Articles | Volume 21, issue 14
https://doi.org/10.5194/acp-21-11337-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-21-11337-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurement report: Long-emission-wavelength chromophores dominate the light absorption of brown carbon in aerosols over Bangkok: impact from biomass burning
Jiao Tang
State Key Laboratory of Organic Geochemistry and Guangdong Key
Laboratory of Environmental Protection and Resources Utilization, Guangzhou
Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640,
China
CAS Center for Excellence in Deep Earth Science, Guangzhou 510640,
China
Guangdong–Hong Kong–Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
Jiaqi Wang
State Key Laboratory of Organic Geochemistry and Guangdong Key
Laboratory of Environmental Protection and Resources Utilization, Guangzhou
Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640,
China
CAS Center for Excellence in Deep Earth Science, Guangzhou 510640,
China
Guangdong–Hong Kong–Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
University of Chinese Academy of Sciences, Beijing 100049, China
Guangcai Zhong
CORRESPONDING AUTHOR
State Key Laboratory of Organic Geochemistry and Guangdong Key
Laboratory of Environmental Protection and Resources Utilization, Guangzhou
Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640,
China
CAS Center for Excellence in Deep Earth Science, Guangzhou 510640,
China
Guangdong–Hong Kong–Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
Hongxing Jiang
State Key Laboratory of Organic Geochemistry and Guangdong Key
Laboratory of Environmental Protection and Resources Utilization, Guangzhou
Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640,
China
CAS Center for Excellence in Deep Earth Science, Guangzhou 510640,
China
Guangdong–Hong Kong–Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
University of Chinese Academy of Sciences, Beijing 100049, China
Yangzhi Mo
State Key Laboratory of Organic Geochemistry and Guangdong Key
Laboratory of Environmental Protection and Resources Utilization, Guangzhou
Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640,
China
CAS Center for Excellence in Deep Earth Science, Guangzhou 510640,
China
Guangdong–Hong Kong–Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
Bolong Zhang
State Key Laboratory of Organic Geochemistry and Guangdong Key
Laboratory of Environmental Protection and Resources Utilization, Guangzhou
Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640,
China
CAS Center for Excellence in Deep Earth Science, Guangzhou 510640,
China
Guangdong–Hong Kong–Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
University of Chinese Academy of Sciences, Beijing 100049, China
Xiaofei Geng
State Key Laboratory of Organic Geochemistry and Guangdong Key
Laboratory of Environmental Protection and Resources Utilization, Guangzhou
Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640,
China
CAS Center for Excellence in Deep Earth Science, Guangzhou 510640,
China
Guangdong–Hong Kong–Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
University of Chinese Academy of Sciences, Beijing 100049, China
Yingjun Chen
Department of Environmental Science and Engineering, Fudan University, Shanghai 200092, P.R. China
Jianhui Tang
Key Laboratory of Coastal Environmental Processes and Ecological
Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of
Sciences, Yantai 264003, China
Congguo Tian
Key Laboratory of Coastal Environmental Processes and Ecological
Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of
Sciences, Yantai 264003, China
Surat Bualert
Faculty of Environment, Kasetsart University, Bangkok 10900, Thailand
State Key Laboratory of Organic Geochemistry and Guangdong Key
Laboratory of Environmental Protection and Resources Utilization, Guangzhou
Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640,
China
CAS Center for Excellence in Deep Earth Science, Guangzhou 510640,
China
Guangdong–Hong Kong–Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
Gan Zhang
State Key Laboratory of Organic Geochemistry and Guangdong Key
Laboratory of Environmental Protection and Resources Utilization, Guangzhou
Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640,
China
CAS Center for Excellence in Deep Earth Science, Guangzhou 510640,
China
Guangdong–Hong Kong–Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
Related authors
Yangzhi Mo, Jun Li, Guangcai Zhong, Sanyuan Zhu, Shizhen Zhao, Jiao Tang, Hongxing Jiang, Zhineng Cheng, Chongguo Tian, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 24, 7755–7772, https://doi.org/10.5194/acp-24-7755-2024, https://doi.org/10.5194/acp-24-7755-2024, 2024
Short summary
Short summary
In this study, we found that biomass burning (31.0 %) and coal combustion (31.1 %) were the dominant sources of water-insoluble organic carbon in China, with coal combustion sources exhibiting the strongest light-absorbing capacity. Additionally, we propose a light-absorbing carbonaceous continuum, revealing that components enriched with fossil sources tend to have stronger light-absorbing capacity, higher aromaticity, higher molecular weights, and greater recalcitrance in the atmosphere.
