yuhong Liao, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 22, 6919–6935, https://doi.org/10.5194/acp-22-6919-2022, https://doi.org/10.5194/acp-22-6919-2022, 2022
Short summary
Short summary
We conducted field observation employing Fourier transform ion cyclotron resonance mass spectrometry to characterize the molecular composition and major formation pathways or sources of organosulfur compounds in Guangzhou, where is heavily influenced by biogenic–anthropogenic interactions and has high relative humidity and temperature. We suggested that heterogeneous reactions such as SO2 uptake and heterogeneous oxidations are important to the molecular variations of organosulfur compounds.
Hui Zhang, Xuewu Fu, Ben Yu, Baoxin Li, Peng Liu, Guoqing Zhang, Leiming Zhang, and Xinbin Feng
Atmos. Chem. Phys., 21, 15847–15859, https://doi.org/10.5194/acp-21-15847-2021, https://doi.org/10.5194/acp-21-15847-2021, 2021
Short summary
Short summary
Our observations of speciated atmospheric mercury at the Waliguan GAW Baseline Observatory show that concentrations of gaseous elemental mercury (GEM) and particulate bound mercury (PBM) were elevated compared to the Northern Hemisphere background. We propose that the major sources of GEM and PBM were mainly related to anthropogenic emissions and desert dust sources. This study highlights that dust-related sources played an important role in the variations of PBM in the Tibetan Plateau.
Zhiyong Wu, Leiming Zhang, John T. Walker, Paul A. Makar, Judith A. Perlinger, and Xuemei Wang
Geosci. Model Dev., 14, 5093–5105, https://doi.org/10.5194/gmd-14-5093-2021, https://doi.org/10.5194/gmd-14-5093-2021, 2021
Short summary
Short summary
A community dry deposition algorithm for modeling the gaseous dry deposition process in chemistry transport models was extended to include an additional 12 oxidized volatile organic compounds and hydrogen cyanide based on their physicochemical properties and was then evaluated using field flux measurements over a mixed forest. This study provides a useful tool that is needed in chemistry transport models with increasing complexity for simulating an important atmospheric process.
Jiao Tang, Jiaqi Wang, Guangcai Zhong, Hongxing Jiang, Yangzhi Mo, Bolong Zhang, Xiaofei Geng, Yingjun Chen, Jianhui Tang, Congguo Tian, Surat Bualert, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 21, 11337–11352, https://doi.org/10.5194/acp-21-11337-2021, https://doi.org/10.5194/acp-21-11337-2021, 2021
Short summary
Short summary
This article provides a combined EEM–PARAFAC and statistical analysis method to explore how excitation–emission matrix (EEM) chromophores influence BrC light absorption in soluble organic matter. The application enables us to deduce that BrC absorption is mainly dependent on longer-emission-wavelength chromophores largely associated with biomass burning emissions. This method promotes the application of EEM spectroscopy and helps us understand the light absorption of BrC in the atmosphere.
Katherine Hayden, Shao-Meng Li, Paul Makar, John Liggio, Samar G. Moussa, Ayodeji Akingunola, Robert McLaren, Ralf M. Staebler, Andrea Darlington, Jason O'Brien, Junhua Zhang, Mengistu Wolde, and Leiming Zhang
Atmos. Chem. Phys., 21, 8377–8392, https://doi.org/10.5194/acp-21-8377-2021, https://doi.org/10.5194/acp-21-8377-2021, 2021
Short summary
Short summary
We developed a method using aircraft measurements to determine lifetimes with respect to dry deposition for oxidized sulfur and nitrogen compounds over the boreal forest in Alberta, Canada. Atmospheric lifetimes were significantly shorter than derived from chemical transport models with differences related to modelled dry deposition velocities. The shorter lifetimes suggest models need to reassess dry deposition treatment and predictions of sulfur and nitrogen in the atmosphere and ecosystems.
