Articles | Volume 21, issue 6
https://doi.org/10.5194/acp-21-4503-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-4503-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Ice-nucleating particles in precipitation samples from the Texas Panhandle
Hemanth S. K. Vepuri
Department of Life, Earth, and Environmental Sciences, West Texas A&M University, Canyon, TX, USA
Cheyanne A. Rodriguez
Department of Life, Earth, and Environmental Sciences, West Texas A&M University, Canyon, TX, USA
Dimitrios G. Georgakopoulos
Department of Crop Science, Agricultural University of Athens, Athens, Greece
Dustin Hume
Office of Information Technology, West Texas A&M University, Canyon, TX, USA
James Webb
Office of Information Technology, West Texas A&M University, Canyon, TX, USA
Gregory D. Mayer
Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA
Department of Life, Earth, and Environmental Sciences, West Texas A&M University, Canyon, TX, USA
Related authors
Naruki Hiranuma, Brent W. Auvermann, Franco Belosi, Jack Bush, Kimberly M. Cory, Dimitrios G. Georgakopoulos, Kristina Höhler, Yidi Hou, Larissa Lacher, Harald Saathoff, Gianni Santachiara, Xiaoli Shen, Isabelle Steinke, Romy Ullrich, Nsikanabasi S. Umo, Hemanth S. K. Vepuri, Franziska Vogel, and Ottmar Möhler
Atmos. Chem. Phys., 21, 14215–14234, https://doi.org/10.5194/acp-21-14215-2021, https://doi.org/10.5194/acp-21-14215-2021, 2021
Short summary
Short summary
We present laboratory and field studies showing that an open-lot livestock facility is a substantial source of atmospheric ice-nucleating particles (INPs). The ambient concentration of INPs from livestock facilities in Texas is very high. It is up to several thousand INPs per liter below –20 °C and may impact regional aerosol–cloud interactions. About 50% of feedlot INPs were supermicron in diameter. No notable amount of known ice-nucleating microorganisms was found in our feedlot samples.
Ottmar Möhler, Michael Adams, Larissa Lacher, Franziska Vogel, Jens Nadolny, Romy Ullrich, Cristian Boffo, Tatjana Pfeuffer, Achim Hobl, Maximilian Weiß, Hemanth S. K. Vepuri, Naruki Hiranuma, and Benjamin J. Murray
Atmos. Meas. Tech., 14, 1143–1166, https://doi.org/10.5194/amt-14-1143-2021, https://doi.org/10.5194/amt-14-1143-2021, 2021
Short summary
Short summary
The Earth's climate is influenced by clouds, which are impacted by ice-nucleating particles (INPs), a minor fraction of atmospheric aerosols. INPs induce ice formation in clouds and thus often initiate precipitation formation. The Portable Ice Nucleation Experiment (PINE) is the first fully automated instrument to study cloud ice formation and to obtain long-term records of INPs. This is a timely development, and the capabilities it offers for research and atmospheric monitoring are significant.
Nurun Nahar Lata, Trung Diep, Stefania Gilardoni, Mauro Mazzola, Zezhen Cheng, Ashfiqur Rahman, Mickey Rogers, Matthew Fraund, Matthew Marcus, Naruki Hiranuma, and Swarup China
EGUsphere, https://doi.org/10.5194/egusphere-2025-4866, https://doi.org/10.5194/egusphere-2025-4866, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Ice in the Arctic clouds is initiated by rare particles, and their properties are not well understood due to atmospheric processing. By combining microscopy with freezing experiments, we found that both chemical composition and the thickness and morphological configuration of organic coatings influence ice formation. This finding highlights the importance of particle surface chemistry in cloud formation and offers new insights into how Arctic aerosols influence cloud formation.
Aidan D. Pantoya, Stephanie R. Simonsen, Elisabeth Andrews, Ross Burgener, Christopher J. Cox, Gijs de Boer, Bryan D. Thomas, and Naruki Hiranuma
Aerosol Research, 3, 253–270, https://doi.org/10.5194/ar-3-253-2025, https://doi.org/10.5194/ar-3-253-2025, 2025
Short summary
Short summary
We present continuous ice-nucleating particle data that were measured in the Alaskan Arctic from October 2021 to December 2023. We found a greater efficiency in the arctic immersion freezing during fall compared to those found previously at two mid-latitude sites, together with profound freezing efficiencies in spring, presumably due to arctic haze events. Our study will be useful for improving atmospheric models to simulate cloud feedback and determine their impact on the global radiative energy budget.