Jiao Tang, Jun Li, Shizhen Zhao, Guangcai Zhong, Yangzhi Mo, Hongxing Jiang, Bin Jiang, Yingjun Chen, Jianhui Tang, Chongguo Tian, Zheng Zong, Jabir Hussain Syed, Jianzhong Song, and Gan Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2023-403, https://doi.org/10.5194/egusphere-2023-403, 2023
Preprint archived
Short summary
Short summary
This study provides a comprehensive molecular identification of atmospheric common fluorescent components and deciphers their related formation pathways. The fluorescent components varied in molecular composition, and a dominant oxidation pathway for the formation of humic-like fluorescent components was suggested, notwithstanding their different precursor types. Our findings are expected to be helpful to further studies using the EEM-PARAFAC as a tool to study atmospheric BrC.
Buqing Xu, Jiao Tang, Tiangang Tang, Shizhen Zhao, Guangcai Zhong, Sanyuan Zhu, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 23, 1565–1578, https://doi.org/10.5194/acp-23-1565-2023, https://doi.org/10.5194/acp-23-1565-2023, 2023
Short summary
Short summary
We analyzed compound-specific dual-carbon isotope signatures (Δ14C and δ13C) of dominant secondary organic aerosol (SOA) tracer molecules (i.e., oxalic acid) to investigate the fates of SOAs in the atmosphere at five emission hotspots in China. The results indicated that SOA carbon sources and chemical processes producing SOAs vary spatially and seasonally, and these variations need to be included in Chinese climate projection models and air quality management practices.
Yanjie Lu, Xinxin Feng, Yanli Feng, Minjun Jiang, Yu Peng, Tian Chen, and Yingjun Chen
Atmos. Chem. Phys., 25, 8043–8059, https://doi.org/10.5194/acp-25-8043-2025, https://doi.org/10.5194/acp-25-8043-2025, 2025
Short summary
Short summary
Through lab tests and field measurements from typical sources, we found that carbonyl compounds from biomass burning are an order of magnitude higher than those from vehicles. The formation of carbonyl compounds in solid and liquid fuel is governed by combustion temperature and emission standards, respectively. Fuel type determines the chemical composition. Biomass burning and farm machinery are key drivers of atmospheric oxidation capacity. This study provides actionable solutions to safeguard public health.
Binyu Xiao, Fan Zhang, Zeyu Liu, Yan Zhang, Rui Li, Can Wu, Xinyi Wan, Yi Wang, Yubao Chen, Yong Han, Min Cui, Libo Zhang, Yingjun Chen, and Gehui Wang
Atmos. Chem. Phys., 25, 7053–7069, https://doi.org/10.5194/acp-25-7053-2025, https://doi.org/10.5194/acp-25-7053-2025, 2025
Short summary
Short summary
Intermediate-volatility/semi-volatile organic compounds in gas and particle phases from ship exhausts are enhanced due to the switch of fuels from low sulfur to ultra-low sulfur. The findings indicate that optimization is necessary for the forthcoming global implementation of an ultra-low-sulfur oil policy. Besides, we find that organic diagnostic markers of hopanes in conjunction with the ratio of octadecanoic to tetradecanoic could be considered potential tracers for heavy fuel oil exhausts.
Pingyang Li, Boji Lin, Zhineng Cheng, Jing Li, Jun Li, Duohong Chen, Tao Zhang, Run Lin, Sanyuan Zhu, Jun Liu, Yujun Lin, Shizhen Zhao, Guangcai Zhong, Zhenchuan Niu, Ping Ding, and Gan Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2025-1931, https://doi.org/10.5194/egusphere-2025-1931, 2025
Short summary
Short summary
Our study indicates fossil fuel CO2 (CO2ff) reductions in Chinese megacities via atmospheric Δ(14CO2) and δ(13CO2) measurements, driven by coal-to-gas transitions and combustion efficiency improvement. Three-decade data show steeper declined urban RCO/CO2ff ratios than inventory estimates, implying underestimation of efficiency improvements and CO reductions. Integrating top-down observations with inventories is critical to track policy-driven emission shifts and optimize co-benefit strategies.
