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Abstract. Ice-nucleating particles (INPs) influence the for-
mation of ice crystals in clouds and many types of precipita-
tion. This study reports unique properties of INPs collected
from 42 precipitation samples in the Texas Panhandle re-
gion from June 2018 to July 2019. We used a cold stage in-
strument called the West Texas Cryogenic Refrigerator Ap-
plied to Freezing Test system to estimate INP concentrations
per unit volume of air (nINP) through immersion freezing
in our precipitation samples with our detection capability
of > 0.006 INPL−1. A disdrometer was used for two pur-
poses: (1) to characterize the ground-level precipitation type
and (2) to measure the precipitation intensity as well as size
of precipitating particles at the ground level during each pre-
cipitation event. While no clear seasonal variations of nINP
values were apparent, the analysis of yearlong ground-level
precipitation observation as well as INPs in the precipitation
samples showed some INP variations, e.g., the highest and
lowest nINP values at −25 ◦C both in the summer for hail-
involved severe thunderstorm samples (3.0 to 1130 INPL−1),
followed by the second lowest at the same temperature
from one of our snow samples collected during the win-
ter (3.2 INPL−1). Furthermore, we conducted bacteria com-
munity analyses using a subset of our precipitation samples
to examine the presence of known biological INPs. In par-
allel, we also performed metagenomics characterization of
the bacterial microbiome in suspended ambient dust samples
collected at commercial open-lot livestock facilities (cattle
feedyards hereafter) in the Texas Panhandle (i.e., the north-
ernmost counties of Texas, also known as “West Texas”) to

ascertain whether local cattle feedyards can act as a source
of bioaerosol particles and/or INPs found in the precipita-
tion samples. Some key bacterial phyla present in cattle feed-
yard samples appeared in precipitation samples. However,
no known ice nucleation active species were detected in our
samples. Overall, our results showed that cumulative nINP
in our precipitation samples below −20 ◦C could be high in
the samples collected while observing > 10 mmh−1 precipi-
tation with notably large hydrometeor sizes and an implica-
tion of cattle feedyard bacteria inclusion.

1 Introduction

1.1 What are INPs?

Aerosol particles play a major role in altering cloud prop-
erties, precipitation patterns, and ultimately the Earth’s ra-
diation budget (Lohmann and Feichter, 2005). In the past
few decades, aerosol particle direct effects (i.e., the impact
of aerosol particles on net radiation through scattering and
absorption of solar radiation) have been extensively stud-
ied (Satheesh and Krishna Moorthy, 2005). For example,
the global radiative forcing by sea salt aerosols and dust is
known to be in the range of −0.5 to −2 Wm−2 and −2
to +0.5 Wm−2, respectively. However, aerosol particle indi-
rect effects (i.e., radiative impact due to formation of clouds)
have been enigmatic. Some atmospheric aerosol particles are
known to act as ice-nucleating particles (INPs) and catalyze
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the formation of ice crystals in the clouds, but their overall
impact on the Earth’s radiative budget remains quantitatively
uncertain (Lohmann et al., 2007).

While INPs are sparse in the atmosphere, they have sub-
stantial impacts on cloud microphysics and precipitation for-
mation (DeMott et al., 2010). The sources of atmospheric
INPs are diverse as they emerge naturally and also through
human activities, adding complexities to our comprehensive
understanding in their impacts (e.g., Kanji et al., 2017; Zhao
et al., 2019).

In general, INPs provide a surface on which water vapor
and/or cloud droplets deposit and freeze (Van den Heever
et al., 2006). This type of ice formation in the presence of
INPs is known as heterogeneous freezing (Vali et al., 2015).
In the absence of INPs, the formation of atmospheric ice
particles follows the process of homogeneous nucleation, in
which it requires cloud droplets to be supercooled to the tem-
perature (T ) of −32 ◦C and below (depending on the pure
water droplet size) to form ice crystals (Koop et al., 2000;
Koop and Murray, 2016).

Although our knowledge regarding INPs remains insuffi-
cient, there have been advances in understanding the differ-
ent modes of heterogeneous ice nucleation (IN) in the atmo-
sphere in the last few decades. For example, deposition nu-
cleation is induced by the direct deposition of water vapor
onto an INP’s surface and ice embryo formation on the sur-
face under ice supersaturation conditions (Kanji and Abbatt,
2006; Möhler et al., 2008). Recently, some studies have ar-
gued that deposition nucleation could be interpreted as pore
condensation and freezing (Marcolli, 2014). The presence of
water in pores of mineral materials and the resulting inverse
Kelvin effect cause an instantaneous water saturation condi-
tion in the confined space, allowing the water to freeze even
at water sub-saturated ambient conditions (David et al., 2019;
Marcolli, 2014).

Amongst various IN paths, perhaps the most important
mode is immersion freezing (De Boer et al., 2010). This
process starts with the formation of cloud droplet followed
by freezing due to an INP immersed in the supercooled
droplet. In addition, past studies have identified other modes
of heterogeneous nucleation, such as condensation freezing
(Belosi and Santachiara, 2019), contact freezing (Hoffmann
et al., 2013), and inside-out evaporation freezing (Durant
and Shaw, 2005). These modes are relatively less relevant in
mixed-phase clouds (MPCs) as discussed in the next section.

1.2 Importance of immersion freezing

INPs greatly influence cloud properties, especially in MPCs,
which are typically observed in the altitude range of 2 to
9 kma.g.l. (above ground level; Hartmann et al., 1992). Out
of all heterogeneous IN modes, immersion freezing is the
most dominant mode of ice formation in MPCs (De Boer
et al., 2010; Westbrook and Illingworth, 2011; Hande and
Hoose, 2017; Vergara-Temprado et al., 2018). In Hande and

Hoose (2017), different cloud types such as orographic, strat-
iform, and deep-convective systems were simulated and an-
alyzed for different freezing modes under various polluted
conditions. The authors demonstrate that immersion freezing
is the predominant IN mode under various simulated circum-
stances, accounting for 85 % to 99 %, while other IN paths
play a less significant role. Similarly, an importance and pre-
dominance of supercooled liquid droplets as for a prerequi-
site of atmospheric ice formation is reported in Westbrook
and Illingworth (2011). The authors verified it based on radar
and lidar observations of clouds over the UK at temperatures
relevant to immersion freezing. Cui et al. (2006) also showed
that immersion freezing is the primary mode of ice formation
with little significance of the deposition mode in the early
stages of the cloud development. Moreover, whereas contact
freezing may be a highly efficient ice formation path, a pre-
vious simulation study showed that it is a negligible mode
in the given MPC conditions (Phillips et al., 2007). Field
et al. (2012) and De Boer et al. (2011) showed that the for-
mation of cloud droplets is a precondition for ice formation
in MPCs, thus highlighting the importance of immersion nu-
cleation. Due to the importance and dominance of immersion
freezing, the current study focuses on measuring the immer-
sion freezing efficiency of the precipitation samples collected
in the Texas Panhandle region.

