Articles | Volume 21, issue 15
https://doi.org/10.5194/acp-21-11927-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-11927-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The sporadic sodium layer: a possible tracer for the conjunction between the upper and lower atmospheres
Department of Geophysics, College of the Geology Engineering and Geomatics, Chang'an University, Xi'an, 710054, China
Key Laboratory of Geospace Environment, Chinese Academy of Sciences, University of Science & Technology of China, Hefei, Anhui, 230026, China
Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
Ning Wang
Department of Geophysics, College of the Geology Engineering and Geomatics, Chang'an University, Xi'an, 710054, China
Department of Geophysics, Gravity & Magnetic Institute of Chang'an University, Xi'an, 710054, China
Key Laboratory of Western China's Mineral Resources and Geological Engineering, China Ministry of Education, Xi'an, 710054, China
Willie Soon
Center for Environmental Research and Earth Sciences (CERES), Salem, MA 01970, USA
Institute of Earth Physics and Space Science (ELKH EPSS), 9400, Sopron, Hungary
Gaopeng Lu
Key Laboratory of Geospace Environment, Chinese Academy of Sciences, University of Science & Technology of China, Hefei, Anhui, 230026, China
Mingjiao Jia
Key Laboratory of Geospace Environment, Chinese Academy of Sciences, University of Science & Technology of China, Hefei, Anhui, 230026, China
Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
Xingjin Wang
Key Laboratory of Geospace Environment, Chinese Academy of Sciences, University of Science & Technology of China, Hefei, Anhui, 230026, China
Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
Xianghui Xue
Key Laboratory of Geospace Environment, Chinese Academy of Sciences, University of Science & Technology of China, Hefei, Anhui, 230026, China
Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
Key Laboratory of Geospace Environment, Chinese Academy of Sciences, University of Science & Technology of China, Hefei, Anhui, 230026, China
Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
Xiankang Dou
CORRESPONDING AUTHOR
Key Laboratory of Geospace Environment, Chinese Academy of Sciences, University of Science & Technology of China, Hefei, Anhui, 230026, China
Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
Related authors
Shican Qiu, Zhe Wang, Gaopeng Lu, Zeren Zhima, Willie Soon, Victor Manuel Velasco Herrera, and Peng Ju
Atmos. Chem. Phys., 24, 8519–8527, https://doi.org/10.5194/acp-24-8519-2024, https://doi.org/10.5194/acp-24-8519-2024, 2024
Short summary
Short summary
We focus on the interactions among TLEs, lightning, and the ionospheric electric field. The SNR of the Schumann resonance at the first and second modes dropped during the TLEs. A significant enhancement of the energy in ULF occurred. Distinct lightning whistler waves were found in the VLF band. Our results indicate that the observations of electric fields from the satellite could possibly be utilized to monitor lower-atmospheric lightning and its impact on the space environment.
Shican Qiu, Mengzhen Yuan, Willie Soon, Victor Manuel Velasco Herrera, Zhanming Zhang, and Xiankang Dou
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2022-22, https://doi.org/10.5194/angeo-2022-22, 2022
Revised manuscript not accepted
Short summary
Short summary
In this paper, the solar radiation index Y10 acts as an indicator of the solar activity, and the vertical column of ice water content (IWC) characterizes the nature of the polar mesosphere cloud (PMC). Superposed epoch analysis is used to determine the time lag days of temperature and IWC anomalies in responding to Y10 for the PMC seasons from 2007–2015. The results show that the IWC can respond quickly to temperature within time lag of one day.
Shican Qiu, Mengxi Shi, Willie Soon, Mingjiao Jia, Xianghui Xue, Tao Li, Peng Ju, and Xiankang Dou
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1085, https://doi.org/10.5194/acp-2021-1085, 2022
Revised manuscript not accepted
Short summary
Short summary
The solitary wave theory is applied for the first time to study the sporadic sodium layers (NaS). We perform soliton fitting processes on the observed data from the Andes Lidar Observatory, and find out that 24/27 NaS events exhibit similar features to a soliton. Time series of the net anomaly reveal the same variation process to the solution of a five-order KdV equation. Our results suggest the NaS phenomenon would be an appropriate tracer for nonlinear wave studies in the atmosphere.
Yucheng Zi, Zhenxia Long, Jinyu Sheng, Gaopeng Lu, Will Perrie, and Ziniu Xiao
EGUsphere, https://doi.org/10.5194/egusphere-2025-2990, https://doi.org/10.5194/egusphere-2025-2990, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
We investigated how boreal winter sea surface temperatures anomaly in the central tropical Pacific impact the Antarctic stratosphere months later. Using 45 years of reanalysis data, we found that warmer sea surface lead to a warmer Antarctic stratosphere and increased ozone during the subsequent austral winter. This link, driven by the planetary waves and reinforced by regional sea-ice loss, provides a new way to make long-range forecasts for stratospheric conditions and ozone.
Shican Qiu, Zhe Wang, Gaopeng Lu, Zeren Zhima, Willie Soon, Victor Manuel Velasco Herrera, and Peng Ju
Atmos. Chem. Phys., 24, 8519–8527, https://doi.org/10.5194/acp-24-8519-2024, https://doi.org/10.5194/acp-24-8519-2024, 2024
Short summary
Short summary
We focus on the interactions among TLEs, lightning, and the ionospheric electric field. The SNR of the Schumann resonance at the first and second modes dropped during the TLEs. A significant enhancement of the energy in ULF occurred. Distinct lightning whistler waves were found in the VLF band. Our results indicate that the observations of electric fields from the satellite could possibly be utilized to monitor lower-atmospheric lightning and its impact on the space environment.