Zhenhao Ling, Qianqian Xie, Min Shao, Zhe Wang, Tao Wang, Hai Guo, and Xuemei Wang
Atmos. Chem. Phys., 20, 11451–11467, https://doi.org/10.5194/acp-20-11451-2020, https://doi.org/10.5194/acp-20-11451-2020, 2020
Short summary
Short summary
The observation data from a receptor site in the Pearl River Delta region were analyzed by a photochemical box model with near-explicit chemical mechanisms (i.e., the Master Chemical Mechanism, MCM), improvements with reversible and irreversible heterogeneous processes of glyoxal and methylglyoxal, and the gas-particle partitioning of oxidation products in the present study.
Xiaofei Qin, Leiming Zhang, Guochen Wang, Xiaohao Wang, Qingyan Fu, Jian Xu, Hao Li, Jia Chen, Qianbiao Zhao, Yanfen Lin, Juntao Huo, Fengwen Wang, Kan Huang, and Congrui Deng
Atmos. Chem. Phys., 20, 10985–10996, https://doi.org/10.5194/acp-20-10985-2020, https://doi.org/10.5194/acp-20-10985-2020, 2020
Short summary
Short summary
The uncertainties in mercury emissions are much larger from natural sources than anthropogenic sources. A method was developed to quantify the contributions of natural surface emissions to ambient GEM based on PMF modeling. The annual GEM concentration in eastern China showed a decreasing trend from 2015 to 2018, while the relative contribution of natural surface emissions increased significantly from 41 % in 2015 to 57 % in 2018, gradually surpassing those from anthropogenic sources.
Cited articles
Agnan, Y., Le Dantec, T., Moore, C. W., Edwards, G. C., and Obrist, D.:
New Constraints on Terrestrial Surface Atmosphere Fluxes of Gaseous
Elemental Mercury Using a Global Database, Environ. Sci.
Technol., 50, 507–524, https://doi.org/10.1021/acs.est.5b04013, 2016.
AMAP/UNEP: Geospatially distributed mercury emissions dataset 2010v1, available at: https://www.amap.no/mercury-emissions/datasets (last access: 25 April 2021),
2013.
Baughman, T. A.: Elemental mercury spills, Environ. Health Persp., 114,
147–152, https://doi.org/10.1289/ehp.7048, 2006.
Biswas, A., Blum, J. D., Bergquist, B. A., Keeler, G. J., and Xie, Z. Q.:
Natural mercury isotope variation in coal deposits and organic soils,
Environ. Sci. Technol., 42, 8303–8309, https://doi.org/10.1021/Es801444b,
2008.
Blum, J. D. and Bergquist, B. A.: Reporting of variations in the natural
isotopic composition of mercury, Anal. Bioanal. Chem., 388, 353–359, https://doi.org/10.1007/s00216-007-1236-9, 2007.
Blum, J. D. and Johnson, M. W.: Recent Developments in Mercury Stable
Isotope Analysis, Rev. Mineral. Geochem., 82, 733–757,
2017.
Blum, J. D., Sherman, L. S., and Johnson, M. W.: Mercury isotopes in earth
and environmental sciences, Annu. Rev. Earth Pl. Sc., 42, 249–269,
https://doi.org/10.1146/annurev-earth-050212-124107, 2014.
Carpi, A. and Chen, Y.-f.: Gaseous Elemental Mercury as an Indoor Air
Pollutant, Environ. Sci. Technol., 35, 4170–4173,
https://doi.org/10.1021/es010749p, 2001.
Carpi, A. and Chen, Y.-f.: Gaseous elemental mercury fluxes in New York
City, Water Air Soil Poll., 140, 371–379, https://doi.org/10.1023/A:1020198025725, 2002.
Chen, L. G., Liu, M., Xu, Z. C., Fan, R. F., Tao, J., Chen, D. H., Zhang, D.
