Articles | Volume 21, issue 20
https://doi.org/10.5194/acp-21-15755-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-15755-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement report: Variability in the composition of biogenic volatile organic compounds in a Southeastern US forest and their role in atmospheric reactivity
Department of Civil and Environmental Engineering, Virginia Tech,
Blacksburg, VA 24061, USA
Laura E. R. Barry
Department of Environmental Sciences,
University of Virginia, Charlottesville, VA 22904, USA
Manuel T. Lerdau
Department of Environmental Sciences,
University of Virginia, Charlottesville, VA 22904, USA
Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
Sally E. Pusede
Department of Environmental Sciences,
University of Virginia, Charlottesville, VA 22904, USA
Department of Civil and Environmental Engineering, Virginia Tech,
Blacksburg, VA 24061, USA
Related authors
Namrata Shanmukh Panji, Deborah F. McGlynn, Laura E. R. Barry, Todd M. Scanlon, Manuel T. Lerdau, Sally E. Pusede, and Gabriel Isaacman-VanWertz
Atmos. Chem. Phys., 24, 12495–12507, https://doi.org/10.5194/acp-24-12495-2024, https://doi.org/10.5194/acp-24-12495-2024, 2024
Short summary
Short summary
Climate change will bring about changes in parameters that are currently used in global-scale models to calculate biogenic emissions. This study seeks to understand the factors driving these models by comparing long-term datasets of biogenic compounds to modeled emissions. We note that the light-dependent fractions currently used in models do not accurately represent regional observations. We provide evidence for the time-dependent variation in this parameter for future modifications to models.
James F. Hurley, Alejandra Caceres, Deborah F. McGlynn, Mary E. Tovillo, Suzanne Pinar, Roger Schürch, Ksenia Onufrieva, and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 16, 4681–4692, https://doi.org/10.5194/amt-16-4681-2023, https://doi.org/10.5194/amt-16-4681-2023, 2023
Short summary
Short summary
Volatile organic compounds (VOCs) have a wide range of sources and impacts on environments and human health that make them spatially, temporally, and chemically varied. Current methods lack the ability to collect samples in ways that provide spatial and chemical resolution without complex, costly instrumentation. We describe and validate a low-cost, portable VOC sampler and demonstrate its utility in collecting distributed coordinated samples.
Deborah F. McGlynn, Graham Frazier, Laura E. R. Barry, Manuel T. Lerdau, Sally E. Pusede, and Gabriel Isaacman-VanWertz
Biogeosciences, 20, 45–55, https://doi.org/10.5194/bg-20-45-2023, https://doi.org/10.5194/bg-20-45-2023, 2023
Short summary
Short summary
Using a custom-made gas chromatography flame ionization detector, 2 years of speciated hourly biogenic volatile organic compound data were collected in a forest in central Virginia. We identify diurnal and seasonal variability in the data, which is shown to impact atmospheric oxidant budgets. A comparison with emission models identified discrepancies with implications for model outcomes. We suggest increased monitoring of speciated biogenic volatile organic compounds to improve modeled results.
Namrata Shanmukh Panji, Deborah F. McGlynn, Laura E. R. Barry, Todd M. Scanlon, Manuel T. Lerdau, Sally E. Pusede, and Gabriel Isaacman-VanWertz
Atmos. Chem. Phys., 24, 12495–12507, https://doi.org/10.5194/acp-24-12495-2024, https://doi.org/10.5194/acp-24-12495-2024, 2024
Short summary
Short summary
Climate change will bring about changes in parameters that are currently used in global-scale models to calculate biogenic emissions. This study seeks to understand the factors driving these models by comparing long-term datasets of biogenic compounds to modeled emissions. We note that the light-dependent fractions currently used in models do not accurately represent regional observations. We provide evidence for the time-dependent variation in this parameter for future modifications to models.
Chuanyang Shen, Xiaoyan Yang, Joel Thornton, John Shilling, Chenyang Bi, Gabriel Isaacman-VanWertz, and Haofei Zhang
Atmos. Chem. Phys., 24, 6153–6175, https://doi.org/10.5194/acp-24-6153-2024, https://doi.org/10.5194/acp-24-6153-2024, 2024
Short summary
Short summary
In this work, a condensed multiphase isoprene oxidation mechanism was developed to simulate isoprene SOA formation from chamber and field studies. Our results show that the measured isoprene SOA mass concentrations can be reasonably reproduced. The simulation results indicate that multifunctional low-volatility products contribute significantly to total isoprene SOA. Our findings emphasize that the pathways to produce these low-volatility species should be considered in models.
James F. Hurley, Alejandra Caceres, Deborah F. McGlynn, Mary E. Tovillo, Suzanne Pinar, Roger Schürch, Ksenia Onufrieva, and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 16, 4681–4692, https://doi.org/10.5194/amt-16-4681-2023, https://doi.org/10.5194/amt-16-4681-2023, 2023
Short summary
Short summary
Volatile organic compounds (VOCs) have a wide range of sources and impacts on environments and human health that make them spatially, temporally, and chemically varied. Current methods lack the ability to collect samples in ways that provide spatial and chemical resolution without complex, costly instrumentation. We describe and validate a low-cost, portable VOC sampler and demonstrate its utility in collecting distributed coordinated samples.
Namrata Shanmukh Panji and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 16, 4319–4330, https://doi.org/10.5194/amt-16-4319-2023, https://doi.org/10.5194/amt-16-4319-2023, 2023
Short summary
Short summary
Measuring volatile organic compounds (VOCs) in the atmosphere is crucial for understanding air quality and environmental impact. Since these compounds are present in low concentrations, preconcentration of samples is often necessary for accurate detection. To address this issue, we have developed a novel inlet that uses selective permeation to concentrate organic gases in small sample flows. This device offers a promising approach for accurately detecting low levels of VOCs in the atmosphere.