Nan Sun, Gaopeng Lu, and Yunfei Fu
Atmos. Chem. Phys., 24, 7123–7135, https://doi.org/10.5194/acp-24-7123-2024, https://doi.org/10.5194/acp-24-7123-2024, 2024
Short summary
Short summary
Microphysical characteristics of convective overshooting are essential but poorly understood, and we examine them by using the latest data. (1) Convective overshooting events mainly occur over NC (Northeast China) and northern MEC (Middle and East China). (2) Radar reflectivity of convective overshooting over NC accounts for a higher proportion below the zero level, while the opposite is the case for MEC and SC (South China). (3) Droplets of convective overshooting are large but sparse.
Kenan Wu, Tianwen Wei, Jinlong Yuan, Haiyun Xia, Xin Huang, Gaopeng Lu, Yunpeng Zhang, Feifan Liu, Baoyou Zhu, and Weidong Ding
Atmos. Meas. Tech., 16, 5811–5825, https://doi.org/10.5194/amt-16-5811-2023, https://doi.org/10.5194/amt-16-5811-2023, 2023
Short summary
Short summary
A compact all-fiber coherent Doppler wind lidar (CDWL) working at the 1.5 µm wavelength is applied to probe the dynamics and microphysics structure of thunderstorms. It was found that thunderclouds below the 0 ℃ isotherm have significant spectrum broadening and an increase in skewness, and that lightning affects the microphysics structure of the thundercloud. It is proven that the precise spectrum of CDWL is a promising indicator for studying the charge structure of thunderstorms.
Xin Fang, Feng Li, Lei-lei Sun, and Tao Li
Atmos. Meas. Tech., 16, 2263–2272, https://doi.org/10.5194/amt-16-2263-2023, https://doi.org/10.5194/amt-16-2263-2023, 2023
Short summary
Short summary
We successfully developed the first pseudorandom modulation continuous-wave narrowband sodium lidar (PMCW-NSL) system for simultaneous measurements of the mesopause region's temperature and wind. Based on the innovative decoded technique and algorithm for CW lidar, both the main and residual lights modulated by M-code are used and directed to the atmosphere in the vertical and eastward directions, tilted 20° from the zenith. The PMCW-NSL system can applied to airborne and space-borne purposes.
Wen Yi, Jie Zeng, Xianghui Xue, Iain Reid, Wei Zhong, Jianfei Wu, Tingdi Chen, and Xiankang Dou
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-254, https://doi.org/10.5194/amt-2022-254, 2022
Revised manuscript not accepted
Short summary
Short summary
In recent years, the concept of multistatic meteor radar systems has attracted the attention of the atmospheric radar community, focusing on the MLT region. In this study, we apply a multistatic meteor radar system consisting of a monostatic meteor radar in Mengcheng (33.36° N, 116.49° E) and a remote receiver in Changfeng (31.98° N, 117.22° E) to estimate the two-dimensional horizontal wind field, and the horizontal divergence and relative vorticity of the wind field.
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Mingjiao Jia, Wuhu Feng, John M. C. Plane, Daniel R. Marsh, Jonas Hedin, Jörg Gumbel, and Xiankang Dou
Atmos. Chem. Phys., 22, 11485–11504, https://doi.org/10.5194/acp-22-11485-2022, https://doi.org/10.5194/acp-22-11485-2022, 2022
Short summary
Short summary
We present a study on the climatology of the metal sodium layer in the upper atmosphere from the ground-based measurements obtained from a lidar network, the Odin satellite measurements, and a global model of meteoric sodium in the atmosphere. Comprehensively, comparisons show good agreement and some discrepancies between ground-based observations, satellite measurements, and global model simulations.
Shican Qiu, Mengzhen Yuan, Willie Soon, Victor Manuel Velasco Herrera, Zhanming Zhang, and Xiankang Dou
Ann. Geophys. Discuss., https://doi.org/10.5194/angeo-2022-22, https://doi.org/10.5194/angeo-2022-22, 2022
Revised manuscript not accepted
Short summary
Short summary
In this paper, the solar radiation index Y10 acts as an indicator of the solar activity, and the vertical column of ice water content (IWC) characterizes the nature of the polar mesosphere cloud (PMC). Superposed epoch analysis is used to determine the time lag days of temperature and IWC anomalies in responding to Y10 for the PMC seasons from 2007–2015. The results show that the IWC can respond quickly to temperature within time lag of one day.
Yetao Cen, Chengyun Yang, Tao Li, James M. Russell III, and Xiankang Dou
Atmos. Chem. Phys., 22, 7861–7874, https://doi.org/10.5194/acp-22-7861-2022, https://doi.org/10.5194/acp-22-7861-2022, 2022
Short summary
Short summary
The MLT DW1 amplitude is suppressed during El Niño winters in both satellite observation and SD-WACCM simulations. The suppressed Hough mode (1, 1) in the tropopause region propagates vertically to the MLT region, leading to decreased DW1 amplitude. The latitudinal zonal wind shear anomalies during El Niño winters would narrow the waveguide and prevent the vertical propagation of DW1. The gravity wave drag excited by ENSO-induced anomalous convection could also modulate the MLT DW1 amplitude.