Q., Xie, D. H., and Sun, J. R.: Variation trends and influencing factors of
total gaseous mercury in the Pearl River Delta – A highly industrialised
region in South China influenced by seasonal monsoons, Atmos. Environ., 77,
757–766, https://doi.org/10.1016/j.atmosenv.2013.05.053, 2013.
Demers, J. D., Blum, J. D., and Zak, D. R.: Mercury isotopes in a forested
ecosystem: Implications for air-surface exchange dynamics and the global
mercury cycle, Global Biogeochem. Cy., 27, 222–238, https://doi.org/10.1002/Gbc.20021,
2013.
Demers, J. D., Sherman, L. S., Blum, J. D., Marsik, F. J., and Dvonch, J.
T.: Coupling atmospheric mercury isotope ratios and meteorology to identify
sources of mercury impacting a coastal urban-industrial region near
Pensacola, Florida, USA, Global Biogeochem. Cy., 29, 1689–1705, 2015.
Duan, L., Wang, X. H., Wang, D. F., Duan, Y. S., Cheng, N., and Xiu, G. L.:
Atmospheric mercury speciation in Shanghai, China, Sci. Total Environ., 578,
460–468, 2017.
Eckley, C. S. and Branfireun, B.: Gaseous mercury emissions from urban
surfaces: Controls and spatiotemporal trends, Appl. Geochem., 23, 369–383,
https://doi.org/10.1016/j.apgeochem.2007.12.008, 2008.
Enrico, M., Le Roux, G., Marusczak, N., Heimburger, L. E., Claustres, A.,
Fu, X. W., Sun, R. Y., and Sonke, J. E.: Atmospheric Mercury Transfer to
Peat Bogs Dominated by Gaseous Elemental Mercury Dry Deposition,
Environ. Sci. Technol., 50, 2405–2412,
https://doi.org/10.1021/acs.est.5b06058, 2016.
Fang, F. M., Wang, Q. C., and Li, J. F.: Urban environmental mercury in
Changchun, a metropolitan city in Northeastern China: source, cycle, and
fate, Sci. Total Environ., 330, 159–170, https://doi.org/10.1016/j.scitotenv.2004.04.006,
2004.
Feng, X. B., Shang, L. H., Wang, S. F., Tang, S. L., and Zheng, W.: Temporal
variation of total gaseous mercury in the air of Guiyang, China, J. Geophys.
Res.-Atmos., 109, D03303, https://doi.org/10.1029/2003jd004159, 2004.
Feng, X. B., Wang, S. F., Qiu, G. A., Hou, Y. M., and Tang, S. L.: Total
gaseous mercury emissions from soil in Guiyang, Guizhou, China, J. Geophys.
Res.-Atmos., 110, D14306, https://doi.org/10.1029/2004jd005643, 2005.
Fu, X., Yang, X., Tan, Q., Ming, L., Lin, T., Lin, C.-J., Li, X., and Feng,
X.: Isotopic Composition of Gaseous Elemental Mercury in the Marine Boundary
Layer of East China Sea, J. Geophys. Res.-Atmos., 123,
7656–7669, https://doi.org/10.1029/2018JD028671, 2018.
Fu, X., Zhang, H., Liu, C., Zhang, H., Lin, C.-J., and Feng, X.: Significant
Seasonal Variations in Isotopic Composition of Atmospheric Total Gaseous
Mercury at Forest Sites in China Caused by Vegetation and Mercury Sources,
Environ. Sci. Technol., 53, 13748–13756,
https://doi.org/10.1021/acs.est.9b05016, 2019.
Fu, X. W., and Feng, X. B.: Variations of atmospheric total gaseous mercury concentrations for the sampling campaigns of 2001/2002 and 2009/2010 and implications of changes in regional emissions of atmospheric mercury, Bull. Miner. Petr. Geochem., 34, 242–249, 2015 (in Chinese).
Fu, X. W., Feng, X. B., Qiu, G. L., Shang, L. H., and Zhang, H.: Speciated
atmospheric mercury and its potential source in Guiyang, China, Atmos.