Deborah F. McGlynn, Graham Frazier, Laura E. R. Barry, Manuel T. Lerdau, Sally E. Pusede, and Gabriel Isaacman-VanWertz
Biogeosciences, 20, 45–55, https://doi.org/10.5194/bg-20-45-2023, https://doi.org/10.5194/bg-20-45-2023, 2023
Short summary
Short summary
Using a custom-made gas chromatography flame ionization detector, 2 years of speciated hourly biogenic volatile organic compound data were collected in a forest in central Virginia. We identify diurnal and seasonal variability in the data, which is shown to impact atmospheric oxidant budgets. A comparison with emission models identified discrepancies with implications for model outcomes. We suggest increased monitoring of speciated biogenic volatile organic compounds to improve modeled results.
Sungwoo Kim, Brian M. Lerner, Donna T. Sueper, and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 15, 5061–5075, https://doi.org/10.5194/amt-15-5061-2022, https://doi.org/10.5194/amt-15-5061-2022, 2022
Short summary
Short summary
Atmospheric samples can be complex, and current analysis methods often require substantial human interaction and discard potentially important information. To improve analysis accuracy and computational cost of these large datasets, we developed an automated analysis algorithm that utilizes a factor analysis approach coupled with a decision tree. We demonstrate that this algorithm cataloged approximately 10 times more analytes compared to a manual analysis and in a quarter of the analysis time.
Dongwook Kim, Changmin Cho, Seokhan Jeong, Soojin Lee, Benjamin A. Nault, Pedro Campuzano-Jost, Douglas A. Day, Jason C. Schroder, Jose L. Jimenez, Rainer Volkamer, Donald R. Blake, Armin Wisthaler, Alan Fried, Joshua P. DiGangi, Glenn S. Diskin, Sally E. Pusede, Samuel R. Hall, Kirk Ullmann, L. Gregory Huey, David J. Tanner, Jack Dibb, Christoph J. Knote, and Kyung-Eun Min
Atmos. Chem. Phys., 22, 805–821, https://doi.org/10.5194/acp-22-805-2022, https://doi.org/10.5194/acp-22-805-2022, 2022
Short summary
Short summary
CHOCHO was simulated using a 0-D box model constrained by measurements during the KORUS-AQ mission. CHOCHO concentration was high in large cities, aromatics being the most important precursors. Loss path to aerosol was the highest sink, contributing to ~ 20 % of secondary organic aerosol formation. Our work highlights that simple CHOCHO surface uptake approach is valid only for low aerosol conditions and more work is required to understand CHOCHO solubility in high-aerosol conditions.
Chenyang Bi, Jordan E. Krechmer, Graham O. Frazier, Wen Xu, Andrew T. Lambe, Megan S. Claflin, Brian M. Lerner, John T. Jayne, Douglas R. Worsnop, Manjula R. Canagaratna, and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 14, 6835–6850, https://doi.org/10.5194/amt-14-6835-2021, https://doi.org/10.5194/amt-14-6835-2021, 2021
Short summary
Short summary
Iodide-adduct chemical ionization mass spectrometry (I-CIMS) has been widely used to analyze airborne organics. In this study, I-CIMS sensitivities of isomers within a formula are found to generally vary by 1 and up to 2 orders of magnitude. Comparisons between measured and predicted moles, obtained using a voltage-scanning calibration approach, show that predictions for individual compounds or formulas might carry high uncertainty, yet the summed moles of analytes agree reasonably well.
Chenyang Bi, Jordan E. Krechmer, Manjula R. Canagaratna, and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 14, 6551–6560, https://doi.org/10.5194/amt-14-6551-2021, https://doi.org/10.5194/amt-14-6551-2021, 2021
Short summary
Short summary
Calibration techniques have been recently developed to log-linearly correlate analyte sensitivity with CIMS operating conditions particularly for compounds without authentic standards. In this work, we examine the previously ignored bias in the log-linear-based calibration method and estimate an average bias of 30 %, with 1 order of magnitude for less sensitive compounds in some circumstances. A step-by-step guide was provided to reduce and even remove the bias.
Chenyang Bi, Jordan E. Krechmer, Graham O. Frazier, Wen Xu, Andrew T. Lambe, Megan S. Claflin, Brian M. Lerner, John T. Jayne, Douglas R. Worsnop, Manjula R. Canagaratna, and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 14, 3895–3907, https://doi.org/10.5194/amt-14-3895-2021, https://doi.org/10.5194/amt-14-3895-2021, 2021
Short summary
Short summary
Measurement techniques that can achieve molecular characterizations are necessary to understand the differences of fate and transport within isomers produced in the atmospheric oxidation process. In this work, we develop an instrument to conduct isomer-resolved measurements of particle-phase organics. We assess the number of isomers per chemical formula in atmospherically relevant samples and examine the feasibility of extending the use of an existing instrument to a broader range of analytes.
Gabriel Isaacman-VanWertz and Bernard Aumont
Atmos. Chem. Phys., 21, 6541–6563, https://doi.org/10.5194/acp-21-6541-2021, https://doi.org/10.5194/acp-21-6541-2021, 2021
Short summary
Short summary
There are tens of thousands of different chemical compounds in the atmosphere. To tackle this complexity, there are a wide range of different methods to estimate their physical and chemical properties. We use these methods to understand how much the detailed structure of a molecule impacts its properties, and the extent to which properties can be estimated without knowing this level of detail. We find that structure matters, but methods lacking that level of detail still perform reasonably well.