Xiaoli Shen, David M. Bell, Hugh Coe, Naruki Hiranuma, Fabian Mahrt, Nicholas A. Marsden, Claudia Mohr, Daniel M. Murphy, Harald Saathoff, Johannes Schneider, Jacqueline Wilson, Maria A. Zawadowicz, Alla Zelenyuk, Paul J. DeMott, Ottmar Möhler, and Daniel J. Cziczo
Atmos. Chem. Phys., 24, 10869–10891, https://doi.org/10.5194/acp-24-10869-2024, https://doi.org/10.5194/acp-24-10869-2024, 2024
Short summary
Short summary
Single-particle mass spectrometry (SPMS) is commonly used to measure the chemical composition and mixing state of aerosol particles. Intercomparison of SPMS instruments was conducted. All instruments reported similar size ranges and common spectral features. The instrument-specific detection efficiency was found to be more dependent on particle size than type. All differentiated secondary organic aerosol, soot, and soil dust but had difficulties differentiating among minerals and dusts.
Elise K. Wilbourn, Larissa Lacher, Carlos Guerrero, Hemanth S. K. Vepuri, Kristina Höhler, Jens Nadolny, Aidan D. Pantoya, Ottmar Möhler, and Naruki Hiranuma
Atmos. Chem. Phys., 24, 5433–5456, https://doi.org/10.5194/acp-24-5433-2024, https://doi.org/10.5194/acp-24-5433-2024, 2024
Short summary
Short summary
Ambient ice particles were measured at terrestrial and temperate marine sites. Ice particles were more abundant in the former site, while the fraction of ice particles relative to total ambient particles, representing atmospheric ice nucleation efficiency, was higher in the latter site. Ice nucleation parameterizations were developed as a function of examined freezing temperatures from two sites for our study periods (autumn).
Guangyu Li, Elise K. Wilbourn, Zezhen Cheng, Jörg Wieder, Allison Fagerson, Jan Henneberger, Ghislain Motos, Rita Traversi, Sarah D. Brooks, Mauro Mazzola, Swarup China, Athanasios Nenes, Ulrike Lohmann, Naruki Hiranuma, and Zamin A. Kanji
Atmos. Chem. Phys., 23, 10489–10516, https://doi.org/10.5194/acp-23-10489-2023, https://doi.org/10.5194/acp-23-10489-2023, 2023
Short summary
Short summary
In this work, we present results from an Arctic field campaign (NASCENT) in Ny-Ålesund, Svalbard, on the abundance, variability, physicochemical properties, and potential sources of ice-nucleating particles (INPs) relevant for mixed-phase cloud formation. This work improves the data coverage of Arctic INPs and aerosol properties, allowing for the validation of models predicting cloud microphysical and radiative properties of mixed-phase clouds in the rapidly warming Arctic.
Matteo Rinaldi, Naruki Hiranuma, Gianni Santachiara, Mauro Mazzola, Karam Mansour, Marco Paglione, Cheyanne A. Rodriguez, Rita Traversi, Silvia Becagli, David Cappelletti, and Franco Belosi
Atmos. Chem. Phys., 21, 14725–14748, https://doi.org/10.5194/acp-21-14725-2021, https://doi.org/10.5194/acp-21-14725-2021, 2021
Short summary
Short summary
This study aims to add to the still scant ice-nucleating particle (INP) observations in the Arctic environment, investigating INP concentrations and potential sources, during spring and summertime, at the ground-level site of GVB. The lack of a clear concentration seasonal trend, in contrast with previous works, shows an important interannual variability of Arctic INP sources, which may be both terrestrial and marine, outside the Arctic haze period.