Dawei Tang, Tianwen Wei, Jinlong Yuan, Haiyun Xia, and Xiankang Dou
Atmos. Meas. Tech., 15, 2819–2838, https://doi.org/10.5194/amt-15-2819-2022, https://doi.org/10.5194/amt-15-2819-2022, 2022
Short summary
Short summary
During 11–20 March 2020, three aerosol transport events were investigated by a lidar system and an online bioaerosol detection system in Hefei, China.
Observation results reveal that the events not only contributed to high particulate matter pollution but also to the transport of external bioaerosols, resulting in changes in the fraction of fluorescent biological aerosol particles.
This detection method improved the time resolution and provided more parameters for aerosol detection.
Shican Qiu, Mengxi Shi, Willie Soon, Mingjiao Jia, Xianghui Xue, Tao Li, Peng Ju, and Xiankang Dou
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-1085, https://doi.org/10.5194/acp-2021-1085, 2022
Revised manuscript not accepted
Short summary
Short summary
The solitary wave theory is applied for the first time to study the sporadic sodium layers (NaS). We perform soliton fitting processes on the observed data from the Andes Lidar Observatory, and find out that 24/27 NaS events exhibit similar features to a soliton. Time series of the net anomaly reveal the same variation process to the solution of a five-order KdV equation. Our results suggest the NaS phenomenon would be an appropriate tracer for nonlinear wave studies in the atmosphere.
Liang Tang, Sheng-Yang Gu, and Xian-Kang Dou
Atmos. Chem. Phys., 21, 17495–17512, https://doi.org/10.5194/acp-21-17495-2021, https://doi.org/10.5194/acp-21-17495-2021, 2021
Short summary
Short summary
Our study explores the variation in the occurrence date, peak amplitude and wave period for eastward waves and the role of instability, background wind structure and the critical layer in eastward wave propagation and amplification.
Wei Zhong, Xianghui Xue, Wen Yi, Iain M. Reid, Tingdi Chen, and Xiankang Dou
Atmos. Meas. Tech., 14, 3973–3988, https://doi.org/10.5194/amt-14-3973-2021, https://doi.org/10.5194/amt-14-3973-2021, 2021
Bingkun Yu, Xianghui Xue, Christopher J. Scott, Jianfei Wu, Xinan Yue, Wuhu Feng, Yutian Chi, Daniel R. Marsh, Hanli Liu, Xiankang Dou, and John M. C. Plane
Atmos. Chem. Phys., 21, 4219–4230, https://doi.org/10.5194/acp-21-4219-2021, https://doi.org/10.5194/acp-21-4219-2021, 2021
Short summary
Short summary
A long-standing mystery of metal ions within Es layers in the Earth's upper atmosphere is the marked seasonal dependence, with a summer maximum and a winter minimum. We report a large-scale winter-to-summer transport of metal ions from 6-year multi-satellite observations and worldwide ground-based stations. A global atmospheric circulation is responsible for the phenomenon. Our results emphasise the effect of this atmospheric circulation on the transport of composition in the upper atmosphere.
Jianyuan Wang, Wen Yi, Jianfei Wu, Tingdi Chen, Xianghui Xue, Robert A. Vincent, Iain M. Reid, Paulo P. Batista, Ricardo A. Buriti, Toshitaka Tsuda, and Xiankang Dou
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-33, https://doi.org/10.5194/acp-2021-33, 2021
Revised manuscript not accepted
Short summary
Short summary
In this study, we report the climatology of migrating and non-migrating tides in mesopause winds estimated using multiyear observations from three meteor radars in the southern equatorial region. The results reveal that the climatological patterns of tidal amplitudes by meteor radars is similar to the Climatological Tidal Model of the Thermosphere (CTMT) results and the differences are mainly due to the effect of the stratospheric sudden warming (SSW) event.
Cited articles
Abdu, M. A., Macdougall, J. W., Batista, I. S., Sobral, J. H. A., and Jayachandran, P. T.:
Equatorial evening prereversal electric field enhancement and sporadic E layer disruption: A manifestation of E and F region coupling,
J. Geophys. Res.-Space,
108, SIA 8-1–SIA 8-13, 2003.
Bittencourt, J. A.:
Fundamentals of Plasma Physics, 3rd Edn.,
Springer-Verlag, New York, Inc., 9–10 pp., 2004.
Bortnik, J., Thorne, R. M., O'Brien, T. P., Green, J. C., Strangeway, R. J., Shprits, Y. Y., and Baker, D. N.:
Observation of two distinct, rapid loss mechanisms during the 20 November 2003 radiation belt dropout event,
J. Geophys. Res.-Space,
111, A12216, https://doi.org/10.1029/2006JA011802, 2006.
Chinese Meridian Project: available at: http://data.meridianproject.ac.cn/, last access: 6 August 2021.
Christos, H.:
Is there a conclusive evidence on lightning-related effects on sporadic E layers?,
J. Atmos. Sol.-Terr. Phy.,
172, 117–121, 2018.
Clemesha, B. R., Kirchhoff, V., Simonich, D. W., and Takahashi, H.:
Evidence of an extra-terrestrial source for the mesospheric sodium layer,
Geophys. Res. Lett.,
5, 873–876, 1978.
Clemesha, B. R, Kirchhoff, V., Simonich, D. W., Takahashi, H., and Batista, P.:
Spaced lidar and nightglow observations of an atmospheric sodium enhancement,
J. Geophys. Res.-Space,
85, 3480–3484, 1980.
Clemesha, B. R., Simonich, D. M., Batista, P. P., and Batista, I. S.:
Lidar observations of atmospheric sodium at an equatorial location,
J. Atmos. Sol.-Terr. Phy.,
60, 1773–1778, 1998.