Benjamin Gaubert, Louisa K. Emmons, Kevin Raeder, Simone Tilmes, Kazuyuki Miyazaki, Avelino F. Arellano Jr., Nellie Elguindi, Claire Granier, Wenfu Tang, Jérôme Barré, Helen M. Worden, Rebecca R. Buchholz, David P. Edwards, Philipp Franke, Jeffrey L. Anderson, Marielle Saunois, Jason Schroeder, Jung-Hun Woo, Isobel J. Simpson, Donald R. Blake, Simone Meinardi, Paul O. Wennberg, John Crounse, Alex Teng, Michelle Kim, Russell R. Dickerson, Hao He, Xinrong Ren, Sally E. Pusede, and Glenn S. Diskin
Atmos. Chem. Phys., 20, 14617–14647, https://doi.org/10.5194/acp-20-14617-2020, https://doi.org/10.5194/acp-20-14617-2020, 2020
Short summary
Short summary
This study investigates carbon monoxide pollution in East Asia during spring using a numerical model, satellite remote sensing, and aircraft measurements. We found an underestimation of emission sources. Correcting the emission bias can improve air quality forecasting of carbon monoxide and other species including ozone. Results also suggest that controlling VOC and CO emissions, in addition to widespread NOx controls, can improve ozone pollution over East Asia.
Hirofumi Ohyama, Isamu Morino, Voltaire A. Velazco, Theresa Klausner, Gerry Bagtasa, Matthäus Kiel, Matthias Frey, Akihiro Hori, Osamu Uchino, Tsuneo Matsunaga, Nicholas M. Deutscher, Joshua P. DiGangi, Yonghoon Choi, Glenn S. Diskin, Sally E. Pusede, Alina Fiehn, Anke Roiger, Michael Lichtenstern, Hans Schlager, Pao K. Wang, Charles C.-K. Chou, Maria Dolores Andrés-Hernández, and John P. Burrows
Atmos. Meas. Tech., 13, 5149–5163, https://doi.org/10.5194/amt-13-5149-2020, https://doi.org/10.5194/amt-13-5149-2020, 2020
Short summary
Short summary
Column-averaged dry-air mole fractions of CO2 and CH4 measured by a solar viewing portable Fourier transform spectrometer (EM27/SUN) were validated with in situ profile data obtained during the transfer flights of two aircraft campaigns. Atmospheric dynamical properties based on ERA5 and WRF-Chem were used as criteria for selecting the best aircraft profiles for the validation. The resulting air-mass-independent correction factors for the EM27/SUN data were 0.9878 for CO2 and 0.9829 for CH4.
Cited articles
Arnts, R. R., Mowry, F. L., and Hampton, G. A.: A high-frequency response
relaxed eddy accumulation flux measurement system for sampling short-lived
biogenic volatile organic compounds, J. Geophys. Res.-Atmos., 118,
4860–4873, https://doi.org/10.1002/jgrd.50215, 2013.
Atkinson, R. and Arey, J.: Gas-phase tropospheric chemistry of biogenic
volatile organic compounds: A review, Atmos. Environ., 37, 197–219,
https://doi.org/10.1016/S1352-2310(03)00391-1, 2003.
Atkinson, R., Aschmann, S. M., and Arey, J: Rate constants for the gas-phase reactions of OH and NO3 radicals and O3 with sabinene and camphene at 296±2 K,
Atmos. Environ. 24, 2647–2654, https://doi.org/10.1016/0960-1686(90)90144-C, 1990.
Atkinson, R., Aschmann, S. M., Arey, J., and Shorees, B.: Formation of OH Radicals in the Gas Phase Reactions of O3 With a Series of Terpenes, J. Geophys. Res., 97, 6065–6073, https://doi.org/10.1029/92jd00062, 1992.
Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., Troe, J., and IUPAC Subcommittee: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – gas phase reactions of organic species, Atmos. Chem. Phys., 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006, 2006.
Avnery, S., Mauzerall, D. L., Liu, J., and Horowitz, L. W.: Global crop
yield reductions due to surface ozone exposure: 1. Year 2000 crop production
losses and economic damage, Atmos. Environ., 45, 2284–2296,
https://doi.org/10.1016/j.atmosenv.2010.11.045, 2011a.
Avnery, S., Mauzerall, D. L., Liu, J., and Horowitz, L. W.: Global crop
yield reductions due to surface ozone exposure: 2. Year 2030 potential crop
production losses and economic damage under two scenarios of O3 pollution,
Atmos. Environ., 45, 2297–2309,
https://doi.org/10.1016/j.atmosenv.2011.01.002, 2011b.
Biesenthal, T. A. and Shepson, P. B.: Observations of anthropogenic inputs
of the isoprene oxidation products methyl vinyl ketone and methacrolein to
the atmosphere, Geophys. Res. Lett., 24, 1375–1378,
https://doi.org/10.1029/97GL01337, 1997.
Chan, W.: The Fate of Biogenic Hydrocarbons within a Forest Canopy: Field
Observation and Model Results, PhD thesis, Department of Environmental Sciences, University of Virginia, USA, https://doi.org/10.18130/V3MV8J, 2011.
Claeys, M., Wang, W., Ion, A. C., and Kourtchev, I.: Formation of secondary
organic aerosols from isoprene and its gas-phase oxidation products through
reaction with hydrogen peroxide, Atmos. Environ., 38, 4093–4098,
https://doi.org/10.1016/j.atmosenv.2004.06.001, 2004.
Corchnoy, S. B. and Atkinson, R.: Kinetics of the Gas-Phase Reactions of OH
and NO3 Radicals with 2-Carene, 1,8-Cineole, p-Cymene, and Terpinolene,
Environ. Sci. Technol., 24, 1497–1502, https://doi.org/10.1021/es00080a007,
1990.
Davison, B., Taipale, R., Langford, B., Misztal, P., Fares, S., Matteucci, G., Loreto, F., Cape, J. N., Rinne, J., and Hewitt, C. N.: Concentrations and fluxes of biogenic volatile organic compounds above a Mediterranean macchia ecosystem in western Italy, Biogeosciences, 6, 1655–1670, https://doi.org/10.5194/bg-6-1655-2009, 2009.