Naruki Hiranuma, Brent W. Auvermann, Franco Belosi, Jack Bush, Kimberly M. Cory, Dimitrios G. Georgakopoulos, Kristina Höhler, Yidi Hou, Larissa Lacher, Harald Saathoff, Gianni Santachiara, Xiaoli Shen, Isabelle Steinke, Romy Ullrich, Nsikanabasi S. Umo, Hemanth S. K. Vepuri, Franziska Vogel, and Ottmar Möhler
Atmos. Chem. Phys., 21, 14215–14234, https://doi.org/10.5194/acp-21-14215-2021, https://doi.org/10.5194/acp-21-14215-2021, 2021
Short summary
Short summary
We present laboratory and field studies showing that an open-lot livestock facility is a substantial source of atmospheric ice-nucleating particles (INPs). The ambient concentration of INPs from livestock facilities in Texas is very high. It is up to several thousand INPs per liter below –20 °C and may impact regional aerosol–cloud interactions. About 50% of feedlot INPs were supermicron in diameter. No notable amount of known ice-nucleating microorganisms was found in our feedlot samples.
Ottmar Möhler, Michael Adams, Larissa Lacher, Franziska Vogel, Jens Nadolny, Romy Ullrich, Cristian Boffo, Tatjana Pfeuffer, Achim Hobl, Maximilian Weiß, Hemanth S. K. Vepuri, Naruki Hiranuma, and Benjamin J. Murray
Atmos. Meas. Tech., 14, 1143–1166, https://doi.org/10.5194/amt-14-1143-2021, https://doi.org/10.5194/amt-14-1143-2021, 2021
Short summary
Short summary
The Earth's climate is influenced by clouds, which are impacted by ice-nucleating particles (INPs), a minor fraction of atmospheric aerosols. INPs induce ice formation in clouds and thus often initiate precipitation formation. The Portable Ice Nucleation Experiment (PINE) is the first fully automated instrument to study cloud ice formation and to obtain long-term records of INPs. This is a timely development, and the capabilities it offers for research and atmospheric monitoring are significant.
Gourihar Kulkarni, Naruki Hiranuma, Ottmar Möhler, Kristina Höhler, Swarup China, Daniel J. Cziczo, and Paul J. DeMott
Atmos. Meas. Tech., 13, 6631–6643, https://doi.org/10.5194/amt-13-6631-2020, https://doi.org/10.5194/amt-13-6631-2020, 2020
Short summary
Short summary
This study presents a new continuous-flow-diffusion-chamber-style operated ice chamber (Modified Compact Ice Chamber, MCIC) to measure the immersion-freezing efficiency of atmospheric particles. MCIC allowed us to obtain maximum droplet-freezing efficiency at higher time resolution without droplet breakthrough ambiguity. Its evaluation was performed by reproducing published data from the recent ice nucleation workshop and past laboratory data for standard and airborne ice-nucleating particles.
Cited articles
Alter, R. E., Fan, Y., Lintner, B. R., and Weaver, C. P.: Observational Evidence that Great Plains Irrigation Has Enhanced Summer Precipitation Intensity and Totals in the Midwestern United States, J. Hydrometeorol., 16, 1717–1735, 2015.
Arnott, W. P., Walker, J. W., Moosmüller, H., Elleman, R. A., Jonsson, H. H., Buzorius, G., Conant, W. C., Flagan, R. C., and Seinfeld, J. H.:
Photoacoustic insight for aerosol light absorption aloft from meteorological aircraft and comparison with particle soot absorption photometer measurements: DOE Southern Great Plains climate research facility and the coastal stratocumulus imposed perturbation experiments, J. Geophys. Res., 111, D05S02, https://doi.org/10.1029/2005JD005964, 2006.
Beall, C. M., Lucero, D., Hill, T. C., DeMott, P. J., Stokes, M. D., and Prather, K. A.: Best practices for precipitation sample storage for offline studies of ice nucleation in marine and coastal environments, Atmos. Meas. Tech., 13, 6473–6486, https://doi.org/10.5194/amt-13-6473-2020, 2020.
Belosi, F. and Santachiara, G.: Laboratory investigation of aerosol coating and capillarity effects on particle ice nucleation in deposition and condensation modes, Atmos. Res., 230, 104633, https://doi.org/10.1016/j.atmosres.2019.104633, 2019.
Bush, J., Heflin, K. R., Marek, G. W., Bryant, T. C., and Auvermann, B. W.:
Increasing stocking density reduces emissions of fugitive dust from cattle feedyards,
Appl. Eng. Agric.,
30, 815–824, 2014.
Chen, Q., Yin, Y., Jiang, H., Chu, Z., Xue, L., Shi, R., Zhang, X., and Chen, J.:
The Roles of Mineral Dust as Cloud Condensation Nuclei and Ice Nuclei During the Evolution of a Hail Storm,
J. Geophys. Res.,
124, 14262–14284, 2019.