Clemesha, B. R., Batista, P., and Simonich, D.:
An evaluation of the evidence for ion recombination as a source of sporadic neutral layers in the lower thermosphere,
Adv. Space Res.,
24, 547–556, 1999.
Collins, S. C., Plane, J. M. C., Kelley, M. C., Wright, T. G., Soldán, P., Kane, T. J., Gerrard, A. J., Grime,B. W., Rollason, R. J., and Friedman, J. S., González, S. A., Zhou, Q., Sulzer, M. P., and Tepley, C. A.:
A study of the role of ion-molecule chemistry in the formation of sporadic sodium layers,
J. Atmos. Sol.-Terr. Phy.,
64, 845–860, 2002.
Cox, R., Plane, J. M. C., and Green, J. S. A.:
A modelling investigation of sudden sodium layers,
Geophys. Res. Lett.,
20, 2841–2844, 1993.
Cox, R. M. and Plane, J. M. C.:
An ion-molecule mechanism for the formation of neutral sporadic Na layers,
J. Geophys. Res.,
103, 6349–6359, 1998.
Cummer, S. A., Li, J., Han, F., Lu, G., Jaugey, N., Lyons, W. A., and Nelson, T. E.:
Quantification of the troposphere-to-ionosphere charge transfer in a gigantic jet,
Nat. Geosci.,
2, 617–620, 2009.
Curtius, J., Lovejoy, E. R., and Froyd, K. D.:
Atmospheric Ion-induced Aerosol Nucleation,
Space Sci. Rev.,
125, 159–167, 2006.
Daire, S. E., Plane, J. M. C, Gamblin, S. D., Soldán, P., Lee, E. P. F, and Wright, T. G.:
A theoretical study of the ligand-exchange reactions of complexes (X=O, O2, N2, CO2 and H2O): implications for the upper atmosphere,
J. Atmos. Sol.-Terr. Phy.,
64, 863–870, 2002.
Damtie, B., Nygrén, T., Lehtinen, M. S., and Huuskonen, A.: High resolution observations of sporadic-E layers within the polar cap ionosphere using a new incoherent scatter radar experiment, Ann. Geophys., 20, 1429–1438, https://doi.org/10.5194/angeo-20-1429-2002, 2002.
Davis, C. J. and Johnson, C. G.:
Lightning-induced intensification of the ionospheric sporadic E layer,
Nature,
435, 799–801, 2005.
Davis, C. J. and Lo, K. H.:
An enhancement of the ionospheric sporadic -E layer in response to negative polarity cloud-to-ground lightning,
Geophys. Res. Lett.,
35, L05815, https://doi.org/10.1029/2007GL031909, 2008.
Denardini, C. M., Resende, L. C. A., Moro, J., and Chen, S. S.:
Occurrence of the blanketing sporadic E layer during the recovery phase of the October 2003 superstorm,
Earth Planets Space,
68, 1–9, 2016.
Dou, X. K., Xue, X. H., Li, T., Chen, T. D., Chen, C., and Qiu, S. C.:
Possible relations between meteors, enhanced electron density layers, and sporadic sodium layers,
J. Geophys. Res.-Space,
115, A06311, https://doi.org/10.1029/2009JA014575, 2010.
Dou, X.-K., Xue, X.-H., Chen, T.-D., Wan, W.-X., Cheng, X.-W., Li, T., Chen, C., Qiu, S., and Chen, Z.-Y.: A statistical study of sporadic sodium layer observed by Sodium lidar at Hefei (31.8∘ N, 117.3∘ E), Ann. Geophys., 27, 2247–2257, https://doi.org/10.5194/angeo-27-2247-2009, 2009.
Driscoll, K. T., Blakeslee, R. J., and Baginski, M. E.:
A modeling study of the time-averaged electric currents in the vicinity of isolated thunderstorms,
J. Geophys. Res.-Atmos.,
97, 11535–11551, 1992.
England, S. L., Maus, S., Immel, T. J., and Mende, S. B.:
Longitudinal variation of the E-region electric fields caused by atmospheric tides,
Geophys. Res. Lett.,
33, L21105, https://doi.org/10.1029/2006GL027465, 2006.
Fukunishi, H., Takahashi, Y., Kubota, M., Sakanoi, K., Inan, U, S., and Lyons, W. A.:
Elves: Lightning-induced transient luminous events in the lower ionosphere,
Geophys. Res. Lett.,
23, 2157–2160, 1996.
Gardner, C. S., Kane, T. J., Senft, D. C., Qian, J., and Papen, G. C.:
Simultaneous observations of sporadic E, Na, Fe, and Ca+ layers at Urbana, Illinois: Three case studies,
J. Geophys. Res.-Atmos.,
98, 16865–16873, 1993.
Gardner, C. S., Tao, X., and Papen, G. C.:
Observations of strong wind shears and temperature enhancements during several sporadic Na layer events above Haleakala,
Geophys. Res. Lett.,
22, 2809–2812, 1995.
Gardner, C. S., Voelz, D., Sechrist Jr, C., and Segal, A.:
Lidar studies of the nighttime sodium layer over Urbana, Illinois: 1. Seasonal and nocturnal variations,
J. Geophys. Res.,
91, 13659–13673, 1986.
Girish, T. E. and Eapen, P. E.:
Geomagnetic and sunspot activity associations and ionospheric effects of lightning phenomena at Trivandrum near dip equator,
J. Atmos. Sol.-Terr. Phy.,
70, 2222–2232, 2008.