Demetillo, M. A. G., Anderson, J. F., Geddes, J. A., Yang, X., Najacht, E.
Y., Herrera, S. A., Kabasares, K. M., Kotsakis, A. E., Lerdau, M. T., and
Pusede, S. E.: Observing Severe Drought Influences on Ozone Air Pollution in
California, Environ. Sci. Technol., 53, 9, 4695–4706, https://doi.org/10.1021/acs.est.8b04852, 2019.
Faiola, C. L., Erickson, M. H., Fricaud, V. L., Jobson, B. T., and VanReken, T. M.: Quantification of biogenic volatile organic compounds with a flame ionization detector using the effective carbon number concept, Atmos. Meas. Tech., 5, 1911–1923, https://doi.org/10.5194/amt-5-1911-2012, 2012.
Faiola, C. L., Buchholz, A., Kari, E., Yli-Pirilä, P., Holopainen, J.
K., Kivimäenpää, M., Miettinen, P., Worsnop, D. R., Lehtinen, K.
E. J., Guenther, A. B., and Virtanen, A.: Terpene Composition Complexity
Controls Secondary Organic Aerosol Yields from Scots Pine Volatile
Emissions, Sci. Rep., 8, 1–13, https://doi.org/10.1038/s41598-018-21045-1,
2018.
Faiola, C. L., Pullinen, I., Buchholz, A., Khalaj, F., Ylisirniö, A.,
Kari, E., Miettinen, P., Holopainen, J. K., Kivimäenpää, M.,
Schobesberger, S., Yli-Juuti, T., and Virtanen, A.: Secondary Organic
Aerosol Formation from Healthy and Aphid-Stressed Scots Pine Emissions, ACS
Earth Sp. Chem., 3, 1756–1772,
https://doi.org/10.1021/acsearthspacechem.9b00118, 2019.
Fares, S., McKay, M., Holzinger, R., and Goldstein, A. H.: Ozone fluxes in a
Pinus ponderosa ecosystem are dominated by non-stomatal processes: Evidence
from long-term continuous measurements, Agric. For. Meteorol., 150,
420–431, https://doi.org/10.1016/j.agrformet.2010.01.007, 2010.
Friedman, B. and Farmer, D. K.: SOA and gas phase organic acid yields from
the sequential photooxidation of seven monoterpenes, Atmos. Environ., 187,
335–345, https://doi.org/10.1016/j.atmosenv.2018.06.003, 2018.
Fuentes, J., Lerdau, M. T., Atkinson, R., Baldocchi, D., Bottenheim, J. W.,
Ciccioli, P., Lamb, B., Geron, C., Guenther, A., Sharkey, T. D., and
Stockwell, W.: Biogenic Hydrocarbons in the Atmospheric Boundary Layer: A
Review, B. Am. Meteorol. Soc., 81, 1537–1576, https://doi.org/10.1175/1520-0477(2000)081<1537:BHITAB>2.3.CO;2, 1999.
Gentner, D. R., Isaacman, G., Worton, D. R., Chan, A. W. H., Dallmann, T.
R., Davis, L., Liu, S., Day, D. A., Russell, L. M., Wilson, K. R., Weber,
R., Guha, A., Harley, R. A., and Goldstein, A. H.: Elucidating secondary
organic aerosol from diesel and gasoline vehicles through detailed
characterization of organic carbon emissions, Proc. Natl. Acad. Sci., 109,
18318–18323, https://doi.org/10.1073/pnas.1212272109, 2012.
Geron, C., Rasmussen, R., Arnts, R. R., and Guenther, A.: A review and
synthesis of monoterpene speciation from forests in the United States,
Atmos. Environ., 34, 1761–1781,
https://doi.org/10.1016/S1352-2310(99)00364-7, 2000.
Ghirardo, A., Koch, K., Taipale, R., Zimmer, I., Schnitzler, J.-P., and
Rinne, J.: Determination of de novo and pool emissions of terpenes from four
common boreal/alpine trees by 13CO2 labelling and PTR-MS analysis, Plant.
Cell Environ., 33, 781–792,
https://doi.org/10.1111/j.1365-3040.2009.02104.x, 2010.
Gilman, J. B., Kuster, W. C., Goldan, P. D., Herndon, S. C., Zahniser, M.
S., Tucker, S. C., Brewer, W. A., Lerner, B. M., Williams, E. J., Harley, R.
A., Fehsenfeld, F. C., Warneke, C., and De Gouw, J. A.: Measurements of
volatile organic compounds during the 2006 TexAQS/GoMACCS campaign:
Industrial influences, regional characteristics, and diurnal dependencies of
the OH reactivity, J. Geophys. Res.-Atmos., 114, 1–17,
https://doi.org/10.1029/2008JD011525, 2009.
Goldstein, A. H. and Galbally, I.: Known and unexplored organic 115
constituents in the earth’s atmosphere, Environ. Sci. Technol., 41, 1515–1521, https://doi.org/10.1021/es072476p, 2007.
Goldstein, A. H., Mckay, M., Kurpius, M. R., Schade, G. W., Lee, A.,
Holzinger, R., and Rasmussen, R. A.: Forest thinning experiment confirms
ozone deposition to forest canopy is dominated by reaction with biogenic
VOCs, Geophys. Res. Lett., 31, 2–5, https://doi.org/10.1029/2004GL021259, 2004.
Greenberg, J. P., Guenther, A., Harley, P., Otter, L., Veenendaal, E. M.,
Hewitt, C. N., James, A. E., and Owen, S. M.: Eddy flux and leaf-level
measurements of biogenic VOC emissions from mopane woodland of Botswana, J.
Geophys. Res.-Atmos., 108, 1–9, https://doi.org/10.1029/2002jd002317, 2003.