1.3 INPs in precipitation

It is known that INPs in MPCs have a notable impact on
the properties of precipitation. Previously, Yang et al. (2019)
studied the effect of INPs on cloud dynamics and precipita-
tion through model simulations of an observed severe storm
in northern China. The authors show that an increase in INPs
can enhance the storm, whereas an excessive increase of
INPs may impede the updrafts in the storm. The reason for
this complex effect of INPs may be explained by the variation
in the latent heat release in the convective system at different
stages of its development. When immersion freezing occurs,
the latent heat of freezing energy can be released. Thus, INPs
themselves can impact the dynamics of the precipitation sys-
tem. Furthermore, the increase in INP number might reduce
the mean hail diameter (hail particles with smaller diameters
melt more easily), which leads to decreased hail precipita-
tion and an increased rain formation in contrast to the previ-
ous studies (Fan et al., 2017; Van den Heever et al., 2006).
Similar results have been found by Chen et al. (2019). The
authors show that an increased ambient INP concentration
(nINP) in the simulated hailstorm can reduce the graupel size
and the concentration of hail stones. Likewise, the aircraft
observations along with the model simulations of convec-
tive storms in the Texas Panhandle and US High Plains have
shown that the addition of INPs at the base of warm clouds
results in stronger updrafts and leads to increased amounts
of precipitation (Rosenfeld et al., 2008), ultimately affecting
the local hydrological cycle (Mülmenstädt et al., 2015). It
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has also been observed that INPs can be removed from the
atmosphere through precipitation resulting in a net decrease
in nINP, affecting precipitation development (Stopelli et al.,
2015).

Several previous studies have characterized nINP in pre-
cipitation samples from various locations (Creamean et al.,
2019; Petters and Wright, 2015; Levin et al., 2019). Pet-
ters and Wright (2015) reported a wide range of nINP values
in their local precipitation samples collected approximately
3 km west of Raleigh, NC, USA, for July 2012 and October
2013. Their study shows a variation of 10 orders of magni-
tude in the concentrations of INPs with a high variability in
the temperature range of−5 to−12 ◦C, suggesting inclusion
of biological INPs, which are generally known to be active at
relatively high freezing temperatures (Després et al., 2012).
The lower limit for the INP spectrum as a function of temper-
ature derived from the cloud water and precipitation samples
in Petters and Wright (2015) may highlight the extreme rarity
of INPs at temperatures warmer than −10 ◦C. Particularly,
the authors showed that the highest ever observed nINP val-
ues at−8 ◦C were 3 orders of magnitude lower than observed
ice crystal concentrations in tropical cumuli at the same tem-
perature. More precipitation studies may provide a constraint
on minimum enhancement factors for secondary ice forma-
tion processes. In Levin et al. (2019), the nINP values during
an atmospheric river event on the west coast of the United
States were studied. The authors found an increased concen-
tration of marine INPs in contrast to their previous studies,
showing high mineral/soil dust during an atmospheric river
precipitation.

1.4 Study motivation and objectives

In this study, we characterized properties of INPs in precip-
itation samples collected in the Texas Panhandle region to
understand whether the high density of cattle in large open-
lot concentrated feeding operation facilities (cattle feedyards
hereafter), where often > 45 000 head capacity can be seen
in a single facility in this region, has a discernible impact
on regional atmospheric INP concentration and composition
near the ground and in clouds. This region significantly con-
tributes to the US cattle production, and the total cattle popu-
lation of 11 million head accounts for 42 % of cattle in the US
(according to cattle feedyard research experts at Texas A&M
AgriLife Research). Adjacent cattle feedyards are located
within 33 mi (53 km) of our sampling site, and the impact
of cattle feedyard dust in ambient particulate matter (PM),
frequently exceeding 1200 µgm−3 (24 h averaged-basis), and
aerosol particle composition as well as an overall regional air
quality is described in Hiranuma et al. (2011) and Von Essen
and Auvermann (2005). Moreover, the emission flux of PM
smaller than < 10 µm diameter (PM10) is typically high in
the range of 4.5 up to 23.5 µgm−2 s−1 depending on stocking
density, creating PM-laden ambient conditions in this partic-
ular region (Bush et al., 2014).

All of our precipitation samples were analyzed at our lab-
oratory using a cold stage instrument. The estimated nINP in
the precipitation samples were compared with ground-level
precipitation properties, such as the precipitation type, inten-
sity of precipitation (mmh−1), and hydrometeor particle size
(mm). A subset of the collected precipitation samples was
analyzed for taxonomic identification to characterize poten-
tial biological INP sources in the Texas Panhandle region and
also to determine the presence of known high-temperature bi-
ological INPs. Some of the water-suspended cattle feedyard
PM samples were also analyzed with metagenomics to deter-
mine the composition of bacterial microbiome that may ap-
pear in precipitations. Although the estimation of nINP in pre-
cipitation samples collected at the ground level does not rep-
resent INPs at cloud height, we report the INPs resolved by
ground-level weather observation that help with understand-
ing of ambient INPs in the Texas Panhandle region, where
unique and substantial INPs, ranging from several hundred to
several thousand INPsL−1 at −20 and −25 ◦C, respectively,
are consistently emitted from open-lot livestock operations
(Hiranuma et al., 2020).

2 Methods

2.1 Precipitation sampling

Our precipitation samples were collected from different sea-
sons throughout the year during June 2018–July 2019. Ster-
ilized polypropylene tubes of 50 mL volume (VWR® Cen-
trifuge Tube) were used as sampling gauges. The gauges
were placed at ∼ 50 ft (∼ 15 m) above the ground on the
rooftop of the Natural Science Building at West Texas A&M
University, Canyon, TX. This particular location was cho-
sen to avoid any obstruction of our sampling activities. The
sampling tubes were exposed to the ambient air without
any canopies throughout the sampling process. The sampling
gauges were replaced every 24 h to minimize the effect of dry
deposition prior to the precipitation sample collection.

A blank dry deposition sample (sample no. 34) was col-
lected for 24 h from 2–3 January 2019 in order to exam-
ine and quantify the effect of dry deposition on nINP. The
freezing spectrum of this dry deposition sample (suspended
in high-performance liquid chromatography (HPLC)-grade
pure water) was later compared with the IN spectra of pre-
cipitation samples (see Sect. 3.3). We note that a volume of
pure water (5 mL) for an atmospheric INP estimate based on
a dry deposition sample was determined by averaging col-
lected precipitation volumes of all samples prior to this dry
deposition sample.

For the duration of a given precipitation episode, some
amount of sample was accumulated in the tube. The sam-
pling tubes were then capped and stored at temperature of
4 ◦C in the refrigerator, following the method described in
Petters and Wright (2015), until the droplet-freezing assay
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experiments were commenced. The effect of storage condi-
tions on the IN activity was not considered in this study. We
note that Beall et al. (2020) recently found a decrease in pre-
cipitation nINP by 42 % when stored at 4 ◦C (i.e., Table 5)
and suggested correction factors for the temperature range of
−7 to −17 ◦C. After the freezing experiment, a subset of our
samples was kept under deep-freeze conditions (−80 ◦C) for
further biological analysis (see Sect. 2.6).

In total, 42 precipitation samples were collected from dif-
ferent weather systems observed at the surface level. Based
on these samples and observations, we estimated the nINP
values from (1) snow, (2) hail/thunderstorm, (3) long-lasted
rain, and (4) weak rain. More information about the sam-
ples used in this study, precipitation types and the amount of
the precipitation collected for each sample are provided in
Sect. S1 in the Supplement.