Environ., 45, 4205–4212, https://doi.org/10.1016/j.atmosenv.2011.05.012, 2011.
Fu, X. W., Feng, X. B., Zhang, H., Yu, B., and Chen, L. G.: Mercury
emissions from natural surfaces highly impacted by human activities in
Guangzhou province, South China, Atmos. Environ., 54, 185–193, https://doi.org/10.1016/j.atmosenv.2012.02.008, 2012.
Fu, X. W., Heimburger, L. E., and Sonke, J. E.: Collection of atmospheric
gaseous mercury for stable isotope analysis using iodine- and
chlorine-impregnated activated carbon traps, J. Anal. Atom. Spectrom., 29,
841–852, https://doi.org/10.1039/C3ja50356a, 2014.
Fu, X. W., Zhang, H., Yu, B., Wang, X., Lin, C.-J., and Feng, X. B.: Observations of atmospheric mercury in China: a critical review, Atmos. Chem. Phys., 15, 9455–9476, https://doi.org/10.5194/acp-15-9455-2015, 2015.
Fu, X. W., Marusczak, N., Wang, X., Gheusi, F., and Sonke, J. E.: Isotopic
Composition of Gaseous Elemental Mercury in the Free Troposphere of the Pic
du Midi Observatory, France, Environ. Sci. Technol., 50,
5641–5650, https://doi.org/10.1021/acs.est.6b00033, 2016.
Gabriel, M. C., Williamson, D. G., Zhang, H., Brooks, S., and Lindberg, S.:
Diurnal and seasonal trends in total gaseous mercury flux from three urban
ground surfaces, Atmos. Environ., 40, 4269–4284, https://doi.org/10.1016/j.atmosenv.2006.04.004, 2006.
Gao, W. D., Jiang, W., and Zhou, M. M.: The spatial and temporal
characteristics of mercury emission from coal combustion in China during the
year 2015, Atmos. Pollut. Res., 10, 776–783, https://doi.org/10.1016/j.apr.2018.12.005, 2019.
Ghosh, S., Schauble, E. A., Couloume, G. L., Blum, J. D., and Bergquist, B.
A.: Estimation of nuclear volume dependent fractionation of mercury isotopes
in equilibrium liquid-vapor evaporation experiments, Chem. Geol., 336, 5–12,
2013.
Gratz, L. E., Keeler, G. J., Blum, J. D., and Sherman, L. S.: Isotopic
composition and fractionation of mercury in Great Lakes precipitation and
ambient air, Environ. Sci. Technol., 44, 7764–7770, https://doi.org/10.1021/Es100383w, 2010.
Gustin, M. S., Amos, H. M., Huang, J., Miller, M. B., and Heidecorn, K.: Measuring and modeling mercury in the atmosphere: a critical review, Atmos. Chem. Phys., 15, 5697–5713, https://doi.org/10.5194/acp-15-5697-2015, 2015.
Gustin, M. S., Dunham-Cheatham, S. M., and Zhang, L.: Comparison of 4
Methods for Measurement of Reactive, Gaseous Oxidized, and Particulate Bound
Mercury, Environ. Sci. Technol., 53, 14489–14495,
https://doi.org/10.1021/acs.est.9b04648, 2019.
Holmes, C. D., Jacob, D. J., Corbitt, E. S., Mao, J., Yang, X., Talbot, R., and Slemr, F.: Global atmospheric model for mercury including oxidation by bromine atoms, Atmos. Chem. Phys., 10, 12037–12057, https://doi.org/10.5194/acp-10-12037-2010, 2010.
Horowitz, H. M., Jacob, D. J., Zhang, Y., Dibble, T. S., Slemr, F., Amos, H. M., Schmidt, J. A., Corbitt, E. S., Marais, E. A., and Sunderland, E. M.: A new mechanism for atmospheric mercury redox chemistry: implications for the global mercury budget, Atmos. Chem. Phys., 17, 6353–6371, https://doi.org/10.5194/acp-17-6353-2017, 2017.