Gong, S., Zeng, X., Xue, X., Zheng, W., Hu, Z., Jia, H., Zhang, H., and Liu, Y.:
First time observation of sodium layer over Wuhan, China by sodium fluorescence lidar,
Sci. China Ser. A,
40, 1228–1232, 1997.
Gong, S. S., Yang, G. T., Wang, J. M., Liu, B. M., Cheng, X. W., Xu, J. Y., and Wan, W. X.:
Occurrence and characteristics of sporadic sodium layer observed by lidar at a mid-latitude location,
J. Atmos. Sol.-Terr. Phy.,
64, 1957–1966, 2002.
Griffiths, D. J.:
Introduction to Electrodynamics, 3rd edn.,
Prentice-Hall, Upper Saddle River, New Jersey, 121–122 pp., 1999.
Haldoupis, C., Pancheva, D., and Mitchell, N. J.:
A study of tidal and planetary wave periodicities present in midlatitude sporadic E layers,
J. Geophys. Res.,
109, A02302, https://doi.org/10.1029/2003JA010253, 2004.
Haldoupis, C., Cohen, M., Cotts, B., Arnone, E., and Inan, U.:
Long-lasting D-region ionospheric modifications, caused by intense lightning in association with elve and sprite pairs,
Geophys. Res. Lett.,
39, L16801, https://doi.org/10.1029/2012GL052765, 2012.
Harrison, R. G.: Behind the curve: a comparison of historical sources for the Carnegie curve of the global atmospheric electric circuit, Hist. Geo Space. Sci., 11, 207–213, https://doi.org/10.5194/hgss-11-207-2020, 2020.
Harrison, R. G., Aplin, K. L., and Rycroft, M. J.:
Atmospheric electricity coupling between earthquake regions and the ionosphere,
J. Atmos. Sol.-Terr. Phy.,
72, 376–381, 2010.
Immel, T. J., Mende, S. B., Hagan, M. E., Kintner, P. M., and England, S. L.:
Evidence of Tropospheric Effects on the Ionosphere,
Eos T. Am. Geophys. Un.,
90, 69–70, 2013.
Jánský, J. and Pasko, V. P.:
Charge balance and ionospheric potential dynamics in time dependent global electric circuit model,
J. Geophys. Res.-Space,
119, 10, 2014.
Jiao, J., Yang, G., Wang, J., Feng, W., and Plane, J. M. C.:
Observations of Dramatic Enhancements to the Mesospheric K Layer,
Geophys. Res. Lett.,
44, 12536–12542,
https://doi.org/10.1002/2017GL075857, 2017.
Johnson, C. G. and Davis, C. J.:
The location of lightning affecting the ionospheric sporadic-E layer as evidence for multiple enhancement mechanisms,
Geophys. Res. Lett.,
33, L07811, https://doi.org/10.1029/2005GL025294, 2006.
Johnson, M. P., Inan, U. S., Lev-Tov, S. J., and Bell, T. F.:
Scattering pattern of lightning-induced ionospheric disturbances associated with early/fast VLF events,
Geophys. Res. Lett.,
26, 2363–2366, 1999.
Kane, T., Grime, B., Franke, S., Kudeki, E., Urbina, J., Kelley, M., and Collins, S.:
Joint observations of sodium enhancements and field-aligned ionospheric irregularities,
Geophys. Res. Lett.,
28, 1375–1378, 2001.
Kane, T. J., Hostetler, C. A., and Gardner, C. S.:
Horizontal and vertical structure of the major sporadic sodium layer events observed during ALOHA-90,
Geophys. Res. Lett.,
18, 1365–1368, 1991.
Kane, T. J., Gardner, C. S., Zhou, Q., Mathews, J. D., and Tepley, C. A.:
Lidar, radar and airglow observations of a prominent sporadic Na/sporadic E layer event at Arecibo during AIDA-89,
J. Atmos. Sol.-Terr. Phy.,
55, 499–511, 1993.
Kirkwood, S. and Nilsson, H.:
High-latitude Sporadic-E and other Thin Layers – the Role of Magnetospheric Electric Fields,
Space Sci. Rev.,
91, 579–613, 2000.
Kirkwood, S. and von Zahn, U.:
On the role of auroral electric fields in the formation of low altitude sporadic-E and sudden sodium layers,
J. Atmos. Sol.-Terr. Phy.,
53, 389–407, 1991.
Kopp, E.:
On the abundance of metal ions in the lower ionosphere,
J. Geophys. Res.,
102, 9667–9674, 1997.
Kumar, V. V., Parkinson, M. L., Dyson, P. L., and Burns, G. B.:
The effects of thunderstorm-generated atmospheric gravity waves on mid-latitude F-region drifts,
J. Atmos. Sol.-Terr. Phy.,
71, 1904–1915, 2009.
Kuo, C. L. and Lee, L. C.:
Ionospheric plasma dynamics and instability caused by upward currents above thunderstorms,
J. Geophys. Res.-Space,
120, 3240–3253, 2015.
Kwon, K. H., Senft, D. C., and Gardner, C. S.:
Lidar observations of sporadic sodium layers at Mauna Kea Observatory, Hawaii,
J. Geophys. Res.-Atmos.,
93, 14199–14208, 1988.
Lay, E. H., Shao, X. M., Kendrick, A. K., and Carrano, C. S.:
Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms,
J. Geophys. Res.-Space,
120, 6010–6020, 2015.