Cho, B. C. and Jang, G. I.:
Active and diverse rainwater bacteria collected at an inland site in spring and summer 2011,
Atmos. Environ.,
94, 409–416, 2014.
Constantinidou, H. A., Hirano, S. S., Baker, L. S., and Upper, C. D.:
Atmospheric dispersal of ice nucleation-active bacteria: the role of rain,
Phytopathology,
80, 934–97, 1990.
Cory, K. M.:
Immersion freezing of non-proteinaceous biological aerosol proxies and arctic ambient particles,
MS thesis, West Texas A & M University, Canyon, TX, USA,
available at: https://wtamu-ir.tdl.org/handle/11310/227 (last access: 21 December 2020), 2019.
Creamean, J. M., Mignani, C., Bukowiecki, N., and Conen, F.: Using freezing spectra characteristics to identify ice-nucleating particle populations during the winter in the Alps, Atmos. Chem. Phys., 19, 8123–8140, https://doi.org/10.5194/acp-19-8123-2019, 2019.
Cui, Z., Carslaw, K. S., Yin, Y., and Davies, S.: A numerical study of aerosol effects on the dynamics and microphysics of a deep convective cloud in a continental environment, J. Geophys. Res., 111, D05201, https://doi.org/10.1029/2005JD005981, 2006.
Damoah, R., Spichtinger, N., Forster, C., James, P., Mattis, I., Wandinger, U., Beirle, S., Wagner, T., and Stohl, A.: Around the world in 17 days – hemispheric-scale transport of forest fire smoke from Russia in May 2003, Atmos. Chem. Phys., 4, 1311–1321, https://doi.org/10.5194/acp-4-1311-2004, 2004.
David, R. O., Marcolli, C., Fahrni, J., Qiu, Y., Sirkin, Y. A. P., Molinero, V., Mahrt, F., Brühwiler, D., Lohmann, U., and Kanji, Z. A.:
Pore condensation and freezing is responsible for ice formation below water saturation for porous particles,
P. Natl. Acad. Sci. USA,
116, 8184–8189, 2019.
de Boer, G., Hashino, T., and Tripoli, G. J.:
Ice nucleation through immersion freezing in mixed-phase stratiform clouds: Theory and numerical simulations,
Atmos. Res.,
96, 315–324, 2010.
de Boer, G., Morrison, H., Shupe, M., and Hildner, R.: Evidence of liquid dependent ice nucleation in high-latitude stratiform clouds from surface remote sensors, Geophys. Res. Lett., 38, L01803, https://doi.org/10.1029/2010GL046016, 2011.
DeMott, P. J., Prenni, A. J., Liu, X., Kreidenweis, S. M., Petters, M. D., Twohy, C. H., Richardson, M. S., Eidhammer, T., and Rogers, D. C.:
Predicting global atmospheric ice nuclei distributions and their impacts on climate,
P. Natl. Acad. Sci. USA,
107, 11217–11222, 2010.
DeMott, P. J., Suski, K. J., Hill, T. C. J., and Levin, E. J. T.: Southern Great Plains Ice Nuclei Characterization Experiment Final Campaign Summary (No. DOE/SC-ARM-15-012), DOE Office of Science Atmospheric Radiation Measurement (ARM) Program (United States), available at: https://www.arm.gov/publications/programdocs/doe-sc-arm-15-012.pdf (last access: 14 March 2021), 2015.
DeMott, P. J., Hill, T. C. J., Petters, M. D., Bertram, A. K., Tobo, Y., Mason, R. H., Suski, K. J., McCluskey, C. S., Levin, E. J. T., Schill, G. P., Boose, Y., Rauker, A. M., Miller, A. J., Zaragoza, J., Rocci, K., Rothfuss, N. E., Taylor, H. P., Hader, J. D., Chou, C., Huffman, J. A., Pöschl, U., Prenni, A. J., and Kreidenweis, S. M.: Comparative measurements of ambient atmospheric concentrations of ice nucleating particles using multiple immersion freezing methods and a continuous flow diffusion chamber, Atmos. Chem. Phys., 17, 11227–11245, https://doi.org/10.5194/acp-17-11227-2017, 2017.