2.2 Disdrometer measurements of precipitation
properties

For our precipitation measurements, we used an OTT
Parsivel2 (Particle Size Velocity 2) sensor. This device is a
modern laser-optical disdrometer (λ= 780 nm), which mea-
sures the size and fall velocity of precipitating particles. The
OTT Parsivel2 was deployed side-by-side with the precipita-
tion gauge collector for the duration of our study period. A
detailed technical description of OTT Parsivel2 is given in a
previous study (Tokay et al., 2014), so only a brief descrip-
tion is provided here. A combination of the laser transmit-
ter and receiver component was integrated as a single clus-
ter in a weatherproof housing to detect precipitation particles
passing through a horizontal strip of light. A nominal cross
section area of a laser beam detection was 54 cm2, and the
system recorded the number of hydrometeors in a 32× 32
matrix (i.e., fall velocity× diameter) in the ≥ 30 s time reso-
lution. The measurable size range of hydrometeor particles
was 0.062–24.5 mm in diameter (Dp) with bin size inter-
vals (1Dp) varying from 0.125 to 3.0 mm. Our disdrome-
ter was coupled with an OTT netDL Hydrosystem logger
(40 channels). The OTT Parsivel2 also measured the inten-
sity of precipitation (mmh−1) and the number of precipi-
tation particles passing through the horizontal strip of light
in the event of precipitation. The OTT Parsivel2 automati-
cally categorized the precipitation type according to the Na-
tional Weather Service (NWS) weather code based on the
measured precipitation properties. Due to the intermittent na-
ture of the precipitation, the OTT Parsivel2 assigned mul-
tiple NWS precipitation codes during a single precipitation
event (Table S1 in the Supplement, column “NWS Code”).
We compared our manual observations with the NWS pre-
cipitation code assigned by the disdrometer, and we cate-
gorized all observed precipitation into four different types.
These four major precipitation types defined in this study in-
cluded snow, hail/thunderstorm, long-lasted rain, and weak
rain, and we collected 6, 18, 13, and 5 samples from each

type, respectively, which sum to a total of 42 samples. More
detailed methodology of precipitation categorization is dis-
cussed in Sect. S1.1.

2.3 IoT air quality sensor measurements

A cluster of Arduino-based Internet of Things (IoT) air
quality sensors was developed to measure ambient air con-
ditions at our precipitation sampling location. This IoT
cluster was deployed alongside the disdrometer and sam-
pling gauge to complement this study. A DFRobot PM
laser dust sensor measured PM with size ranges of < 1 µm
(PM1.0), < 2.5 µm (PM2.5), and PM10 with an estimated un-
certainty of ± 27 % relative to an optical particle counter
(Markowicz and Chiliński, 2020). Other ambient conditions,
including temperature, barometric pressure, and humidity,
were measured with a precision Bosch BME280 environ-
mental sensor. We calibrated our sensors against a commer-
cially available sensor (GlobalSat Inc., LS-113). Our sen-
sors utilized Long Range Wide Area Network (LoRaWAN)
technology for data transmission. A LoRaWAN transceiver
is connected to our sensors for wireless data transmission.
This small IoT device operated with 915 MHz signal fre-
quency, transmitting encrypted and signed packets of cap-
tured air quality data through a hosted LoRa network server
to a Kibana visualization server. This data interface enabled
in situ monitoring and processing of the data. The PM con-
centrations were later time-averaged for assessing contribu-
tion of wet scavenging of aerosol particles to nINP in the pre-
cipitation samples.

2.4 Immersion freezing experiment

All immersion freezing experiments in this study were con-
ducted using an offline instrument called West Texas Cryo-
genic Refrigerator Applied to Freezing Test (WT-CRAFT)
system (Hiranuma et al., 2019; Cory, 2019). The WT-
CRAFT system is a cold stage technique, in which the
droplets are placed on an aluminum plate and cooled un-
til they are frozen. A commercially available digital camera
was used to record the droplet freezing events, and we vi-
sually evaluated the freezing temperatures based on the shift
in droplet brightness while freezing. If there was an uncer-
tainty in determining the temperature at which a droplet was
completely frozen, we used the ImageJ software for further
image analysis of those droplets (see Table S4 in Hiranuma
et al., 2019). This system was used to obtain temperature-
resolved nINP in −25 ◦C<T < 0 ◦C. The lower temperature
limit was −25 ◦C to ensure measuring INPs with negligible
artifacts. Our system is susceptible to low INP detection, and
the minimum INP detection limit of the WT-CRAFT system
for this study was 0.006 L−1 air. To minimize any contami-
nation during the IN measurement, the WT-CRAFT system
was placed in a ventilated fume hood.
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For each experiment, an aluminum plate surface was
freshly coated with a thin layer of thermally conductive and
IN-inert Vaseline to physically isolate individual droplets
from the aluminum surface (otherwise, aluminum can act
as a heterogeneous IN surface). A total of 70 suspension
droplets of 3 µL volume each were prepared for each run.
The aluminum plate with the droplets on it was then placed
inside a portable cryogenic refrigerator (Cryo-Porter). Freez-
ing temperatures were measured by the sensor taped on the
aluminum surface with a resolution of 0.1 ◦C, and the ex-
ternal keypad controller was used to control cooling rate
(◦Cmin−1). In this study, the freezing experiments were car-
ried out at a cooling rate of 1 ◦Cmin−1. The validity of using
this cooling rate and another test regarding time trial aspect
are demonstrated in Sect. S2 (Figs. S1 and S2 in the Supple-
ment). The droplets were cooled until all 70 droplets were
frozen before warming up the system to 5 ◦C to be prepared
for a subsequent experiment.

If all the droplets were frozen at T >−25 ◦C, a HPLC-
grade ultrapure water was used to prepare different serial di-
lutions for the precipitation samples. The diluted suspensions
were made to compute the nINP down to−25 ◦C. Some of our
precipitation samples were diluted until the frozen fraction
(the ratio of number of droplets frozen to the total number
of droplets) curve was conformed to the background curve
(i.e., frozen fraction curve for the HPLC ultrapure water). At
the end of each WT-CRAFT experiment, the frozen fraction
and ambient nINP were estimated as a function of tempera-
ture with an interval of 0.5 ◦C. The IN measurements from
the undiluted and diluted runs were merged by taking lower
nINP values, which typically possess lower uncertainties, for
the overlapped temperature region.

The total systematic temperature and nINP uncertainties
in WT-CRAFT are ± 0.5 ◦C and ± 23.5 % (Hiranuma et al.,
2019). For this study, the experimental uncertainty in our
estimated nINP was evaluated and reported using the 95 %
confidence interval method described in Schiebel (2017).
Background contamination tests for WT-CRAFT were car-
ried out weekly to make sure negligible background freez-
ing at −25 ◦C. In this study, we consider the frozen fraction
≤ 0.05, accounting for less than 3 % of pure water activa-
tion, as negligible background. For these background tests,
only HPLC grade ultrapure water was used for preparing the
droplets.

2.5 Precipitation nINP(T ) estimation

Here we describe the estimation of INP concentration in
cloud volume from INP concentration measured in precip-
itation samples. Initially, we computed the CINP(T ) value,
which is the nucleus concentration in precipitation suspen-
sion (L−1 water) at a given temperature as described in Vali
(1971). This CINP(T ) value was calculated as

CINP(T )= −
ln(funfrozen(T ))

Vd
, (1)

in which, funfrozen(T ) is a unfrozen fraction of examined
droplets at given temperature, and Vd is the volume of the
droplet (3 µL).