Hongxing Jiang, Yuanghang Deng, Yunxi Huo, Fengwen Wang, Yingjun Chen, and Hai Guo
EGUsphere, https://doi.org/10.5194/egusphere-2025-2264, https://doi.org/10.5194/egusphere-2025-2264, 2025
Short summary
Short summary
We combined the use of a series of online and offline high-resolution mass spectrometer to characterize the chemical composition and sources of organic aerosols in a background site of south China from bulk to molecular levels. We suggested that anthropogenic source dominated the OA origins, and the gas-phase and particle-phase oxidation processes are conducive to the formation of sulfur-containing and nitrogen-containing compounds, respectively.
Yuying Wu, Yuhan Wang, Wenzheng Yang, Jie Zhang, Yanhong Wu, Jun Li, Gan Zhang, and Haijian Bing
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-302, https://doi.org/10.5194/essd-2025-302, 2025
Revised manuscript accepted for ESSD
Short summary
Short summary
We developed a large, open-access dataset of mountain soil chemistry in China, based on over 1,300 samples from 166 sites across diverse climates and vegetation types. The dataset includes concentrations of 24 elements and key environmental variables like temperature, rainfall, and soil properties. This dataset offers a valuable resource for studying mountain ecosystems, supporting Earth system modeling, and predicting how soils respond to environmental change.
Tao Cao, Cuncun Xu, Hao Chen, Jianzhong Song, Jun Li, Haiyan Song, Bin Jiang, Yin Zhong, and Ping’an Peng
EGUsphere, https://doi.org/10.5194/egusphere-2025-561, https://doi.org/10.5194/egusphere-2025-561, 2025
Short summary
Short summary
This study investigated the evolution of biomass and coal combustion-derived WSOM during aqueous photochemical process. The results indicate that photochemical aging induces distinct changes in the optical and molecular properties of WSOM and more pronounced alterations were observed during ·OH photooxidation than direct photolysis. Notably, our results also demostrated that atmospheric photooxidation may represent a significant source of BC-like substances.
Zihan Song, Leiming Zhang, Chongguo Tian, Qiang Fu, Zhenxing Shen, Renjian Zhang, Dong Liu, and Song Cui
Atmos. Chem. Phys., 24, 13101–13113, https://doi.org/10.5194/acp-24-13101-2024, https://doi.org/10.5194/acp-24-13101-2024, 2024
Short summary
Short summary
A novel concept integrating crop cycle information into fire spot extraction was proposed. Spatiotemporal variations of open straw burning in Northeast China are revealed. Open straw burning in Northeast China emitted a total of 218 Tg of CO2-eq during 2001–2020. The policy of banning straw burning effectively reduced greenhouse gas emissions.
Fan Zhang, Binyu Xiao, Zeyu Liu, Yan Zhang, Chongguo Tian, Rui Li, Can Wu, Yali Lei, Si Zhang, Xinyi Wan, Yubao Chen, Yong Han, Min Cui, Cheng Huang, Hongli Wang, Yingjun Chen, and Gehui Wang
Atmos. Chem. Phys., 24, 8999–9017, https://doi.org/10.5194/acp-24-8999-2024, https://doi.org/10.5194/acp-24-8999-2024, 2024
Short summary
Short summary
Mandatory use of low-sulfur fuel due to global sulfur limit regulations means large uncertainties in volatile organic compound (VOC) emissions. On-board tests of VOCs from nine cargo ships in China were carried out. Results showed that switching from heavy-fuel oil to diesel increased emission factor VOCs by 48 % on average, enhancing O3 and the secondary organic aerosol formation potential. Thus, implementing a global ultra-low-sulfur oil policy needs to be optimized in the near future.