Després, V., Huffman, J. A., Burrows, S. M., Hoose, C., Safatov, A., Buryak, G., Fröhlich-Nowoisky, J., Elbert, W., Andreae, M., Pöschl, U., and Jaenicke, R.: Primary biological aerosol particles in the atmosphere: a review, Tellus B, 64, 15598, https://doi.org/10.3402/tellusb.v64i0.15598, 2012.
Dong, X., Minnis, P., Xi, B., Sun-Mack, S., and Chen, Y.: Comparison of CERES-MODIS stratus cloud properties with ground-based measurements at the DOE ARM Southern Great Plains site, J. Geophys. Res., 113, D03204, https://doi.org/10.1029/2007JD008438, 2008.
Durant, A. J. and Shaw, R. A.: Evaporation freezing by contact nucleation inside-out, Geophys. Res. Lett., 32, L20814, https://doi.org/10.1029/2005GL024175, 2005.
Fan, J., Leung, L. R., Rosenfeld, D., and DeMott, P. J.: Effects of cloud condensation nuclei and ice nucleating particles on precipitation processes and supercooled liquid in mixed-phase orographic clouds, Atmos. Chem. Phys., 17, 1017–1035, https://doi.org/10.5194/acp-17-1017-2017, 2017.
Field, P. R., Heymsfield, A. J., Shipway, B. J., DeMott, P. J., Pratt, K. A., Rogers, D. C., Stith, J., and Prather, K. A.:
Ice in clouds experiment–layer clouds. Part II: Testing characteristics of heterogeneous ice formation in lee wave clouds,
J. Atmos. Sci.,
69, 1066–1079, 2012.
Garcia, E., Hill, T. C. J., Prenni, A. J., DeMott, P. J., Franc, G. D., and Kreidenweis, S. M.: Biogenic ice nuclei in boundary layer air over two U. S. High Plains agricultural regions, J. Geophys. Res., 117, D18209, https://doi.org/10.1029/2012JD018343, 2012.
Hande, L. B. and Hoose, C.: Partitioning the primary ice formation modes in large eddy simulations of mixed-phase clouds, Atmos. Chem. Phys., 17, 14105–14118, https://doi.org/10.5194/acp-17-14105-2017, 2017.
Hanlon, R., Powers, C., Failor, K., Monteil, C. L., Vinatzer, B. A., and Schmale III, D. G.:
Microbial ice nucleators scavenged from the atmosphere during simulated rain events,
Atmos. Environ.,
163, 182–189, 2017.
Hartmann, D. L., Ockert-Bell, M. E., and Michelsen, M. L.:
The effect of cloud type on Earth's energy balance: Global analysis,
J. Climate,
5, 1281–1304, 1992.
He, C., Yin, Y., Wang, W., Chen, K., Mai, R., Jiang, H., Zhang, X., and Fang, C.: Aircraft observations of ice nucleating particles over the Northern China Plain: Two cases studies, Atmos. Res., 248, 105242, https://doi.org/10.1016/j.atmosres.2020.105242, 2020.
Hiranuma, N., Brooks, S. D., Gramann, J., and Auvermann, B. W.: High concentrations of coarse particles emitted from a cattle feeding operation, Atmos. Chem. Phys., 11, 8809–8823, https://doi.org/10.5194/acp-11-8809-2011, 2011.
Hiranuma, N., Adachi, K., Bell, D. M., Belosi, F., Beydoun, H., Bhaduri, B., Bingemer, H., Budke, C., Clemen, H.-C., Conen, F., Cory, K. M., Curtius, J., DeMott, P. J., Eppers, O., Grawe, S., Hartmann, S., Hoffmann, N., Höhler, K., Jantsch, E., Kiselev, A., Koop, T., Kulkarni, G., Mayer, A., Murakami, M., Murray, B. J., Nicosia, A., Petters, M. D., Piazza, M., Polen, M., Reicher, N., Rudich, Y., Saito, A., Santachiara, G., Schiebel, T., Schill, G. P., Schneider, J., Segev, L., Stopelli, E., Sullivan, R. C., Suski, K., Szakáll, M., Tajiri, T., Taylor, H., Tobo, Y., Ullrich, R., Weber, D., Wex, H., Whale, T. F., Whiteside, C. L., Yamashita, K., Zelenyuk, A., and Möhler, O.: A comprehensive characterization of ice nucleation by three different types of cellulose particles immersed in water, Atmos. Chem. Phys., 19, 4823–4849, https://doi.org/10.5194/acp-19-4823-2019, 2019.