Next, we used the cloud water content (CWC) parame-
ter in order to convert CINP(T ) to nINP(T ) at standard tem-
perature and pressure conditions. We assumed CWC to
be a constant of 0.4 gm−3, following Petters and Wright
(2015). This assumption would be reasonable for the fol-
lowing three reasons: (1) Petters and Wright (2015) and ref-
erences therein showed typical values of CWC for differ-
ent cloud types could narrowly range within a factor of 2
from 0.4 gm−3; (2) the authors also showed that the varia-
tion of nINP with CWC values for different cloud types in
the atmosphere would typically be limited within a factor
of 2, and our nINP uncertainties could be larger than that;
and (3) based on a parametrization for rainwater evapora-
tion, Zhang et al. (2006) suggests that evaporation does not
contribute to nINP bias for both strong convective systems
and persistent rain events with cloud base heights of ≈ 3 km.
Thus, a constant CWC was used in this study.

The sample air volume (Vair) at the cloud level was
calculated by converting the volume of the precipitation
sample collected (Vl) using the Eq. (2) from Petters and
Wright (2015):

Vair =
Vl · 1000 · ρw

CWC
, (2)

where ρw is a unit density of water (1 gmL−1). Vair is in
liters (L), whereas Vl is given in milliliters (mL). The multi-
plication factor “1000” is used to convert the volume to liter
of air. The cumulative nINP per unit volume of air, described
in the previous study DeMott et al. (2017), was then esti-
mated as

nINP(T )= CINP(T ) ·DF ·
Vl

Vair
, (3)

where DF is a serial dilution factor (e.g., DF= 1, 10, or 100
and so on).

2.6 Microbiome of cattle feedyard dust and
precipitation samples

The overall goal of our metagenomics analysis was to iden-
tify known IN-active bacterial species in cattle feedyard dust,
collected in commercial cattle feedyards located within 33 mi
(53 m) from the precipitation sampling site and suspended in
the HPLC-grade water (Hiranuma et al., 2020), and precipi-
tation samples collected in the Texas Panhandle region. This
biological analysis is also useful to examine if local cattle
feedyards can act as a source of bioaerosol particles and/or
INPs found in the precipitation samples. In this study, we
have examined a heterogeneous set of samples including four
airborne PM samples locally collected at the downwind lo-
cation of typical commercial cattle feedyards the Texas Pan-
handle on 28 March 2019 and 22, 23, and 24 July 2018 (see
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Hiranuma et al., 2020), precipitation samples (sample nos.
1, 2, 7, and 50), and a 24 h dry deposition sample (sample
no. 34). We note that the precipitation sample no. 50 (another
hail/thunderstorm sample), which was collected on 23 March
2019 when a tornado warning was issued, was preserved
only for metagenomics due to its low volume (≈ 1 mL). It
is also noteworthy that we attempted to analyze samples of
all precipitation types but acquired quantitative results only
for those hail/thunderstorm samples (the reason is unknown).

Next, we describe our microbiome analysis procedure in
four different steps, including (1) DNA extraction, (2) 16S
rRNA amplicon diversity sequencing, (3) bioinformatics, and
(4) data analysis. For DNA extraction, genomic DNA was
first extracted from all samples using PowerSoil DNA Iso-
lation Kit (MoBio Laboratories, Inc., Carlsbad, CA, USA).
Extraction proceeded following the manufacturer’s protocol,
with the following minor changes: solutions C1 and C6 were
heated to 65 ◦C, and solution C6 was allowed to remain on
the filter membrane for at least 1 min before centrifugation.
Additionally, the C6 step was repeated. Library preparation
for bacterial 16S DNA amplicon sequencing utilized primers
for the V1–V3 hypervariable region of the 16S gene. These
primers were constructed for the 16S amplicon using a com-
bination of the 28F and Illumina i5 sequencing primers and
the Illumina i7 sequencing primer with the 519R primer. Am-
plifications were performed in 25 µL reactions with Qiagen
HotStarTaq master mix (Qiagen Inc., Valencia, CA, USA).
Reactions were performed with 1 µL of each 5 µM primer
mix and the template DNA. Amplification was performed
on an ABI Veriti thermocycler (Applied Biosystems, Carls-
bad, CA, USA) under the following thermal profile: 95 ◦C
for 5 min, then 25 cycles of 94 ◦C for 30 s, 54 ◦C for 40 s,
72 ◦C for 1 min, followed by one cycle of 72 ◦C for 10 min
and a 4 ◦C hold. An ethidium bromide-stained gel was used
to qualitatively determine the amount of the amplification
product to add to the second amplification stage. Primers for
the second PCR were designed based on the Illumina Nex-
tera PCR primers. The second stage amplification proceeded
using the same cycling protocol as the first round, except it
was amplified for only 10 cycles. SPRIselect beads (Beck-
manCoulter, Indianapolis, IN, USA) were used at a 0.7 ratio
to size-select the DNA amplicons from an equimolar pooled
sample. Pooled samples were then quantified using a Quibit
2.0 fluorometer (Life Technologies) and loaded on an Illu-
mina MiSeq (Illumina, Inc. San Diego, CA, USA) 2× 300
flow cell at 10 pM.

For bioinformatics, raw data were initially processed using
a standard microbial diversity analysis pipeline (QIIME2-
2020). Raw data were first checked for sequencing quality
and chimeric sequences, before being parsed through a mi-
crobial diversity pipeline. During the cleanup stage, denois-
ing of the raw data was performed using various techniques
to remove short sequences, singleton sequences, and reads
with poor-quality scores. Next, chimera detection software
was used to filter out any potentially chimeric sequences. Fi-

nally, remaining high-quality sequences were corrected base
by base to check for sequencer miscalls. The diversity anal-
ysis pipeline clustered all sequences based on 97 % similar-
ity to yield operational taxonomic units (OTUs), before run-
ning a seed sequence from each OTU through a taxonomic
database curated in-house by RTLGenomics. Finally, the tax-
onomy was assigned to each sequence using a classifier that
was pretrained on the GreenGenes database with 99 % OTUs.
The relative abundance of bacterial taxa within each sedi-
ment sample was determined by dividing each OTU by the
total number of reads.

3 Results and discussion

3.1 Ambient and precipitation properties

The time series summary of ambient and precipitation prop-
erties measured by our disdrometer as well as IoT cluster
is shown in Fig. 1. Each data point in Fig. 1a shows the
average temperature measured over the sampling period of
a given precipitation event. A notable seasonal variation of
ambient temperature at our sampling location was observed.
The highest average temperature measured during a precip-
itation event was 34.9± 12.2 ◦C, which was in the summer
of 2018 (i.e., ID no. 7; a long-lasted rain sample), while the
lowest temperature was −6.5± 6.7 ◦C, measured during the
winter of 2018 (i.e., ID no. 23; a snow sample). The annual
mean temperature for the Canyon, TX, region measured at
our sampling site was 17.7 ◦C. The diurnal cycles of ambient
properties are not shown in Fig. 1a. Nevertheless, we typi-
cally observed suppression of temperature before precipita-
tion events in our study. It is known that the temperature gra-
dient plays a major role in the development and growth of the
precipitation systems (Vaid and Liang, 2015).

Next, each relative humidity data point shown in Fig. 1b
corresponds to the average during each precipitation event.
With an overall average of 54.0 %, the highest and lowest
relative humidity values measured were 70.7± 2.3 % (ID
no. 26; a weak rain sample) and 30.8± 0.7 % (ID no. 7; a
long-lasted rain sample). The observed low ground-level rel-
ative humidity values during some precipitation events (Ta-
bles S1 and S2) may be a concern as loss of water through
partial evaporation of hydrometeors during free fall. But, it
is noteworthy that the water evaporation might have a negli-
gible effect on nINP estimated from precipitation samples as
discussed in Sect. 2.5.