Leblanc, F., Aplin, K. L., Yair, Y., Harrison, R. G., Lebreton, J. P., and Blanc, M. (Eds.):
Planetary Atmospheric Electricity,
Springer Verlag, New York, 83–101, 2008.
Li, T., Fang, X., Liu, W., Gu, S. Y., and Dou, X. K.:
Narrowband sodium lidar for the measurements of mesopause region temperature and wind,
Appl. Optics,
51, 5401–5411, 2012.
Lv, D. R., Fan, Y., and Xu, J. Y.:
Advances in Studies of the Middle and Upper Atmosphere and Their Coupling with the Lower Atmosphere,
Adv. Atmos. Sci.,
21, 361–368, 2004.
Macdougall, J. W. and Jayachandran, P. T.:
Sporadic E at cusp latitudes,
J. Atmos. Sol.-Terr. Phy.,
67, 1419–1426, 2005.
Mangla, B., Sharma, D. K., and Rajput, A.:
Ion density variation at upper ionosphere during thunderstorm,
Adv. Space Res.,
59, 1189–1199, 2016.
Marsh, D. R., Janches, D., Feng, W., and Plane, J. M. C.:
A global model of meteoric sodium,
J. Geophys. Res.-Atmos.,
118, 11442–11452, 2013.
Maruyama, T.:
Extreme enhancement in total electron content after sunset on 8 November 2004 and its connection with storm enhanced density,
Geophys. Res. Lett.,
33, L20111, https://doi.org/10.1029/2006GL027367, 2006.
Mathews, J. D.:
Sporadic E: current views and recent progress,
J. Atmos. Sol.-Terr. Phy.,
60, 413–435, 1998.
Mathews, J. D., Zhou, Q., Philbrick, C. R., Morton, Y. T., and Gardner, C. S.:
Observations of ion and sodium layer coupled processes during AIDA,
J. Atmos. Sol.-Terr. Phy.,
55, 487–498, 1993.
Matuura, N., Tsuda, T., and Nozawa, S.:
Field-aligned current loop model on formation of sporadic metal layers,
J. Geophys. Res.-Space,
118, 4628–4639, 2013.
Miyagawa, H., Nakamura, T., Tsuda, T., Abo, M., Nagasawa, C., Kawahara, T. D., Kobayashi, K., Kitahara, T., and Nomura, A.:
Observations of mesospheric sporadic sodium layers with the MU radar and sodium lidars,
Earth Planets Space,
51, 785–797, 1999.
Nagasawa, C. and Abo, M.:
Lidar observations of a lot of sporadic sodium layers in mid-latitude,
Geophys. Res. Lett.,
22, 263–266, 1995.
Nesse, H., Heinrich, D., Williams, B., Hoppe, U.-P., Stadsnes, J., Rietveld, M., Singer, W., Blum, U., Sandanger, M. I., and Trondsen, E.: A case study of a sporadic sodium layer observed by the ALOMAR Weber Na lidar, Ann. Geophys., 26, 1071–1081, https://doi.org/10.5194/angeo-26-1071-2008, 2008.
Nygrén, T., Aikio, A. T., Voiculescu, M., and Ruohoniemi, J. M.: IMF effect on sporadic-E layers at two northern polar cap sites: Part II – Electric field, Ann. Geophys., 24, 901–913, https://doi.org/10.5194/angeo-24-901-2006, 2006.
Plane, J. M. C.:
Atmospheric chemistry of meteoric metals,
Chem. Rev.,
103, 4963–4984, 2003.
Plane, J. M. C.: A time-resolved model of the mesospheric Na layer: constraints on the meteor input function, Atmos. Chem. Phys., 4, 627–638, https://doi.org/10.5194/acp-4-627-2004, 2004.
Plane, J. M. C., Cox, R. M., and Rollason, R. J.:
Metallic layers in the mesopause and lower thermosphere region,
Adv. Space Res.,
24, 1559–1570, 1999.
Plane, J. M. C., Feng, W., and Dawkins, E.:
The Mesosphere and Metals: Chemistry and Changes,
Chem. Rev.,
115, 4497, https://doi.org/10.1021/cr500501m, 2015.
Parkinson, M. L., Dyson, P. L., Monselesan, D. P., and Morris, R. J.:
On the role of electric field direction in the formation of sporadic E-layers in the southern polar cap ionosphere,
J. Atmos. Sol.-Terr. Phy.,
60, 471–491, 1998.
Pasko, V. P.:
Blue jets and gigantic jets: transient luminous events between thunderstorm tops and the lower ionosphere,
Plasma Phys. Contr. F.,
50, 124050, https://doi.org/10.1088/0741-3335/50/12/124050, 2008.
Pasko, V. P., Stanley, M. A., Mathews, J. D., Inan, U. S., and Wood, T. G.:
Electrical discharge from a thundercloud top to the lower ionosphere,
Nature,
416, 152–154, 2002.
Qiu, S. C, Tang, Y. H, and Dou, X. K:
Temperature controlled icy dust reservoir of sodium: A possible mechanism for the formation of sporadic sodium layers,
Adv. Space Res.,
55, 2543–2565, 2015.
Qiu, S. C, Tang, Y. H, Jia, M. J, Xue, X. H, Dou, X. K, Li, T., and Wang, Y. H.:
A review of latitudinal characteristics of sporadic sodium layers, including new results from the Chinese Meridian Project,
Earth-Sci. Rev.,
162, 83–106, 2016.