Hiranuma, N., Auvermann, B. W., Belosi, F., Bush, J., Cory, K. M., Fösig, R., Georgakopoulos, D., Höhler, K., Hou, Y., Saathoff, H., Santachiara, G., Shen, X., Steinke, I., Umo, N., Vepuri, H. S. K., Vogel, F., and Möhler, O.: Feedlot is a unique and constant source of atmospheric ice-nucleating particles, Atmos. Chem. Phys. Discuss. [preprint], https://doi.org/10.5194/acp-2020-1042, in review, 2020.
Huffman, J. A., Prenni, A. J., DeMott, P. J., Pöhlker, C., Mason, R. H., Robinson, N. H., Fröhlich-Nowoisky, J., Tobo, Y., Després, V. R., Garcia, E., Gochis, D. J., Harris, E., Müller-Germann, I., Ruzene, C., Schmer, B., Sinha, B., Day, D. A., Andreae, M. O., Jimenez, J. L., Gallagher, M., Kreidenweis, S. M., Bertram, A. K., and Pöschl, U.: High concentrations of biological aerosol particles and ice nuclei during and after rain, Atmos. Chem. Phys., 13, 6151–6164, https://doi.org/10.5194/acp-13-6151-2013, 2013.
Jimenez-Sanchez, C., Hanlon, R., Aho, K. A., Powers, C., Morris, C. E., and Schmale III, D. G.: Diversity and ice nucleation activity of microorganisms collected with a small Unmanned Aircraft System (sUAS) in France and the United States, Front. Microbiol., 9, 1667, https://doi.org/10.3389/fmicb.2018.01667, 2018.
Kanji, Z. A. and Abbatt, J. P. D.: Laboratory studies of ice formation via deposition mode nucleation onto mineral dust and n-hexane soot samples, J. Geophys. Res., 111, D16204, https://doi.org/10.1029/2005JD006766, 2006.
Kanji, Z. A., Ladino, L. A., Wex, H., Boose, Y., Burkert-Kohn, M., Cziczo, D. J., and Krämer, M.:
Overview of ice nucleating particles,
Meteorol. Monogr.,
58, 1.1–1.33, 2017.
Koop, T. and Murray, B. J.: A physically constrained classical description of the homogeneous nucleation of ice in water, J. Chem. Phys., 145, 211915, https://doi.org/10.1063/1.4962355, 2016.
Koop, T., Luo, B., Tsias, A., and Peter, T.:
Water activity as the determinant for homogeneous ice nucleation in aqueous solutions,
Nature,
406, 611–614, 2000.
Levin, E. J., DeMott, P. J., Suski, K. J., Boose, Y., Hill, T. C. J., McCluskey, C. S., Schill, G. P., Rocci, K., Al-Mashat, H., Kristensen, L. J., Cornwell, G., Prather, K., Tomlinson, J., Mei, F., Hubbe, J., Pekour, M., Sullivan, R., Leung, L. R., and Kreidenweis, S. M.:
Characteristics of ice nucleating particles in and around California winter storms,
J. Geophys. Res.,
124, 11530–11551, 2019.
Lohmann, U. and Feichter, J.: Global indirect aerosol effects: a review, Atmos. Chem. Phys., 5, 715–737, https://doi.org/10.5194/acp-5-715-2005, 2005.
Lohmann, U., Stier, P., Hoose, C., Ferrachat, S., Kloster, S., Roeckner, E., and Zhang, J.: Cloud microphysics and aerosol indirect effects in the global climate model ECHAM5-HAM, Atmos. Chem. Phys., 7, 3425–3446, https://doi.org/10.5194/acp-7-3425-2007, 2007.
Marcolli, C.: Deposition nucleation viewed as homogeneous or immersion freezing in pores and cavities, Atmos. Chem. Phys., 14, 2071–2104, https://doi.org/10.5194/acp-14-2071-2014, 2014.
Markowicz, K. M. and Chiliński, M. T.: Evaluation of two low-cost optical particle counters for the measurement of ambient aerosol scattering coefficient and Ångström exponent, Sensors, 20, 2617, https://doi.org/10.3390/s20092617, 2020.