Guenther, A.: Seasonal and spatial variations in natural volatile organic
compound emissions, Ecol. Appl., 7, 34–45,
https://doi.org/10.1890/1051-0761(1997)007[0034:SASVIN]2.0.CO;2, 1997.
Guenther, A., Nicholas, C., Fall, R., Klinger, L., Mckay, W. A., and
Scholes, B.: A global model of natural volatile organic compound emissions,
J. Geophys. Res., 100, 8873–8892, 1995.
Guenther, A., Greenberg, J., Harley, P., Helmig, D., Klinger, L., Vierling,
L., Zimmerman, P., and Geron, C.: Leaf, branch, stand and landscape scale
measurements of volatile organic compound fluxes from U.S. woodlands, Tree
Physiol., 16, 17–24, https://doi.org/10.1093/treephys/16.1-2.17, 1996.
Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.
Hallquist, M., Wängberg, I., and Ljungström, E.: Atmospheric Fate of
Carbonyl Oxidation Products Originating from α-Pinene and Δ
3-Carene: Determination of Rate of Reaction with OH and NO3 Radicals, UV
Absorption Cross Sections, and Vapor Pressures, Environ. Sci. Technol., 31,
3166–3172, https://doi.org/10.1021/es970151a, 1997.
Hatakeyama, S., Isumi, K., Fukuyama, T., and Akimoto, H.: Reactions of ozone
with a-Pinene and B-Pinene in air: yields of gaseous and particulate
products, J. Geophys. Res.-Atmos., 94, 13013–13024, https://doi.org/10.1029/JD094iD10p13013 1989.
Hellén, H., Praplan, A. P., Tykkä, T., Ylivinkka, I., Vakkari, V., Bäck, J., Petäjä, T., Kulmala, M., and Hakola, H.: Long-term measurements of volatile organic compounds highlight the importance of sesquiterpenes for the atmospheric chemistry of a boreal forest, Atmos. Chem. Phys., 18, 13839–13863, https://doi.org/10.5194/acp-18-13839-2018, 2018.
Helmig, D., Ortega, J., Guenther, A., Herrick, J. D., and Geron, C.:
Sesquiterpene emissions from loblolly pine and their potential contribution
to biogenic aerosol formation in the Southeastern US, Atmos. Environ., 40,
4150–4157, https://doi.org/10.1016/j.atmosenv.2006.02.035, 2006.
Hoffmann, T., Odum, J. A. Y. R., Bowman, F., Collins, D., Klockow, D.,
Flagan, R. C., and Seinfeld, J. H.: Formation of Organic Aerosols from the
Oxidation of Biogenic Hydrocarbons, J. Atmos. Chem., 1, 189–222, https://doi.org/10.1029/JC084iC08p05083, 1997.
Holdren, M. W. H., Westberg, H. H., and Zimmerman, P. R.: Analysis of
Monoterpene Hydrocarbons in Rural Atmospheres, J. Geophys.-Res., 84, 1–6, 1979.
Holopainen, J. K., Virjamo, V., Ghimire, R. P., and Blande, J. D.: Climate
Change Effects on Secondary Compounds of Forest Trees in the Northern
Hemisphere, Frontiers of Plant Science, 9, 1445, https://doi.org/10.3389/fpls.2018.01445, 2018.
Holzke, C., Hoffmann, T., Jaeger, L., Koppmann, R., and Zimmer, W.: Diurnal
and seasonal variation of monoterpene and sesquiterpene emissions from Scots
pine (Pinus sylvestris L.), Atmos. Environ., 40, 3174–3185,
https://doi.org/10.1016/j.atmosenv.2006.01.039, 2006.
Hunter, J. F., Day, D. A., Palm, B. B., Yatavelli, R. L. N., Chan, A. W. H.,
Kaser, L., Cappellin, L., Hayes, P. L., Cross, E. S., Carrasquillo, A. J.,
Campuzano-Jost, P., Stark, H., Zhao, Y., Hohaus, T., Smith, J. N., Hansel,
A., Karl, T., Goldstein, A. H., Guenther, A., Worsnop, D. R., Thornton, J.
A., Heald, C. L., Jimenez, J. L., and Kroll, J. H.: Comprehensive
characterization of atmospheric organic carbon at a forested site, Nat.
Geosci., 10, 748–753, https://doi.org/10.1038/NGEO3018, 2017.
Intergovernmental Panel on Climate Change (IPCC): Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp., https://doi.org/10.1017/CBO9781107415324, 2013.
Isaacman-VanWertz, G., Sueper, D. T., Aikin, K. C., Lerner, B. M., Gilman,
J. B., de Gouw, J. A., Worsnop, D. R., and Goldstein, A. H.: Automated
single-ion peak fitting as an efficient approach for analyzing complex
chromatographic data, J. Chromatogr. A., 1529, 81–92,
https://doi.org/10.1016/j.chroma.2017.11.005, 2017.
Kalogridis, C., Gros, V., Sarda-Esteve, R., Langford, B., Loubet, B., Bonsang, B., Bonnaire, N., Nemitz, E., Genard, A.-C., Boissard, C., Fernandez, C., Ormeño, E., Baisnée, D., Reiter, I., and Lathière, J.: Concentrations and fluxes of isoprene and oxygenated VOCs at a French Mediterranean oak forest, Atmos. Chem. Phys., 14, 10085–10102, https://doi.org/10.5194/acp-14-10085-2014, 2014.
Kerdouci, J., Picquet-Varrault, B., and Doussin, J. F.: Prediction of rate
constants for gas-phase reactions of nitrate radical with organic compounds:
A new structure-activity relationship, Chem. Phys. Chem., 11, 3909–3920,
https://doi.org/10.1002/cphc.201000673, 2010.