Resende, L. C. A. and Denardini, C. M.:
Equatorial sporadic E-layer abnormal density enhancement during the recovery phase of the December 2006 magnetic storm: A case study,
Earth Planets Space,
64, 345–351, 2012.
Resende, L. C. A., Denardini, C. M., and Batista, I. S.:
Abnormal fbEs enhancements in equatorial Es layers during magnetic storms of solar cycle 23,
J. Atmos. Sol.-Terr. Phy.,
102, 228–234, 2013.
Roble, R. G. and Hays, P. B.:
A Quasi-static model of global atmospheric electricity 2. Electrical coupling between the upper and lower atmosphere,
J. Geophys. Res.,
84, 7247–7256, 1979.
Rodger, C. J., Cho, M., Clilverd, M. A., and Rycroft, M. J.:
Lower ionospheric modification by lightning-EMP: Simulation of the night ionosphere over the United States,
Geophys. Res. Lett.,
28, 199–202, 2001.
Rycroft, M. J.:
Electrical processes coupling the atmosphere and ionosphere: An overview,
J. Atmos. Sol.-Terr. Phy.,
68, 445–456, 2006.
Rycroft, M. J. and Harrison, R. G.:
Electromagnetic Atmosphere-Plasma Coupling: The Global Atmospheric Electric Circuit,
Space Sci. Rev.,
168, 363–384, 2012.
Rycroft, M. J., Israelsson, S., and Price, C.:
The global atmospheric electric circuit, solar activity and climate change,
J. Atmos. Sol.-Terr. Phy.,
62, 1563–1576, 2000.
Rycroft, M. J., Odzimek, A., Arnold, N. F., Füllekrug, M., Kulak, A., and Neubert, T.:
New model simulations of the global atmospheric electric circuit driven by thunderstorms and electrified shower clouds: The roles of lightning and sprites,
J. Atmos. Sol.-Terr. Phy.,
69, 2485–2509, 2007.
Rycroft, M. J., Nicoll, K. A., Aplin, K. L., and Harrison, R. G.:
Recent advances in global electric circuit coupling between the space environment and the troposphere,
J. Atmos. Sol.-Terr. Phy.,
90–91, 198–211, 2012.
Sátori, G., Rycroft, M. J, Bencze, P., Märcz, F., Bór, J., Barta, V., Nagy, T., and Kovács, K.:
An Overview of Thunderstorm-Related Research on the Atmospheric Electric Field, Schumann Resonances, Sprites, and the Ionosphere at Sopron, Hungary,
Surv. Geophys.,
34, 255–292, 2013.
Šauli, P. and Bourdillon, A.:
Height and critical frequency variations of the sporadic-E layer at mid-latitudes,
J. Atmos. Sol.-Terr. Phy.,
70, 1904–1910, 2008.
Sentman, D. D. and Wescott, E. M.:
Red sprites and blue jets: Thunderstorm-excited optical emissions in the stratosphere, mesosphere, and ionosphere,
Phys. Plasmas,
2, 2514–2522, 1995.
Seyler, C. E., Rosado-Román, J. M., and Farley, D. T.:
A nonlocal theory of the gradient-drift instability in the ionospheric E-region plasma at mid-latitudes,
J. Atmos. Sol.-Terr. Phy.,
66, 1627–1637, 2004.
Shao, X. M., Lay, E. H., and Jacobson, A. R.:
Reduction of electron density in the night-time lower ionosphere in response to a thunderstorm,
Nat. Geosci.,
6, 29–33, 2013.
Sharma, D. K., Rai, J., Israil, M., Subrahmanyam, P., Chopra, P., and Garg, S. C.:
Enhancement in ionospheric temperatures during thunderstorms,
J. Atmos. Sol.-Terr. Phy.,
66, 51–56, 2004.
Shibata, Y., Nagasawa, C., Abo, M., Maruyama, T., Saito, S., and Nakamura, T.:
Lidar Observations of Sporadic Fe and Na Layers in the Mesopause Region over Equator,
J. Meteorol. Soc. Jpn.,
84A, 317–325, 2006.
Shukla, P. K. and Mamun, A. A.: Introduction to Dusty Plasma Physics, Institute of Physics Publishing, Bristol and Philadelphia, 6–7, 2002.
Su, H. T., Hsu, R. R., Chen, A. B., Wang, Y. C., Hsiao, W. S., Lai, W. C., Lee, L. C., Sato, M., and Fukunishi, H.:
Gigantic jets between a thundercloud and the ionosphere,
Nature,
423, 974–976, 2003.
Suparta, W. and Fraser, G. J.:
A New Method to Correlate a Possible Coupling between the Upper and the Lower Atmosphere,
American Journal of Applied Sciences,
9, 894–901, 2012.
Surkov, V. V., Hayakawa, M., Schekotov, A. Y., Fedorov, E. N., and Molchanov, O. A.:
Ionospheric Alfvén resonator excitation due to nearby thunderstorms,
J. Geophys. Res.,
111, A01303, https://doi.org/10.1029/2005JA011320, 2006.
Takahashi, T., Nozawa, S., Tsuda, T. T., Ogawa, Y., Saito, N., Hidemori, T., Kawahara, T. D., Hall, C., Fujiwara, H., Matuura, N., Brekke, A., Tsutsumi, M., Wada, S., Kawabata, T., Oyama, S., and Fujii, R.: A case study on generation mechanisms of a sporadic sodium layer above Troms{o (69.6∘ N) during a night of high auroral activity, Ann. Geophys., 33, 941–953, https://doi.org/10.5194/angeo-33-941-2015, 2015.