Huang, J. Y., Miller, M. B., Weiss-Penzias, P., and Gustin, M. S.:
Comparison of gaseous oxidized Hg measured by KCl-coated denuders, and Nylon
and Cation exchange Membranes, Environ. Sci. Technol., 47,
7307–7316, https://doi.org/10.1021/Es4012349, 2013.
Jiskra, M., Sonke, J. E., Obrist, D., Bieser, J., Ebinghaus, R., Myhre, C.
L., Pfaffhuber, K. A., Wangberg, I., Kyllonen, K., Worthy, D., Martin, L.
G., Labuschagne, C., Mkololo, T., Ramonet, M., Magand, O., and Dommergue,
A.: A vegetation control on seasonal variations in global atmospheric
mercury concentrations, Nat. Geosci., 11, 244–250, https://doi.org/10.1038/s41561-018-0078-8,
2018.
Jiskra, M., Marusczak, N., Leung, K. H., Hawkins, L., Prestbo, E., and
Sonke, J. E.: Automated Stable Isotope Sampling of Gaseous Elemental Mercury
(ISO-GEM): Insights into GEM Emissions from Building Surfaces, Environ.
Sci. Technol., 53, 4346–4354, https://doi.org/10.1021/acs.est.8b06381, 2019a.
Jiskra, M., Sonke, J. E., Agnan, Y., Helmig, D., and Obrist, D.: Insights from mercury stable isotopes on terrestrial–atmosphere exchange of Hg(0) in the Arctic tundra, Biogeosciences, 16, 4051–4064, https://doi.org/10.5194/bg-16-4051-2019, 2019b.
Lin, C.-J., Pan, L., Streets, D. G., Shetty, S. K., Jang, C., Feng, X., Chu, H.-W., and Ho, T. C.: Estimating mercury emission outflow from East Asia using CMAQ-Hg, Atmos. Chem. Phys., 10, 1853–1864, https://doi.org/10.5194/acp-10-1853-2010, 2010.
Liu, H. W., Diao, X., Yu, B., Shi, J. B., Liu, Q., Yin, Y. G., Hu, L. G.,
Yuan, C. G., and Jiang, G. B.: Effect of air pollution control devices on
mercury isotopic fractionation in coal-fired power plants, Chem. Geol., 517,
1–6, https://doi.org/10.1016/j.chemgeo.2019.04.019, 2019.
Liu, K. Y., Wu, Q. R., Wang, L., Wang, S. X., Liu, T. H., Ding, D., Tang,
Y., Li, G. L., Tian, H. Z., Duan, L., Wang, X., Fu, X. W., Feng, X. B., and
Hao, J. M.: Measure-Specific Effectiveness of Air Pollution Control on
China's Atmospheric Mercury Concentration and Deposition during 2013–2017,
Environ. Sci. Technol., 53, 8938–8946,
https://doi.org/10.1021/acs.est.9b02428, 2019.
Lyman, S. N. and Jaffe, D. A.: Formation and fate of oxidized mercury in
the upper troposphere and lower stratosphere, Nat. Geosci., 5, 114–117,
https://doi.org/10.1038/NGEO1353, 2012.
Lynam, M. M. and Keeler, G. J.: Automated speciated mercury measurements in
Michigan, Environ. Sci. Technol., 39, 9253–9262, https://doi.org/10.1021/Es040458r, 2005.
Mao, H., Cheng, I., and Zhang, L.: Current understanding of the driving mechanisms for spatiotemporal variations of atmospheric speciated mercury: a review, Atmos. Chem. Phys., 16, 12897–12924, https://doi.org/10.5194/acp-16-12897-2016, 2016.