Figure 1c displays the time series of the cumulative num-
ber of detected precipitation particles in individual precipi-
tation events and the overall mean number of detected par-
ticles (dashed line). In our study period, a disdrometer de-
tected a substantial number of precipitation particles with a
cumulative number ranging from 1.0× 104 to 6.6× 105 par-
ticles passing through its laser beam cross section per event.
More details of each precipitation event and its properties
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Figure 1. Time series of disdrometer and IoT sensor measurements for (a) average temperature±SD (standard deviation); (b) average rela-
tive humidity±SD; (c) cumulative number of detected hydrometeors in each precipitation event; and (d) maximum, average, and minimum
precipitation intensity. Each data point corresponds to the sampling start time for each precipitation event.

are shown in the Tables S1–S3. As seen in Table S3, high
numbers of precipitation particles were observed in conjunc-
tion with snow/hail-involved precipitation events during our
study period, which may increase the wet scavenging effi-
ciency of ambient aerosol particles during precipitation (see
Sects. 3.2 and S4). Out of all the 42 samples, the high-
est number of precipitation particles was detected on the
5 November 2018 (ID no. 19; a snow sample), while the low-
est was observed on the 2 September 2018 (ID no. 13; weak
rain).

Figure 1d shows the average, maximum, and minimum
precipitation intensity (mmh−1) measured during each pre-
cipitation event. Due to the intermittent nature of the precipi-
tation, the intensity widely ranged from 1.1 to 129.3 mmh−1

per event. The highest maximum intensity of 129.3 mmh−1

was measured during a hail/thunderstorm event (ID no. 40),
while the lowest was 1.1 mmh−1 during a snow event (ID

no. 23). These intensity data were used for our wet deposi-
tion analysis (Sect. S4).

The variation of precipitation properties was further in-
vestigated by analyzing the size distribution of precipitation
particles measured by the OTT Parsivel2 disdrometer. Fig-
ure 2 shows the precipitation particle size distribution for
each category of ground-level-observed precipitation type.
The size of precipitation particles was represented at the me-
dian diameter of the corresponding disdrometer’s size bin.
As shown in Fig. 2a and b, both snow and hail/thunderstorm
samples had particles of diameter greater than 10 mm with
the maximum particle diameter of 17 mm. Although there
are three episodes of long-lasted rain with a particle diam-
eter greater than 14 mm (Fig. 2c), a clear trend of overall
decrease in the hydrometeor size was seen for this category
as well as the weak rain samples (Fig. 2d). In fact, all weak
rain samples contained particles only smaller than 6.5 mm.
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Figure 2. Size distribution of precipitation particles detected in (a) snow, (b) hail/thunderstorm, (c) long-lasted rain, and (d) weak rain
samples. A subset of distributions shows varying uncertainty in diameter (mm). The x-axis error bars are ± 1.0 mm of size class for diame-
ter < 2 mm and ± 0.5 mm of size class for diameter > 2 mm. The y-axis error bars represent standard errors at each diameter. The subtotal
number of precipitation samples in each category is shown by the value of “n”.

Moreover, the mode precipitation particle diameter for the
snow, hail/thunderstorm, and long-lasted rain samples was
0.44 mm, whereas it was 0.31 mm for the weak rain samples
(see Table S3). This variation in mode diameter along with
the results shown in Fig. 2 generally exhibited the shift in
hydrometeor particle size distribution towards a larger diam-
eter with an increased intensity of precipitation at the ground
level.

3.2 IoT air quality sensor results and implication of
wet deposition

The overall mean PM concentrations (± standard error) mea-
sured by an IoT air quality sensor for our study period were
3.9± 0.09 µgm−3 (PM1.0), 4.0± 0.05 µgm−3 (PM2.5), and
10.0± 0.22 µgm−3 (PM10). Although there was an inconsis-
tent variation of PM concentrations with precipitation type,
we observed a substantial increase in all PM values for the
period July–August 2018 and May 2019. In contrast, a de-

crease in all PM concentrations was observed during Septem-
ber 2018–March 2019. This increase in PM values during
summer and decrease during winter suggested a seasonal
variation at the sampling site. The seasonal variation in PM
values may be indicative of different aerosol particle sources
or the local meteorological conditions. Besides the local
PM values originating from cattle feedyards as described in
Sect. 1.4, other prominent local sources include harvesting
crop fields and agricultural burning in the US Great Plains
region nearby the Texas Panhandle (Garcia et al., 2012; De-
Mott et al., 2015). Based on the long-term measurements of
aerosol particle composition at the US Southern Great Plains
(SGP), Parworth et al. (2015) found a seasonally varying in-
terstate transport of biogenic aerosols to the SGP site. The
authors also observed a springtime increase in biomass burn-
ing organic aerosols at SGP, which were mainly associated
with local fires. The long-distance dispersion of Juniperus
ashei pollen into the SGP area by the southern winds was

Atmos. Chem. Phys., 21, 4503–4520, 2021 https://doi.org/10.5194/acp-21-4503-2021



H. S. K. Vepuri et al.: Ice-nucleating particles in precipitation samples from the Texas Panhandle 4511

Table 1. Adjacent hourly averaged PM values (with one decimal point) before and after each precipitation event. We excluded 14 data points
where PM data were not recorded due to technical issues (ID nos. 6–7, 17, 20, 22–24, 26, 28–33).

PM1 (µgm−3) PM2.5 (µgm−3) PM10 (µgm−3)

ID no. Sample no. Precipitation type Before After Before After Before After

1 PCPT_NSB_1 Hail/thunderstorm 2.0 0.1 4.1 1.7 6.2 2.0
2 PCPT_NSB_2 Hail/thunderstorm < 0.1 0 1.8 < 0.1 2.1 < 0.1
3 PCPT_NSB_5 Long-lasted rain 4.7 0.7 5.7 1.9 10.8 3.7
4 PCPT_NSB_6 Long-lasted rain 3.8 3.8 6.0 5.7 8.9 8.6
5 PCPT_NSB_7 Hail/thunderstorm 0 N/A 0.6 N/A 0.7 N/A
8 PCPT_NSB_10 Long-lasted rain 7.5 1.5 9.9 3.4 14.8 4.7
9 PCPT_NSB_11 Weak rain 5.8 3.8 8.2 6.2 12.8 9.4
10 PCPT_NSB_15 Hail/thunderstorm 14.3 4.0 16.1 5.1 30.8 9.3
11 PCPT_NSB_16 Hail/thunderstorm 4.9 N/A 5.4 N/A 10.5 N/A
12 PCPT_NSB_17 Long-lasted rain 4.6 N/A 6.4 N/A 10.6 N/A
13 PCPT_NSB_19 Weak rain < 0.1 N/A 1.3 N/A 6.3 N/A
14 PCPT_NSB_20 Long-lasted rain 1.8 N/A 4.3 N/A 5.9 N/A
15 PCPT_NSB_23 Hail/thunderstorm 3.9 2.2 5.7 5.7 9.6 7.2
16 PCPT_NSB_24 Hail/thunderstorm 1.6 0 5.0 < 0.1 5.8 < 0.1
18 PCPT_NSB_26 Long-lasted rain 0.7 0 2.8 0 3.2 0
19 PCPT_NSB_27 Snow sample 0 N/A < 0.1 N/A 0.1 N/A
21 PCPT_NSB_30 Snow sample 0.8 0 2.6 0.3 3.2 0.3
25 PCPT_NSB_46 Weak rain 1.5 0 4.5 1.2 5.4 1.2
27 PCPT_NSB_48 Hail/thunderstorm 0 0 0.4 < 0.1 0.4 < 0.1
34 PCPT_NSB_57 Hail/thunderstorm 29.6 13.5 29.6 13.8 58.9 26.6
35 PCPT_NSB_58 Hail/thunderstorm 12.5 0.7 13.2 1.4 24.4 2.9
36 PCPT_NSB_59 Long-lasted rain 10.5 6.9 11.5 7.9 21.2 12.9
37 PCPT_NSB_60 Hail/thunderstorm 9.7 3.4 10.7 4.4 18.8 7.3
38 PCPT_NSB_61 Long-lasted rain 4.4 0.2 5.9 1.2 10.1 2.1
39 PCPT_NSB_62 Hail/thunderstorm < 0.1 N/A 1.6 N/A 1.8 N/A
40 PCPT_NSB_63 Hail/thunderstorm 2.2 1.4 4.3 2.5 6.5 4.8
41 PCPT_NSB_65 Hail/thunderstorm 1.7 0 4.0 0.3 5.3 0.3
42 PCPT_NSB_66 Hail/thunderstorm 1.8 0.1 2.9 1.5 5.8 1.5