Kesselmeier, J. and Staudt, M.: An Overview on Emission, Physiology and
Ecology.pdf, J. Atmos. Chem., 33, 23–88,
https://doi.org/10.1023/A:1006127516791, 1999.
King, M. D., Canosa-Mas, C. E., and Wayne, R. P.: A structure-activity
relationship (SAR) for predicting rate constants for the reaction of NO3, OH
and O3 with monoalkenes and conjugated dienes, Phys. Chem. Chem. Phys., 1,
2239–2246, https://doi.org/10.1039/a901193e, 1999.
Kramer, L. J., Helmig, D., Burkhart, J. F., Stohl, A., Oltmans, S., and Honrath, R. E.: Seasonal variability of atmospheric nitrogen oxides and non-methane hydrocarbons at the GEOSummit station, Greenland, Atmos. Chem. Phys., 15, 6827–6849, https://doi.org/10.5194/acp-15-6827-2015, 2015.
Kroll, J. H. and Seinfeld, J. H.: Chemistry of secondary organic aerosol:
Formation and evolution of low-volatility organics in the atmosphere, Atmos.
Environ., 42, 3593–3624, https://doi.org/10.1016/j.atmosenv.2008.01.003,
2008.
Kurpius, M. R. and Goldstein, A. H.: Gas-phase chemistry dominates ozone
loss to a forest, implying a source of aerosols and hydroxyl radicals to the
atmosphere, Geophys. Res. Lett., 30, 2–5, https://doi.org/10.1029/2002GL016785, 2003.
Kwok, E. S. C. and Atkinson, R.: Estimation of hydroxyl radical reaction
rate constants for gas-phase organic compounds using a structure-reactivity
relationship: An update, Atmos. Environ., 29, 1685–1695,
https://doi.org/10.1016/1352-2310(95)00069-B, 1995.
Lamb, B., Guenther, A., Gay, D., and Westberg, H.: A national inventory of
biogenic hydrocarbon emissions, Atmos. Environ., 21, 1695–1705,
https://doi.org/10.1016/0004-6981(87)90108-9, 1987.
Laothawornkitkul, J., Taylor, J. E., Paul, N. D., and Hewitt, C. N.:
Biogenic volatile organic compounds in the Earth system: Tansley review, New
Phytol., 183, 27–51, https://doi.org/10.1111/j.1469-8137.2009.02859.x,
2009.
Lee, A., Goldstein, A. H., Keywood, M. D., Gao, S., Varutbangkul, V.,
Bahreini, R., Ng, N. L., Flagan, R. C., and Seinfeld, J. H.: Gas-phase
products and secondary aerosol yields from the ozonolysis of ten different
terpenes, 111, 1–18, https://doi.org/10.1029/2005JD006437, 2006.
Lee, L., Teng, A. P., Wennberg, P. O., Crounse, J. D., and Cohen, R. C.: On
rates and mechanisms of OH and O3 reactions with isoprene-derived hydroxy
nitrates, J. Phys. Chem. A., 118, 1622–1637, https://doi.org/10.1021/jp4107603, 2014.
Lerdau, M., Guenther, A., and Monson, R.: Plant Production and Emission of
Volatile Organic Compounds, Bioscience, 47, 373–383,
https://doi.org/10.2307/1313152, 1997.
Lim, S. S., Vos, T., Flaxman, A. D. et al.: A comparative risk assessment of burden of
disease and injury attributable to 67 risk factors and risk factor clusters
in 21 regions, 1990–2010: A systematic analysis for the Global Burden of
Disease Study 2010, Lancet, 380, 2224–2260,
https://doi.org/10.1016/S0140-6736(12)61766-8, 2012.
Ling, Z., He, Z., Wang, Z., Shao, M., and Wang, X.: Sources of methacrolein
and methyl vinyl ketone and their contributions to methylglyoxal and
formaldehyde at a receptor site in Pearl River Delta, J. Environ. Sci., 79,
1–10, https://doi.org/10.1016/j.jes.2018.12.001, 2019.
Matsumoto, J.: Measuring biogenic volatile organic compounds (BVOCs) from
vegetation in terms of ozone reactivity, Aerosol Air Qual. Res., 14,
197–206, https://doi.org/10.4209/aaqr.2012.10.0275, 2014.
McGlynn, D. F. and Isaacman-VanWertz, G.: In-Canopy Biogenic Volatile Organic Compounds Mixing Ratios at the Virginia Forest Lab, Mendeley Data [data set], V1, https://doi.org/10.17632/jx3vn5xxcn.1, 2021.
Millet, D. B., Donahue, N. M., Pandis, S. N., Polidori, A., Stanier, C. O.,
Turpin, B. J., and Goldstein, A. H.: Atmospheric volatile organic compound
measurements during the Pittsburgh Air Quality Study: Results,
interpretation, and quantification of primary and secondary contributions, J. Geophys. Res.-Atmos., 110, 1–17, https://doi.org/10.1029/2004JD004601, 2005.
Nakashima, Y., Kato, S., Greenberg, J., Harley, P., Karl, T., Turnipseed,
A., Apel, E., Guenther, A., Smith, J., and Kajii, Y.: Total OH reactivity
measurements in ambient air in a southern Rocky mountain ponderosa pine
forest during BEACHON-SRM08 summer campaign, Atmos. Environ., 85, 1–8,
https://doi.org/10.1016/j.atmosenv.2013.11.042, 2014.
NIST Chemical Kinetics Database:
https://kinetics.nist.gov/kinetics/index.jsp, last access: 5 May 2020.
Ortega, J., Helmig, D., Guenther, A., Harley, P., Pressley, S., and Vogel,
C.: Flux estimates and OH reaction potential of reactive biogenic volatile
organic compounds (BVOCs) from a mixed northern hardwood forest, 41,
5479–5495, https://doi.org/10.1016/j.atmosenv.2006.12.033, 2007.