Obrist, D., Agnan, Y., Jiskra, M., Olson, C. L., Colegrove, D. P., Hueber,
J., Moore, C. W., Sonke, J. E., and Helmig, D.: Tundra uptake of atmospheric
elemental mercury drives Arctic mercury pollution, Nature, 547, 201–204,
https://doi.org/10.1038/nature22997, 2017.
Obrist, D., Kirk, J. L., Zhang, L., Sunderland, E. M., Jiskra, M., and
Selin, N. E.: A review of global environmental mercury processes in response
to human and natural perturbations: Changes of emissions, climate, and land
use, Ambio, 47, 116–140, https://doi.org/10.1007/s13280-017-1004-9, 2018.
Peterson, C., Gustin, M., and Lyman, S.: Atmospheric mercury concentrations
and speciation measured from 2004 to 2007 in Reno, Nevada, USA, Atmos.
Environ., 43, 4646–4654, https://doi.org/10.1016/j.atmosenv.2009.04.053, 2009.
Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R. B., Friedli, H. R., Leaner, J., Mason, R., Mukherjee, A. B., Stracher, G. B., Streets, D. G., and Telmer, K.: Global mercury emissions to the atmosphere from anthropogenic and natural sources, Atmos. Chem. Phys., 10, 5951–5964, https://doi.org/10.5194/acp-10-5951-2010, 2010.
Rutter, A. P., Snyder, D. C., Stone, E. A., Schauer, J. J., Gonzalez-Abraham, R., Molina, L. T., Márquez, C., Cárdenas, B., and de Foy, B.: In situ measurements of speciated atmospheric mercury and the identification of source regions in the Mexico City Metropolitan Area, Atmos. Chem. Phys., 9, 207–220, https://doi.org/10.5194/acp-9-207-2009, 2009.
Selin, N. E., Jacob, D. J., Park, R. J., Yantosca, R. M., Strode, S.,
Jaegle, L., and Jaffe, D.: Chemical cycling and deposition of atmospheric
mercury: Global constraints from observations, J. Geophys. Res.-Atmos., 112, D02308, https://doi.org/10.1029/2006jd007450, 2007.
Shah, V., Jaeglé, L., Gratz, L. E., Ambrose, J. L., Jaffe, D. A., Selin, N. E., Song, S., Campos, T. L., Flocke, F. M., Reeves, M., Stechman, D., Stell, M., Festa, J., Stutz, J., Weinheimer, A. J., Knapp, D. J., Montzka, D. D., Tyndall, G. S., Apel, E. C., Hornbrook, R. S., Hills, A. J., Riemer, D. D., Blake, N. J., Cantrell, C. A., and Mauldin III, R. L.: Origin of oxidized mercury in the summertime free troposphere over the southeastern US, Atmos. Chem. Phys., 16, 1511–1530, https://doi.org/10.5194/acp-16-1511-2016, 2016.
Sherman, L. S., Blum, J. D., Johnson, K. P., Keeler, G. J., Barres, J. A.,
and Douglas, T. A.: Mass-independent fractionation of mercury isotopes in
Arctic snow driven by sunlight, Nat. Geosci., 3, 173–177, https://doi.org/10.1038/Ngeo758,
2010.
Sonke, J. E.: A global model of mass independent mercury stable isotope
fractionation, Geochim. Cosmochim. Ac., 75, 4577–4590, https://doi.org/10.1016/j.gca.2011.05.027, 2011.
Sprovieri, F., Pirrone, N., Bencardino, M., D'Amore, F., Carbone, F., Cinnirella, S., Mannarino, V., Landis, M., Ebinghaus, R., Weigelt, A., Brunke, E.-G., Labuschagne, C., Martin, L., Munthe, J., Wängberg, I., Artaxo, P., Morais, F., Barbosa, H. D. M. J., Brito, J., Cairns, W., Barbante, C., Diéguez, M. D. C., Garcia, P. E., Dommergue, A., Angot, H., Magand, O., Skov, H., Horvat, M., Kotnik, J., Read, K. A., Neves, L. M., Gawlik, B. M., Sena, F., Mashyanov, N., Obolkin, V., Wip, D., Feng, X. B., Zhang, H., Fu, X., Ramachandran, R., Cossa, D., Knoery, J., Marusczak, N., Nerentorp, M., and Norstrom, C.: Atmospheric mercury concentrations observed at ground-based monitoring sites globally distributed in the framework of the GMOS network, Atmos. Chem. Phys., 16, 11915–11935, https://doi.org/10.5194/acp-16-11915-2016, 2016.