Yangzhi Mo, Jun Li, Guangcai Zhong, Sanyuan Zhu, Shizhen Zhao, Jiao Tang, Hongxing Jiang, Zhineng Cheng, Chongguo Tian, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 24, 7755–7772, https://doi.org/10.5194/acp-24-7755-2024, https://doi.org/10.5194/acp-24-7755-2024, 2024
Short summary
Short summary
In this study, we found that biomass burning (31.0 %) and coal combustion (31.1 %) were the dominant sources of water-insoluble organic carbon in China, with coal combustion sources exhibiting the strongest light-absorbing capacity. Additionally, we propose a light-absorbing carbonaceous continuum, revealing that components enriched with fossil sources tend to have stronger light-absorbing capacity, higher aromaticity, higher molecular weights, and greater recalcitrance in the atmosphere.
Wenwen Ma, Rong Sun, Xiaoping Wang, Zheng Zong, Shizhen Zhao, Zeyu Sun, Chongguo Tian, Jianhui Tang, Song Cui, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 24, 1509–1523, https://doi.org/10.5194/acp-24-1509-2024, https://doi.org/10.5194/acp-24-1509-2024, 2024
Short summary
Short summary
This is the first report of long-term atmospheric PAH monitoring around the Bohai Sea. The results showed that the concentrations of PAHs in the atmosphere around the Bohai Sea decreased from June 2014 to May 2019, especially the concentrations of highly toxic PAHs. This indicates that the contributions from PAH sources changed to a certain extent in different areas, and it also led to reductions in the related health risk and medical costs following pollution prevention and control.
Zeyu Sun, Zheng Zong, Yang Tan, Chongguo Tian, Zeyu Liu, Fan Zhang, Rong Sun, Yingjun Chen, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 23, 12851–12865, https://doi.org/10.5194/acp-23-12851-2023, https://doi.org/10.5194/acp-23-12851-2023, 2023
Short summary
Short summary
This is the first report of ship-emitted nitrogen stable isotope composition (δ15N) of nitrogen oxides (NOx). The results showed that δ15N–NOx from ships was −18.5 ± 10.9 ‰ and increased monotonically with tightening emission regulations. The selective catalytic reduction system was the most vital factor. The temporal variation in δ15N–NOx was evaluated and can be used to select suitable δ15N–NOx for a more accurate assessment of the contribution of ship-emitted exhaust to atmospheric NOx.
Mengying Bao, Yan-Lin Zhang, Fang Cao, Yihang Hong, Yu-Chi Lin, Mingyuan Yu, Hongxing Jiang, Zhineng Cheng, Rongshuang Xu, and Xiaoying Yang
Atmos. Chem. Phys., 23, 8305–8324, https://doi.org/10.5194/acp-23-8305-2023, https://doi.org/10.5194/acp-23-8305-2023, 2023
Short summary
Short summary
The interaction between the sources and molecular compositions of humic-like substances (HULIS) at Nanjing, China, was explored. Significant fossil fuel source contributions to HULIS were found in the 14C results from biomass burnng and traffic emissions. Increasing biogenic secondary organic aerosol (SOA) products and anthropogenic aromatic compounds were detected in summer and winter, respectively.
Xiangyun Zhang, Jun Li, Sanyuan Zhu, Junwen Liu, Ping Ding, Shutao Gao, Chongguo Tian, Yingjun Chen, Ping'an Peng, and Gan Zhang
Atmos. Chem. Phys., 23, 7495–7502, https://doi.org/10.5194/acp-23-7495-2023, https://doi.org/10.5194/acp-23-7495-2023, 2023
Short summary
Short summary
The results show that 14C elemental carbon (EC) was not only related to the isolation method but also to the types and proportions of the biomass sources in the sample. The hydropyrolysis (Hypy) method, which can be used to isolate a highly stable portion of ECHypy and avoid charring, is a more effective and stable approach for the matrix-independent 14C quantification of EC in aerosols, and the 13C–ECHypy and non-fossil ECHypy values of SRM1649b were –24.9 ‰ and 11 %, respectively.
Tingting Li, Jun Li, Zeyu Sun, Hongxing Jiang, Chongguo Tian, and Gan Zhang
Atmos. Chem. Phys., 23, 6395–6407, https://doi.org/10.5194/acp-23-6395-2023, https://doi.org/10.5194/acp-23-6395-2023, 2023
Short summary
Short summary
N-NH4+ and N-NO3- were vital components in nitrogenous aerosols and contributed 69 % to total nitrogen in PM2.5. Coal combustion was still the most important source of urban atmospheric NO3-. However, the non-agriculture sources play an increasingly important role in NH4+ emissions.