Panopoulou, A., Liakakou, E., Sauvage, S., Gros, V., Locoge, N., Stavroulas,
I., Bonsang, B., Gerasopoulos, E., and Mihalopoulos, N.: Yearlong
measurements of monoterpenes and isoprene in a Mediterranean city (Athens):
Natural vs anthropogenic origin, Atmos. Environ., 243, 117803,
https://doi.org/10.1016/j.atmosenv.2020.117803, 2020.
Park, C., Schade, G. W., and Boedeker, I.: Flux measurements of volatile
organic compounds by the relaxed eddy accumulation method combined with a
GC-FID system in urban Houston, Texas, Atmos. Environ., 44, 2605–2614,
https://doi.org/10.1016/j.atmosenv.2010.04.016, 2010.
Peake, E. and Sandhu, H. S.: The formation of ozone and peroxyacetyl nitrate (PAN) in the urban atmospheres of Alberta, Canadian Journal of Chemistry, 61, 5, 927-935, https://doi.org/10.1139/v83-166, 1983.
Pfrang, C., King, M. D., Canosa-Mas, C. E., and Wayne, R. P.:
Structure–activity relations (SARs) for gas-phase reactions of NO3, OH and
O3 with alkenes: An update, Atmos. Environ., 40, 1180–1186,
https://doi.org/10.1016/j.atmosenv.2005.09.080, 2006.
Pinto, D. M., Tiiva, P., Miettinen, P., Joutsensaari, J., Kokkola, H., Nerg,
A.-M., Laaksonen, A., and Holopainen, J. K.: The effects of increasing
atmospheric ozone on biogenic monoterpene profiles and the formation of
secondary aerosols, Atmos. Environ., 41, 4877–4887,
https://doi.org/10.1016/j.atmosenv.2007.02.006, 2007.
Plass-Dülmer, C., Michl, K., Ruf, R., and Berresheim, H.: C2–C8
Hydrocarbon measurement and quality control procedures at the Global
Atmosphere Watch Observatory Hohenpeissenberg, J. Chromatogr. A, 953,
175–197, https://doi.org/10.1016/S0021-9673(02)00128-0, 2002.
Pollmann, J., Ortega, J., and Helmig, D.: Analysis of atmospheric
sesquiterpenes: Sampling losses and mitigation of ozone interferences,
Environ. Sci. Technol., 39, 9620–9629, https://doi.org/10.1021/es050440w,
2005.
Porter, W. C., Safieddine, S. A., and Heald, C. L.: Impact of aromatics and
monoterpenes on simulated tropospheric ozone and total OH reactivity, Atmos.
Environ., 169, 250–257, https://doi.org/10.1016/j.atmosenv.2017.08.048,
2017.
Pratt, K. A., Mielke, L. H., Shepson, P. B., Bryan, A. M., Steiner, A. L., Ortega, J., Daly, R., Helmig, D., Vogel, C. S., Griffith, S., Dusanter, S., Stevens, P. S., and Alaghmand, M.: Contributions of individual reactive biogenic volatile organic compounds to organic nitrates above a mixed forest, Atmos. Chem. Phys., 12, 10125–10143, https://doi.org/10.5194/acp-12-10125-2012, 2012.
Pusede, S. E., Gentner, D. R., Wooldridge, P. J., Browne, E. C., Rollins, A. W., Min, K.-E., Russell, A. R., Thomas, J., Zhang, L., Brune, W. H., Henry, S. B., DiGangi, J. P., Keutsch, F. N., Harrold, S. A., Thornton, J. A., Beaver, M. R., St. Clair, J. M., Wennberg, P. O., Sanders, J., Ren, X., VandenBoer, T. C., Markovic, M. Z., Guha, A., Weber, R., Goldstein, A. H., and Cohen, R. C.: On the temperature dependence of organic reactivity, nitrogen oxides, ozone production, and the impact of emission controls in San Joaquin Valley, California, Atmos. Chem. Phys., 14, 3373–3395, https://doi.org/10.5194/acp-14-3373-2014, 2014.
Ramasamy, S., Ida, A., Jones, C., and Kato, S.: Total OH reactivity
measurement in a BVOC dominated temperate forest during a summer campaign, 2014, Atmos. Environ., 131, 41–54, https://doi.org/10.1016/j.atmosenv.2016.01.039, 2016.
Read, K. A., Lee, J. D., Lewis, A. C., Moller, S. J., Mendes, L., and
Carpenter, L. J.: Intra-annual cycles of NMVOC in the tropical marine
boundary layer and their use for interpreting seasonal variability in CO, J.
Geophys. Res.-Atmos., 114, 1–14, https://doi.org/10.1029/2009JD011879,
2009.
Sadiq, M., Tai, A. P. K., Lombardozzi, D., and Val Martin, M.: Effects of ozone–vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks, Atmos. Chem. Phys., 17, 3055–3066, https://doi.org/10.5194/acp-17-3055-2017, 2017.
Scanlon, J. and Willis, D.: Calculation of Flame Ionization Detector
Relative Response Factors Using the Effective Carbon Number Concept, J. Chromatogr. Sci., 23, 333–340, https://doi.org/10.1093/chromsci/23.8.333, 1985.
Schade, G. W. and Goldstein, A. H.: Fluxes of oxygenated volatile organic
compounds from a ponderosa pine plantation, J. Geophys. Res.-Atmos., 106,
3111–3123, https://doi.org/10.1029/2000JD900592, 2001.
Schade, G. W. and Goldstein, A. H.: Increase of monoterpene emissions from a
pine plantation as a result of mechanical disturbances, Geophys. Res. Lett.,
30, 10–13, https://doi.org/10.1029/2002GL016138, 2003.
Schade, G. W., Goldstein, A. H., and Lamanna, M. S.: Are Monoterpene
Emissions influenced by Humidity?, Geophys. Res. Lett., 26, 2187–2190,
https://doi.org/10.1029/1999GL900444, 1999.