N/A: below detection sensor failure return values (i.e., detection limit of our PM sensor).

previously observed by Van de Water et al. (2003). Elevated
layers of haze have been observed over the same site due
to the inter-oceanic and intercontinental transport of smoke
from intense Siberian fires (Arnott et al., 2006; Damoah
et al., 2004). It was also evident from previous observation
and simulation modeling studies that Saharan dust can reach
southeastern parts of USA through transatlantic long-range
transport (Weinzierl et al., 2017). Thus, PM values observed
in the Texas Panhandle region may be a mixture of aerosol
particles from different sources and spatial scales of trans-
port.

Table 1 shows the hourly time-averaged PM data mea-
sured prior to vs. after precipitation. During intense precip-
itation, aerosol particle concentrations below cloud tend to
decrease due to the wet scavenging effect (Hanlon et al.,
2017). In fact, the reduction in our hourly averaged PM1,
PM2.5, and PM10 after precipitation is apparent in Table 1,
presumably because of scavenging in part at least. Note that
any counter mechanisms, such as primary biological aerosol
particles and surface material ejected by water impaction of

rainfall (e.g., Huffman et al., 2013; Wang et al., 2016), were
not considered in our data interpretation. The first-order cal-
culations are performed to understand implications of scav-
enging processes towards the reduction in the PM after rain
event (Sect. S4). These calculations contain ± 61.5 % uncer-
tainty, which can be further extended with some assumptions
to estimate INP. However, to better constrain these estimates,
direct vertical INP (He et al., 2020) and scavenging measure-
ments (Hanlon et al., 2017) are needed. A total of 28 pre-
cipitation events was analyzed, and our estimated nINP(T )

of scavenged aerosol particles appeared to be constantly an
order magnitude lower as compared to total nINP(T ) mea-
sured in our precipitation samples (Fig. S3). This trend is
true across all ranges of examined temperatures (>−25 ◦C).
Nevertheless, our estimates imply some (but negligible) con-
tributions of scavenged aerosol particles on nINP(T ) in our
precipitation samples.
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Figure 3. (a) Time series of cumulative nINP (L−1 air) in each precipitation sample at different temperatures. (b) nINP for two precipitation
samples (ID no. 26 and 27) observed on the same day of 12 March 2019. The uncertainty in the average nINP at each temperature (± numbers
in parentheses) is the standard error calculated for 42 samples.

3.3 INP results

The time series of cumulative nINP from precipitation sam-
ples at different temperatures (i.e., −5, −10, −15, −20, and
−25 ◦C) are shown in Fig. 3. The temperature-resolved mean
cumulative nINP± standard error is also presented in Fig. 3.
Note that Fig. 3b shows nINP for two precipitation samples
(ID nos. 26 and 27) observed on the same day of 12 March
2019. Overall, 3 orders of magnitude variations of aver-
aged cumulative nINP values were observed between−10 ◦C
(0.17± 0.04 L−1) and −25 ◦C (74.74± 28.28 L−1) for our
precipitation samples. Occasionally, we observed nINP de-
tected at≥−5 ◦C, but such a high-temperature INPs was ran-
domly found in only 7 out of 42 samples within our detection
capability.

Attempts to examine the distribution of nINP based on
the precipitation type, meteorological season, and maximum
precipitation intensity (mmh−1) were made (see Sect. S5).
Due to the limited total number of samples we collected, we
cannot conclusively state anything regarding seasonal varia-
tions of nINP in our precipitation samples. Nonetheless, our
INP results showed that the lowest nINP at −25 ◦C (3.0 L−1)
was found in a hail/thunderstorm sample (ID no. 37; no
inclusion of large hydrometeors as seen in Fig. 2b) col-
lected during the summer 2019. Likewise, the highest nINP at
−25 ◦C (1130 L−1) was found in a hail-involved severe thun-

derstorm sample (ID no. 1) collected in summer 2018. This
observation is interesting, because the measured PM10 of
∼ 6.2 µgm−3 prior to precipitation of ID no. 1 (Table 1) is not
the highest PM10 recorded in 2018/19, suggesting wet scav-
enging does not control the total INPs in precipitation sam-
ples. The fact that the second lowest nINP (−25 ◦C), which is
3.2 L−1, is from the snow sample (ID no. 23) also supports a
negligible contribution of scavenging in our INP data. More-
over, our results showed that cumulative nINP below −20 ◦C
in our precipitation samples could be high in the samples col-
lected while observing > 10 mmh−1 hail/thunderstorm and
snow precipitation with notably large hydrometeor sizes.

Figure 4 shows a compilation of nINP(T ) spectra of each
precipitation type in comparison to previously reported pre-
cipitation nINP(T ). In general, most of nINP spectra fall in
the upper range of the previous precipitation nINP data pre-
sented in Petters and Wright (2015) and Vali (1968). INP
humps shaping the reference spectra (i.e., one below −20 ◦C
and another at >−20 ◦C) are also found in our spectra. The
observed hump is especially obvious for nINP at tempera-
tures above −20 ◦C, and some of our spectra exceed the up-
per bound of the reference spectra in any precipitation types.
For temperatures below −20 ◦C, our nINP(T ) data match
fairly well within the range of the reference nINP(T ) for all
four precipitation types.Thus, the precipitation type observed
at the ground level would not have any relationships with
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Figure 4. IN spectra of (a) snow, (b) hail/thunderstorm, (c) long-lasted rain, and (d) weak rain samples superimposed on nucleation spectra
from previous precipitation INP studies (shaded areas). A subset of spectra shows error bars. The x-axis error bars represent constant
uncertainty of ± 0.5 ◦C in temperature. The y-axis error bars are 95 % confidence interval for nINP shown only for two samples from each
category. The number of precipitation samples in each category is shown by the value of “n”.