Möhler, O., Benz, S., Saathoff, H., Schnaiter, M., Wagner, R., Schneider, J., Walter, S., Ebert, V., and Wagner, S.: The effect of organic coating on the heterogeneous ice nucleation efficiency of mineral dust aerosols, Environ. Res. Lett., 3, 025007, https://doi.org/10.1088/1748-9326/3/2/025007, 2008.
Morris, C. E., Georgakopoulos, D. G., and Sands, D. C.:
Ice nucleation active bacteria and their potential role in precipitation,
J. Phys. IV,
121, 87–103, 2004.
Mülmenstädt, J., Sourdeval, O., Delanoë, J., and Quaas, J.:
Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds derived from A-Train satellite retrievals,
Geophys. Res. Lett.,
42, 6502–6509, 2015.
Parworth, C., Fast, J., Mei, F., Shippert, T., Sivaraman, C., Tilp, A., Watson, T., and Zhang, Q.:
Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM),
Atmos. Environ.,
106, 43–55, 2015.
Pereira, D. L., Silva, M. M., García, R., Raga, G. B., Alvarez-Ospina, H., Carabali, G., Rosas, I., Martinez, L., Salinas, E., Hidalgo-Bonilla, S. and Ladino, L. A.: Characterization of ice nucleating particles in rainwater, cloud water, and aerosol samples at two different tropical latitudes,
Atmos. Res., 250, 105356, https://doi.org/10.1016/j.atmosres.2020.105356, 2020.
Petters, M. D. and Wright, T. P.:
Revisiting ice nucleation from precipitation samples,
Geophys. Res. Lett.,
42, 8758–8766, 2015.
Phillips, V. T. J., Donner, L. J., and Garner, S. T.:
Nucleation processes in deep convection simulated by a cloud-system-resolving model with double-moment bulk microphysics,
J. Atmos. Sci.,
64, 738–761, 2007.
Rolph, G., Stein, A., and Stunder, B.:
Real-time Environmental Applications and Display sYstem: READY,
Environ. Model. Softw.,
95, 210–228, 2017.
Rosenfeld, D., Lohmann, U., Raga, G. B., O'Dowd, C. D., Kulmala, M., Fuzzi, S., Reissell, A., and Andreae, M. O.:
Flood or drought: How do aerosols affect precipitation?,
Science,
321, 1309–1313, 2008.
Satheesh, S. K. and Moorthy, K. K.:
Radiative effects of natural aerosols: A review,
Atmos. Environ.,
39, 2089–2110, 2005.
Schiebel, T.:
Ice nucleation activity of soil dust aerosols,
PhD thesis,
Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany, https://doi.org/10.5445/IR/1000076327, 2017.
Schmid, P. and Niyogi, D.:
A method for estimating planetary boundary layer heights and its application over the ARM Southern Great Plains site,
J. Atmos. Ocean. Tech.,
29, 316–322, 2012.
Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., and Ngan, F.:
NOAA's HYSPLIT atmospheric transport and dispersion modeling system,
B. Am. Meteorol. Soc.,
96, 2059–2077, 2015.
Stopelli, E., Conen, F., Morris, C. E., Herrmann, E., Bukowiecki, N., and Alewell, C.: Ice nucleation active particles are efficiently removed by precipitating clouds, Sci. Rep.-UK, 5, 16433, https://doi.org/10.1038/srep16433, 2015.
Tokay, A., Wolff, D. B., and Petersen, W. A.:
Evaluation of the new version of the laser-optical disdrometer, OTT Parsivel2,
J. Atmos. Ocean. Tech.,
31, 1276–1288, 2014.
Vaid, B. H. and San Liang, X.:
Tropospheric temperature gradient and its relation to the South and East Asian precipitation variability,
Meteorol. Atmos. Phys.,
127, 579–585, 2015.
Vali, G.:
Ice nucleation relevant to formation of hail, Stormy Weather Group,
PhD thesis,
McGill University, Montreal, Quebec, Canada,
available at https://central.bac-lac.gc.ca/.item?id=TC-QMM-73746&op=pdf&app=Library&oclc_number=894992919 (last access: 21 December 2020), 1968.
Vali, G.:
Quantitative evaluation of experimental results on the heterogeneous freezing nucleation of supercooled liquids,
J. Atmos. Sci.,
28, 402–409, 1971.