Tinsley, B. A.:
Influence of Solar Wind on the Global Electric Circuit, and Inferred Effects on Cloud Microphysics, Temperature, and Dynamics in the Troposphere,
Space Sci. Rev.,
94, 231–258, 2000.
University of Science and Technology of China: The sodium density in the MLT region of sodium temperature and wind lidar over Hefei, V1.0, National Space Science Data Center [data set], https://doi.org/10.12176/01.05.026, 2011.
Voiculescu, M., Aikio, A. T., Nygrén, T., and Ruohoniemi, J. M.: IMF effect on sporadic-E layers at two northern polar cap sites: Part I – Statistical study, Ann. Geophys., 24, 887–900, https://doi.org/10.5194/angeo-24-887-2006, 2006.
von Zahn, U., von der Gathen, P., and Hansen, G.:
Forced release of sodium from upper atmospheric dust particles,
Geophys. Res. Lett.,
14, 76–79, 1987.
von Zahn, U., Goldberg, R., Stegman, J., and Witt, G.:
Double-peaked sodium layers at high latitudes,
Planet. Space Sci.,
37, 657–667, 1989.
Wakabayashi, M. and Ono, T.: Multi-layer structure of mid-latitude sporadic-E observed during the SEEK-2 campaign, Ann. Geophys., 23, 2347–2355, https://doi.org/10.5194/angeo-23-2347-2005, 2005.
Wan, W., Liu, L., Parkinson, M. L., Liu, R., He, L., Breed, A. M., Dyson, P. L., and Morris, R. J.:
The effect of fluctuating ionospheric electric fields on Es-occurrence at cusp and polar cap latitudes,
Adv. Space Res.,
27, 1283–1288, 2001.
Wang, C.:
New Chains of Space Weather Monitoring Stations in China,
Space Weather,
8, S08001, https://doi.org/10.1029/2010SW000603, 2010.
Wilkinson, P. J., Szuszczewicz, E. P., and Roble, R. G.:
Measurements and modelling of intermediate, descending, and sporadic layers in the lower ionosphere: Results and implications for global-scale ionospheric-thermospheric studies,
Geophys. Res. Lett.,
19, 95–98, 1992.
Williams, B. P., Croskey, C. L., She, C. Y., Mitchell, J. D., and Goldberg, R. A.: Sporadic sodium and E layers observed during the summer 2002 MaCWAVE/MIDAS rocket campaign, Ann. Geophys., 24, 1257–1266, https://doi.org/10.5194/angeo-24-1257-2006, 2006.
Wuhan Geomagnetic Station: Hubei Province Earthquake Administration, Observation data of atmospheric electric field mill at Wuhan Geomagnetic Station, Wuhan, V1.0, National Space Science Data Center [data set], https://doi.org/10.12176/01.05.065, 2010.
WWLLN:
World Wide Lightning Location Network, available at: http://wwlln.net/, last access: 6 August 2021.
Yu, B., Xue, X., Lu, G., Ma, M., Dou, X., Qie, X., Ning, B., Hu, L. H., Wu, J., and Chi, Y.:
Evidence for lightning-associated enhancement of the ionospheric sporadic E layer dependent on lightning stroke energy,
J. Geophys. Res.-Space,
120, 9202–9212, 2015.
Yu, B., Xue, X., Lu, G., Kuo, C. L., Dou, X., Gao, Q., Qie, X., Wu, J., Qiu, S. C, and Chi, Y.:
The enhancement of neutral metal Na layer above thunderstorms,
Geophys. Res. Lett.,
44, 9555–9563, 2017.
Yuan, T., Feng, W., Plane, J. M. C., and Marsh, D. R.: Photochemistry on the bottom side of the mesospheric Na layer, Atmos. Chem. Phys., 19, 3769–3777, https://doi.org/10.5194/acp-19-3769-2019, 2019.
Zhang, L., Tinsley, B., and Zhou, L.:
Low Latitude Lightning Activity Responses to Cosmic Ray Forbush Decreases,
Geophys. Res. Lett.,
47, e2020GL087024, https://doi.org/10.1029/2020GL087024, 2020.
Zhang, Y., Wu, J., Guo, L., Hu, Y., Zhao, H., and Xu, T.:
Influence of solar and geomagnetic activity on sporadic-E layer over low, mid and high latitude stations,
Adv. Space Res.,
55, 1366–1371, 2015.
Zhou, Q. and Mathews, J. D.: Generation of sporadic sodium layers via turbulent heating of the atmosphere?, J. Atmos. Terr. Phy., 57, 1309–1315, https://doi.org/10.1016/0021-9169(95)97298-I, 1995.
Zhou, Q., Mathews, J. D., and Tepley, C. A.:
A proposed temperature dependent mechanism for the formation of sporadic sodium layers,
J. Atmos. Sol.-Terr. Phy.,
55, 513–521, 1993.
Short summary
Our results suggest that lightning strokes would probably influence the ionosphere and thus give rise to the occurrence of a sporadic sodium layer (NaS), with the overturning of the electric field playing an important role. Model simulation results show that the calculated first-order rate coefficient could explain the efficient recombination of Na+→Na in this NaS case study. A conjunction between the lower and upper atmospheres could be established by these inter-connected phenomena.
Our results suggest that lightning strokes would probably influence the ionosphere and thus give...
Altmetrics
Final-revised paper
Preprint