Sun, G., Sommar, J., Feng, X., Lin, C.-J., Ge, M., Wang, W., Yin, R., Fu,
X., and Shang, L.: Mass-dependent and -independent fractionation of mercury
isotope during gas-phase oxidation of elemental mercury vapor by atomic Cl
and Br, Environ. Sci. Technol., 50, 9232–9241,
https://doi.org/10.1021/acs.est.6b01668, 2016.
Sun, R. Y., Enrico, M., Heimburger, L. E., Scott, C., and Sonke, J. E.: A
double-stage tube furnace-acid-trapping protocol for the pre-concentration
of mercury from solid samples for isotopic analysis, Anal. Bioanal. Chem., 405,
6771–6781, https://doi.org/10.1007/s00216-013-7152-2, 2013.
Sun, R. Y., Streets, D. G., Horowitz, H. M., Amos, H. M., Liu, G. J.,
Perrot, V., Toutain, J. P., Hintelmann, H., Sunderland, E. M., and Sonke, J.
E.: Historical (1850–2010) mercury stable isotope inventory from
anthropogenic sources to the atmosphere, Elem. Sci. Anth., 4, 1–15,
https://doi.org/10.12952/journal.elementa.000091, 2016.
Sun, R. Y., Jiskra, M., Amos, H. M., Zhang, Y. X., Sunderland, E. M., and
Sonke, J. E.: Modelling the mercury stable isotope distribution of Earth
surface reservoirs: Implications for global Hg cycling, Geochim. Cosmochim.
Ac., 246, 156–173, https://doi.org/10.1016/j.gca.2018.11.036, 2019.
Swartzendruber, P. C., Jaffe, D. A., and Finley, B.: Development and First
Results of an Aircraft-Based, High Time Resolution Technique for Gaseous
Elemental and Reactive (Oxidized) Gaseous Mercury, Environ. Sci.
Technol., 43, 7484–7489, https://doi.org/10.1021/Es901390t, 2009.
Tang, S., Feng, C., Feng, X., Zhu, J., Sun, R., Fan, H., Wang, L., Li, R.,
Mao, T., and Zhou, T.: Stable isotope composition of mercury forms in flue
gases from a typical coal-fired power plant, Inner Mongolia, northern China,
J. Hazard. Mater., 328, 90–97,
https://doi.org/10.1016/j.jhazmat.2017.01.014, 2017.
Tang, Y., Wang, S., Wu, Q., Liu, K., Wang, L., Li, S., Gao, W., Zhang, L., Zheng, H., Li, Z., and Hao, J.: Recent decrease trend of atmospheric mercury concentrations in East China: the influence of anthropogenic emissions, Atmos. Chem. Phys., 18, 8279–8291, https://doi.org/10.5194/acp-18-8279-2018, 2018.
United States Environmental Protection Agency (USEPA): Method 1631, Revision E: Mercury in Water by Oxidation, Purge and
Trap, and Cold Vapor Atomic Fluorescence Spectrometry, United States
Environmental Protection Agency, 10–46 pp., 2002.
Wang, D. Y., He, L., Shi, X. J., Wei, S. Q., and Feng, X. B.: Release flux
of mercury from different environmental surfaces in Chongqing, China,
Chemosphere, 64, 1845–1854, https://doi.org/10.1016/j.chemosphere.2006.01.054, 2006.