Vali, G., DeMott, P. J., Möhler, O., and Whale, T. F.: Technical Note: A proposal for ice nucleation terminology, Atmos. Chem. Phys., 15, 10263–10270, https://doi.org/10.5194/acp-15-10263-2015, 2015.
Van den Heever, S. C., Carrió, G. G., Cotton, W. R., DeMott, P. J., and Prenni, A. J.:
Impacts of nucleating aerosol on Florida storms. Part I: Mesoscale simulations,
J. Atmos. Sci.,
63, 1752–1775, 2006.
Van de Water, P. K., Keever, T., Main, C. E., and Levetin, E.:
An assessment of predictive forecasting of Juniperus ashei pollen movement in the Southern Great Plains, USA,
Int. J. Biometeorol.,
48, 74–82, 2003.
Vergara-Temprado, J., Miltenberger, A. K., Furtado, K., Grosvenor, D. P., Shipway, B. J., Hill, A. A., Wilkinson, J. M., Field, P. R., Murray, B. J., and Carslaw, K. S.:
Strong control of Southern Ocean cloud reflectivity by ice-nucleating particles,
P. Natl. Acad. Sci. USA,
115, 2687–2692, 2018.
Von Essen, S. G. and Auvermann, B. W.:
Health effects from breathing air near CAFOs for feeder cattle or hogs,
J. Agromed.,
10, 55–64, 2005.
Wang, B., Harder, T. H., Kelly, S. T., Piens, D. S., China, S., Kovarik, L., Keiluweit, M., Arey, B. W., Gilles, M. K., and Laskin, A.:
Airborne soil organic particles generated by precipitation,
Nat. Geosci.,
9, 433–437, 2016.
Weinzierl, B., Ansmann, A., Prospero, J. M., Althausen, D., Benker, N., Chouza, F., Dollner, M., Farrell, D., Fomba, W. K., Freudenthaler, V., and Gasteiger, J.:
The saharan aerosol long-range transport and aerosol-cloud-interaction experiment: Overview and selected highlights,
B. Am. Meteorol. Soc.,
98, 1427–1451, 2017.
Westbrook, C. D. and Illingworth, A. J.: Evidence that ice forms primarily in supercooled liquid clouds at temperatures > −27 ∘C, Geophys. Res. Lett., 38, L14808, https://doi.org/10.1029/2011GL048021, 2011.
Whale, T. F., Holden, M. A., Wilson, T. W., O'Sullivan, D., and Murray, B. J.: The enhancement and suppression of immersion mode heterogeneous ice-nucleation by solutes, Chem. Sci., 9, 4142–4151, https://doi.org/10.1039/C7SC05421A, 2018.
Woo, C. and Yamamoto, N.: Falling bacterial communities from the atmosphere,
Environ. Microbio., 15, 22, https://doi.org/10.1186/s40793-020-00369-4, 2020.
Yang, H., Xiao, H., and Guo, C.: Effects of Aerosols as Ice Nuclei on the Dynamics, Microphysics and Precipitation of Severe Storm Clouds, Atmosphere,
10, 783, https://doi.org/10.3390/atmos10120783, 2019.
Zhang, G. F., Sun, J. Z., and Brandes, E. I. A.:
Improving parameterization of rain microphysics with disdrometer and radar observations,
J. Atmos. Sci.,
63, 1273–1290, 2006.
Zhao, B., Wang, Y., Gu, Y., Liou, K.-N., Jiang, J. H., Fan, J., Liu, X., Huang, L., and Yung, Y. L.:
Ice nucleation by aerosols from anthropogenic pollution,
Nat. Geosci.,
12, 602–607, 2019.
Zhu, P., Albrecht, B., and Gottschalck, J.:
Formation and development of nocturnal boundary layer clouds over the southern Great Plains,
J. Atmos. Sci.,
58, 1409–1426, 2001.
Short summary
Due to a high frequency of storm events, West Texas is an ideal location to study ice-nucleating particles (INPs) in severe precipitation. Our results present that cumulative INP concentration in our precipitation samples below −20 °C could be high in the samples collected while observing > 10 mm h−1 precipitation with notably large hydrometeor sizes and an implication of cattle feedyard bacteria inclusion. Marine bacteria were found in a subset of our precipitation and cattle feedyard samples.
Due to a high frequency of storm events, West Texas is an ideal location to study ice-nucleating...
Altmetrics
Final-revised paper
Preprint