INP propensity at least for our 42 samples collected for this
study. However, it is interesting that most of our nINP data
points above −15 ◦C fall within the range of estimated nINP
at cloud height with< 50 % storm efficiency, reported in Vali
(1968). In fact, regardless of precipitation type, we see rea-
sonable overlaps of our nINP(T ) with Vali (1968). The au-
thor stated that the large differences in IN content among
precipitation samples were mainly caused by differences in
the nucleus content of the air entering the storm. This implies
that the cloud-level dynamics like cloud entrainment impact
the cloud-level INP concentrations. Hence, we compared our
precipitation INP data with the lower and upper limits of the
IN concentrations in the air entering the storm given by Vali
(1968) (Table 2, Sect. 9). These cloud-level INP concentra-
tions given by Vali (1968) were for two different storm ef-
ficiencies, which is the ratio of mass of precipitation to the

mass of water input. The storm efficiency of 10 % represents
the time when high concentrations of precipitation inside the
storm begins to develop. Likewise, 50 % is at the peak in-
tensity of the storm. These different combinations of storm
efficiencies and water content accounted for a tenfold vari-
ation in the ice nucleus content. As more air is entered into
the storm with 50 % efficiency, more IN concentrations are
observed at cloud level. Although our data are comparable to
Vali (1968), there is still indeed the need for cloud-level INP
measurements to define the relationship between the ground-
level INP concentrations and precipitation intensity.

In addition, Fig. 4 also shows the nINP result of our 24 h
dry deposition blank sample. For the measured tempera-
ture range, nINP values from the dry deposition blank sam-
ple were at least an order of magnitude lower than that from
our precipitation samples. This finding corroborated our as-
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Figure 5. Compiled IN spectra of our precipitation samples su-
perimposed on nucleation spectra from a local cattle feedyard dust
study (shaded area). The cattle feedyard INP data are adapted from
Hiranuma et al. (2020).

sumption of negligible contribution of dry deposition in our
WT-CRAFT estimated nINP from precipitation samples.

Figure 5 shows another compilation plot of our precipi-
tation nINP(T ) spectra compared to ambient nINP(T ) data
of local agricultural dust from Hiranuma et al. (2020). As
seen, most of our precipitation INP spectra are accumulated
near the lower end of the cattle feedyard IN spectra, imply-
ing some inclusion of this local dust as INPs in our samples.
Although we are not certain if this local dust plays a role
in precipitation (and assessing the potential of locally emit-
ted aerosol particles to precipitation formation is beyond the
scope of the current study), it is important to study the contri-
bution of local agricultural dust in wet scavenging and INP
formation at cloud height separately in the future. Further
discussion regarding the cattle feedyard contribution in INPs
in our precipitation samples is provided in Sect. 3.4.

3.4 Microbiome of cattle feedyard and precipitation
samples

We conducted the microbiome analysis of a subset of our
precipitation samples and ambient dust samples collected at
commercial cattle feedyards in the Texas Panhandle to iden-
tify potential biological sources of INPs in our precipitation
samples.

We successfully generated data of the bacterial micro-
biome of our precipitation and cattle feedyard dust sam-
ples. Unfortunately, our attempt to characterize the fungal
and archaeal components of the microbiome was not suc-
cessful due to the limitation in sample amount. Thus, we

focus on bacterial discussions hereafter. In most cases, bac-
terial phyla were classified to the level of genus. The ma-
jority of bacteria in all samples belonged to the phyla Pro-
teobacteria and Bacteroidetes (Fig. 6 and Table S9). In hail-
storm samples, the main taxa of Proteobacteria were Mas-
silia (a genus found in clinical samples and mammals but
also the soil, rhizosphere, and even aerosols), genera be-
longing to the order Sphingomonadales (bacteria with wide
metabolic abilities), Caulobacterales (bacteria living in di-
verse terrestrial and aquatic habitats; some are minor hu-
man pathogens), and Rhizobiales (nitrogen-fixing bacteria
forming symbioses with the roots of legumes). Among the
Bacteroidetes phylum, the genus Marinoscillum was rela-
tively the most abundant. This genus is a recently described
marine bacterium, and it is interesting that it was found in
hailstorm samples at percentages from 17.3 % to 3.2 % of
the microbiome. Additionally, in one hailstorm sample, we
also identified Gilvimarinus, which is another marine genus
of Gammaproteobacteria (Table S9). These results indicate
some connection with air mass originating from ocean.

For verification, we performed back-trajectory analysis us-
ing the HYSPILT-READY model with Global Data Assimi-
lation System (1 degree) meteorological data as input (Stein
et al., 2015; Rolph et al., 2017). The analysis for our precipi-
tation sampling periods (i.e., PCPT 1–4 in Fig. 6) was carried
out at different heights over our precipitation sampling loca-
tion; i.e., 500, 1000, and 3000 ma.g.l. (assuming these as the
typical cloud heights). Furthermore, for the cattle feedyard
samples 1–4 (Fig. 6), the back-trajectory analysis was car-
ried out at the sampling height, which is 1.5 ma.g.l. Overall,
all these back-trajectories indicate a possible maritime influ-
ence through the Caribbean Sea, Gulf of Mexico, and/or the
Pacific Ocean (not shown to protect location privacy). Thus,
these results support a possible marine influence in our pre-
cipitation and cattle feedyard samples. Other Bacteroidetes
taxa with notable presence in hailstorm microbiome included
Saprospirales and Chitinophagales orders with bacteria liv-
ing on animals and in the gut of animals as expected.

The microbiomes commonly found in our precipitation
samples included the genus Massilia in significant numbers
(11.3 % of the microbiome), bacteria of the Proteobacte-
rial orders Rhizobiales, Sphingomonadales, and Burkholde-
riales; a significant percentage (8.5 %) of the marine genus
Marinoscillum, and bacteria in the order Saprospirales of
phylum Bacteroidetes. Our results suggest that no known IN
active species were detected in precipitation microbiomes.
The order Pseudomonadales, which includes most known IN
active species, was a very minor component of the micro-
biome in our samples.

Massilia and other unidentified genera of the family Ox-
alobacteraceae were also relatively dominant in all four cat-
tle feedyard samples with percentages from 6.5 % to 65.4 %
of the microbiome. Marinoscillum, a marine bacterium sur-
prisingly found in all precipitation samples, was also found
in all cattle feedyard samples from 3 % to 8.5 % of the mi-

Atmos. Chem. Phys., 21, 4503–4520, 2021 https://doi.org/10.5194/acp-21-4503-2021



H. S. K. Vepuri et al.: Ice-nucleating particles in precipitation samples from the Texas Panhandle 4515

Figure 6. Bacterial community analysis of precipitation and cattle feedyard dust samples showing Relative Frequency (%) or abundance
of Bacterial taxonomy. “Bkgr” represents the 24 h dry deposition blank sample (sample no. 34). Our cattle feedyard samples are collected
locally on 28 March 2019 (1), 22 July 2018 (2), 23 July 2018 (3), and 24 July 2018 (4) – see Hiranuma et al. (2020). PCPT 1–4 corresponds
to our sample nos. 1, 2, 50, and 7, respectively.

crobiome (Table S9). These similarities of the predominant
bacteria in the microbiome of four cattle feedyard dust sam-
ples and of four precipitation samples taken at an area distant
from the cattle feedyards, perhaps indicate some connection
of the cattle feedyard dust and precipitation microbiomes, ei-
ther with the formation of precipitation or with their presence
in aerosols during precipitation events. Although we cannot
rule out the possibility that scavenging of aerosolized bac-
teria explains the presence of these bacteria both in cattle
feedyard and precipitation samples taken even at a distance
from cattle feedyards, our dry deposition background result
shows different biological composition (Fig. 6). It is also
noteworthy to mention that neither of the genera (Massilia
and Marinoscillum) were detected in the background deposi-
tion blank sample and it is not known whether they have any
IN activity. Genera Massilia and Sphingomonas have been
reported as weak IN active species (Jimenez-Sanchez et al.,
2018), but these results are inconclusive and the discussion
is ongoing at this stage (Woo and Yamamoto, 2020). There-
fore, the scavenging may not be the main reason for the pres-
ence of Massilia and Marinoscillum found in our precipi-
tation samples. Other bacterial taxa with a significant pres-
ence in cattle feedyard samples included members of orders
Caulobacterales and Burkholderiales.