Wang, X., Lin, C.-J., Yuan, W., Sommar, J., Zhu, W., and Feng, X.: Emission-dominated gas exchange of elemental mercury vapor over natural surfaces in China, Atmos. Chem. Phys., 16, 11125–11143, https://doi.org/10.5194/acp-16-11125-2016, 2016.
Wu, Q. R., Wang, S. X., Li, G. L., Liang, S., Lin, C. J., Wang, Y. F., Cai,
S. Y., Liu, K. Y., and Hao, J. M.: Temporal Trend and Spatial Distribution
of Speciated Atmospheric Mercury Emissions in China During 1978–2014,
Environ. Sci. Technol., 50, 13428–13435, 2016.
Xu, H., Sonke, J. E., Guinot, B., Fu, X., Sun, R., Lanzanova, A., Candaudap,
F., Shen, Z., and Cao, J.: Seasonal and Annual Variations in Atmospheric Hg
and Pb Isotopes in Xi'an, China, Environ. Sci. Technol., 51, 3759–3766,
https://doi.org/10.1021/acs.est.6b06145, 2017.
Yu, B., Fu, X., Yin, R., Zhang, H., Wang, X., Lin, C.-J., Wu, C., Zhang, Y.,
He, N., Fu, P., Wang, Z., Shang, L., Sommar, J., Sonke, J. E., Maurice, L.,
Guinot, B., and Feng, X.: Isotopic Composition of Atmospheric Mercury in
China: New Evidence for Sources and Transformation Processes in Air and in
Vegetation, Environ. Sci. Technol., 50, 9262–9269,
https://doi.org/10.1021/acs.est.6b01782, 2016.
Zhang, H., Wang, Z. W., Wang, C. J., and Zhang, X. S.: Concentrations and
gas-particle partitioning of atmospheric reactive mercury at an urban site
in Beijing, China, Environ. Pollut., 249, 13–23, https://doi.org/10.1016/j.envpol.2019.02.064,
2019.
Zhang, L., Wang, S. X., Wang, L., and Hao, J. M.: Atmospheric mercury concentration and chemical speciation at a rural site in Beijing, China: implications of mercury emission sources, Atmos. Chem. Phys., 13, 10505–10516, https://doi.org/10.5194/acp-13-10505-2013, 2013.
Zheng, B., Tong, D., Li, M., Liu, F., Hong, C., Geng, G., Li, H., Li, X., Peng, L., Qi, J., Yan, L., Zhang, Y., Zhao, H., Zheng, Y., He, K., and Zhang, Q.: Trends in China's anthropogenic emissions since 2010 as the consequence of clean air actions, Atmos. Chem. Phys., 18, 14095–14111, https://doi.org/10.5194/acp-18-14095-2018, 2018.
Zheng, W. and Hintelmann, H.: Nuclear Field Shift Effect in Isotope
Fractionation of Mercury during Abiotic Reduction in the Absence of Light, J.
Phys. Chem. A., 114, 4238–4245, 2010.
Zhu, J., Wang, T., Talbot, R., Mao, H., Hall, C. B., Yang, X., Fu, C., Zhuang, B., Li, S., Han, Y., and Huang, X.: Characteristics of atmospheric Total Gaseous Mercury (TGM) observed in urban Nanjing, China, Atmos. Chem. Phys., 12, 12103–12118, https://doi.org/10.5194/acp-12-12103-2012, 2012.
Short summary
TGM concentrations and isotopic compositions in 10 Chinese cities showed strong seasonality with higher TGM concentrations and Δ199Hg and lower δ202Hg in summer. We found the seasonal variations in TGM concentrations and isotopic compositions were highly related to regional surface Hg(0) emissions, suggesting land surface Hg(0) emissions are an important source of atmospheric TGM that contribute dominantly to the seasonal variations in TGM concentrations and isotopic compositions.
TGM concentrations and isotopic compositions in 10 Chinese cities showed strong seasonality with...
Altmetrics
Final-revised paper
Preprint