Shu, Y. and Atkinson, R.: Rate constants for the gas-phase reactions of O3
with a series of Terpenes and OH radical formation from the O3 reactions
with Sesquiterpenes at 296±2 K, Int. J. Chem. Kinet., 26,
1193–1205, https://doi.org/10.1002/kin.550261207, 1994.
Simpson, I. J., Andersen, M. P. S., Meinardi, S., Bruhwiler, L., Blake, N.
J., Helmig, D., Sherwood Rowland, F., and Blake, D. R.: Long-term decline of
global atmospheric ethane concentrations and implications for methane,
Nature, 488, 490–494, https://doi.org/10.1038/nature11342, 2012.
Sinha, V., Williams, J., Lelieveld, J., Ruuskanen, T. M., Kajos, M. K.,
Patokoski, J., Hellen, H., Hakola, H., Mogensen, D., Boy, M., Rinne, J., and
Kulmala, M.: OH reactivity measurements within a boreal forest: Evidence for
unknown reactive emissions, Environ. Sci. Technol., 44, 6614–6620,
https://doi.org/10.1021/es101780b, 2010.
Stein, S. E. and Scott, D. R.: ScienceDirect – Journal of the American
Society for Mass Spectrometry: Optimization and testing of mass spectral
library search algorithms for compound identification, J. Am. Soc. Mass
Spectrom., 5, 859–866, 1994.
Trainer, M., Parrish, D. D., Norton, R. B., Fehsenfeld, F. C., Anlauf, K.
G., Bottenheim, J. W., Tang, Y. Z., Wiebe, H. A., Roberts, J. M., Tanner, R.
L., Newman, L., Bowersox, V. C., Meagher, J. F., Olszyna, K. J., Rodgers, M.
O., Wang, T., Berresheim, H., Demerjian, K. L., and Roychowdhury, U. K.:
Correlation of ozone with NOy in photochemically aged air, J. Geophys. Res.-Atmos., 98, 2917–2925,
https://doi.org/10.1029/92JD01910, 1993.
US Environmental Protection Agency: Estimation Programs Interface Suite™ for Microsoft® Windows, v 4.11, available at: https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface (last access: 3 January 2021), 2012.
Wolfe, G. M., Thornton, J. A., McKay, M., and Goldstein, A. H.: Forest-atmosphere exchange of ozone: sensitivity to very reactive biogenic VOC emissions and implications for in-canopy photochemistry, Atmos. Chem. Phys., 11, 7875–7891, https://doi.org/10.5194/acp-11-7875-2011, 2011.
Worton, D. R., Decker, M., Isaacman-VanWertz, G., Chan, A. W. H., Wilson, K.
R., and Goldstein, A. H.: Improved molecular level identification of organic
compounds using comprehensive two-dimensional chromatography, dual
ionization energies and high resolution mass spectrometry, Analyst, 142, 2395–2403, https://doi.org/10.1039/c7an00625j, 2017.
Yáñez-Serrano, A. M., Nölscher, A. C., Bourtsoukidis, E., Gomes Alves, E., Ganzeveld, L., Bonn, B., Wolff, S., Sa, M., Yamasoe, M., Williams, J., Andreae, M. O., and Kesselmeier, J.: Monoterpene chemical speciation in a tropical rainforest:variation with season, height, and time of dayat the Amazon Tall Tower Observatory (ATTO), Atmos. Chem. Phys., 18, 3403–3418, https://doi.org/10.5194/acp-18-3403-2018, 2018.
Yee, L. D., Isaacman-VanWertz, G., Wernis, R. A., Meng, M., Rivera, V., Kreisberg, N. M., Hering, S. V., Bering, M. S., Glasius, M., Upshur, M. A., Gray Bé, A., Thomson, R. J., Geiger, F. M., Offenberg, J. H., Lewandowski, M., Kourtchev, I., Kalberer, M., de Sá, S., Martin, S. T., Alexander, M. L., Palm, B. B., Hu, W., Campuzano-Jost, P., Day, D. A., Jimenez, J. L., Liu, Y., McKinney, K. A., Artaxo, P., Viegas, J., Manzi, A., Oliveira, M. B., de Souza, R., Machado, L. A. T., Longo, K., and Goldstein, A. H.: Observations of sesquiterpenes and their oxidation products in central Amazonia during the wet and dry seasons, Atmos. Chem. Phys., 18, 10433–10457, https://doi.org/10.5194/acp-18-10433-2018, 2018.
Zheng, Y., Unger, N., Tadi, J. M., Seco, R., Guenther, A. B., Barkley, M.
P., Potosnak, M. J., Murray, L. T., Michalak, A. M., Qiu, X., Kim, S., Karl,
T., Gu, L., and Pallardy, S. G.: Drought impacts on photosynthesis, isoprene
emission and atmospheric formaldehyde in a mid-latitude forest, Atmos. Environ., 167, 190–201, https://doi.org/10.1016/j.atmosenv.2017.08.017, 2017.
Zimmerman, P. R.: Testing of hydrocarbones emissions from vegetation, leaf litter and aquatic surfaces, and development of a methodology for compiling biogenic emissions inventories, Epa-450/4-79-004, 1–112 pp., 1979.
Short summary
We present 1 year of hourly measurements of chemically resolved Biogenic volatile organic compound (BVOCs) between 15 September 2019 and 15 September 2020, collected at a research tower in central Virginia. Concentrations of a range of BVOCs are described and examined for their impact on atmospheric reactivity. The majority of reactivity comes from α-pinene and limonene, highlighting the importance of both concentration and structure in assessing atmospheric impacts of emissions.
We present 1 year of hourly measurements of chemically resolved Biogenic volatile organic...
Altmetrics
Final-revised paper
Preprint