3.5 Caveats and future studies

A surface-level air mass on a plain is not necessarily the
same as the air mass where precipitation forms at the cloud
level. Studying the vertical gradient in INP concentrations in
this region would hint at the link between these two vertical
zones (e.g., He et al., 2020). The future investigation should
also include investigations in physicochemical transforma-
tion of hydrometers and INPs, which might occur between
the cloud height and the ground (e.g., Pereira et al., 2020),
impact of aerosol dynamics and processing, effect of solutes
to alter the freezing point (Whale et al., 2018), secondary
ice formation, and cloud macrophysics addressed in Wright
and Petters (2015 – Sects. 4.1 to 4.3). For instance, while
assuming a constant CWC may be reasonable to study pre-
cipitation INPs (i.e., Sect. 2.5), it is necessary in the future
to further investigate in-cloud-specific CWCs incorporating
loss of water through partial evaporation of raindrops during
free fall based on vertical vapor deficit profiles to conclu-
sively assess if this assumption is fair or not. Precipitation
evaporation rate might introduce bias in nINP for precipita-
tion systems with high cloud base, and the correction can be
applied accordingly (Petters and Wright, 2015). Direct com-
parison between INP measurements in cloud water samples
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and those in precipitation samples might also be key to an-
swer this question (e.g., Pereira et al., 2020).

The precipitation intensity strongly depends on several
other dynamical factors and thermodynamic conditions, in-
cluding the land use, moisture levels, land surface tempera-
tures, and convective available potential energy. For instance,
a recent observational study showed that the irrigation prac-
tices in the US Great Plains region had enhanced summer
precipitation intensity (Alter et al., 2015), resulting an in-
crease in the total precipitation received. Hence, it is not
straightforward to link the precipitation intensity to the esti-
mated INP concentrations, and more future studies involving
cloud-level and surface-level INP measurements might help
in elucidating this problem. To assess the impact of INPs
on precipitation properties (and vice versa), it is necessary
to conduct the INP measurement of cloud water samples,
aerosol particle characterizations below cloud, and more de-
tailed analysis of precipitation-forming cloud properties as
well as cloud height. A more detailed scavenging analysis
without many assumptions and limitations, such as assuming
a constant scavenging rate over precipitation, limited parti-
cle size distributions, and a well-mixed boundary layer, is
also necessary to connect the surface observations to cloud-
level phenomena. Diffusional scavenging of small particles
may not contribute to IN unless they are highly ice-active
macromolecules or other small biological species. Regard-
less, robust aerosol particle size distribution data across the
ground to cloud base segment would definitely complement
to accurately and precisely estimate scavenging efficiencies.
Some previous studies support the assumption of a well-
mixed boundary layer near the study area. Further effort may
be needed to characterize the climatology of boundary layer
height in the Texas Panhandle region at different times of a
day, as demonstrated in Schmid and Niyogi (2012) and Zhu
et al. (2001). Incorporating more local, specific vertical am-
bient profiles (lapse rate, Dong et al., 2008) for further anal-
ysis would also be helpful.

As for more future studies, INPs derived from precip-
itation samples collected over multiple years would give
comprehensive insight into their impact on local precip-
itation systems. This work highlights this need for more
precipitation-based INP studies from different geographical
locations. The reduced uncertainties in nINP along with the
high INP detection sensitivity could help in addressing the
long-debated issue of INP rarity at temperatures ≥−10 ◦C.

4 Summary and conclusion

We have successfully estimated nINP (L−1 of air) in the
immersion freezing mode from different precipitation sam-
ples collected in Canyon, TX, USA, during June 2018–July
2019. IN spectra were derived for MPC temperature range
(0 to −25 ◦C) from four different precipitation types (snow,
hail/thunderstorm, long-lasted rain, and weak rain) using a

cold stage instrument. We have found that nINP values from
our precipitation samples match or exceed nINP from pre-
vious precipitation-based INP studies (Petters and Wright,
2015; Vali, 1968). Notably, the high-temperature (≥−15 ◦C)
INPs in some of our precipitation samples are in the same
order of magnitude as what is reported in Vali (1968). Al-
though we found no clear seasonal variations in nINP val-
ues, in part due to the limited number of samples, the
analysis of yearlong ground-level precipitation observations
as well as INPs for the precipitation samples showed that
the highest nINP at −25 ◦C of 1130 L−1 coincided with
a hail-involved severe thunderstorm event observed during
the summer in 2018 (ID no. 1). Similarly, the lowest cu-
mulative INP at the same temperature, 3.0 INPL−1, was
found in another hail/thunderstorm sample collected in June
2019 (ID no. 37). The second lowest nINP (−25 ◦C) was
found in one of our snow samples collected during the win-
ter (ID no. 23= 3.2 INPL−1). Overall, our results showed
that cumulative nINP in our precipitation samples below
−20 ◦C could be high in the samples collected while observ-
ing > 10 mmh−1 precipitation with the presence of notably
large hydrometeor sizes. While our results cannot conclu-
sively define the relationship between INPs and precipitation,
our precipitation INP data are an important asset for under-
standing ambient INPs in the Texas Panhandle region, where
a rural agricultural environment prevails.

Our metagenomics results suggest the presence of marine
genera Marinoscillum and Gilvimarinus in precipitation and
cattle feedyard PM samples. These genera may have derived
by an influence of air mass originating from maritime re-
gions. Marine bacteria in inland sampling sites have been
identified in previous studies (e.g., Cho and Jang, 2014).
We also identified bacterial genera common in our precipi-
tation as well as the local cattle feedyard dust samples, while
the microbiome composition in one feedyard sample (Feed-
yard 3 in Fig. 6) was considerably different from the mi-
crobiome composition in precipitation samples. The differ-
ence of the microbiomes in dry and wet deposition samples,
suggesting a non-local origin of bioaerosols in precipita-
tion, has also been observed previously over crops (Constan-
tinidou et al., 1990), as well as in urban precipitation samples
(Cho and Jang, 2014; Woo and Yamamoto, 2020). While we
cannot conclude if local cattle feedyard dust contributes to
precipitation formation, we also found some indications of
the inclusion of agricultural dust in our precipitation sam-
ples. Regardless, we did not find previously known bacterial
INPs, such as Pseudomonas and Xanthomonas (Morris et al.,
2004), in either the precipitation or cattle feedyard samples.
To further seek a connection between local dust and precip-
itation, it is worthwhile to characterize the local cattle feed-
yard dust in cloud water samples, as it can be the source
of INPs and may impact the local hydrological cycle. Col-
lecting long-term pollen and other biogenic aerosol particles
samples (i.e., Fungi and Archaea), and associated observa-
tional data for multiple years may add important knowledge
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regarding the role of local bioaerosols on precipitation INPs.
Besides DNA analysis, analysis of RNA by metatranscrip-
tomics will provide insights into the active life of the micro-
biome in clouds and precipitation. Ultimately, both DNA and
RNA analyses of the microbe in ice crystal residuals would
offer a direct link between naturally occurring biological par-
ticles and INPs.
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