Jiao Tang, Jun Li, Shizhen Zhao, Guangcai Zhong, Yangzhi Mo, Hongxing Jiang, Bin Jiang, Yingjun Chen, Jianhui Tang, Chongguo Tian, Zheng Zong, Jabir Hussain Syed, Jianzhong Song, and Gan Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2023-403, https://doi.org/10.5194/egusphere-2023-403, 2023
Preprint archived
Short summary
Short summary
This study provides a comprehensive molecular identification of atmospheric common fluorescent components and deciphers their related formation pathways. The fluorescent components varied in molecular composition, and a dominant oxidation pathway for the formation of humic-like fluorescent components was suggested, notwithstanding their different precursor types. Our findings are expected to be helpful to further studies using the EEM-PARAFAC as a tool to study atmospheric BrC.
Tao Cao, Meiju Li, Cuncun Xu, Jianzhong Song, Xingjun Fan, Jun Li, Wanglu Jia, and Ping'an Peng
Atmos. Chem. Phys., 23, 2613–2625, https://doi.org/10.5194/acp-23-2613-2023, https://doi.org/10.5194/acp-23-2613-2023, 2023
Short summary
Short summary
This work comprehensively investigated the fluorescence data of light-absorbing organic compounds, water-soluble organic matter in different types of aerosol samples, soil dust, and fulvic and humic acids using an excitation–emission matrix (EEM) method and parallel factor modeling. The results revealed which light-absorbing species can be detected by EEM and also provided important information for identifying the chemical composition and possible sources of these species in atmospheric samples.
Buqing Xu, Jiao Tang, Tiangang Tang, Shizhen Zhao, Guangcai Zhong, Sanyuan Zhu, Jun Li, and Gan Zhang
Atmos. Chem. Phys., 23, 1565–1578, https://doi.org/10.5194/acp-23-1565-2023, https://doi.org/10.5194/acp-23-1565-2023, 2023
Short summary
Short summary
We analyzed compound-specific dual-carbon isotope signatures (Δ14C and δ13C) of dominant secondary organic aerosol (SOA) tracer molecules (i.e., oxalic acid) to investigate the fates of SOAs in the atmosphere at five emission hotspots in China. The results indicated that SOA carbon sources and chemical processes producing SOAs vary spatially and seasonally, and these variations need to be included in Chinese climate projection models and air quality management practices.
Chunlin Zou, Tao Cao, Meiju Li, Jianzhong Song, Bin Jiang, Wanglu Jia, Jun Li, Xiang Ding, Zhiqiang Yu, Gan Zhang, and Ping'an Peng
Atmos. Chem. Phys., 23, 963–979, https://doi.org/10.5194/acp-23-963-2023, https://doi.org/10.5194/acp-23-963-2023, 2023
Short summary
Short summary
In this study, PM2.5 samples were obtained during a winter haze event in Guangzhou, China, and light absorption and molecular composition of humic-like substances (HULIS) were investigated by UV–Vis spectrophotometry and ultrahigh-resolution mass spectrometry. The findings obtained present some differences from the results reported in other regions of China and significantly enhanced our understanding of HULIS evolution during haze bloom-decay processes in the subtropic region of southern China.
Hongxing Jiang, Jun Li, Jiao Tang, Min Cui, Shizhen Zhao, Yangzhi Mo, Chongguo Tian, Xiangyun Zhang, Bin Jiang, Yuhong Liao, Yingjun Chen, and Gan Zhang
Atmos. Chem. Phys., 22, 6919–6935, https://doi.org/10.5194/acp-22-6919-2022, https://doi.org/10.5194/acp-22-6919-2022, 2022
Short summary
Short summary
We conducted field observation employing Fourier transform ion cyclotron resonance mass spectrometry to characterize the molecular composition and major formation pathways or sources of organosulfur compounds in Guangzhou, where is heavily influenced by biogenic–anthropogenic interactions and has high relative humidity and temperature. We suggested that heterogeneous reactions such as SO2 uptake and heterogeneous oxidations are important to the molecular variations of organosulfur compounds.
Shichao Tian, Birgit Gaye, Jianhui Tang, Yongming Luo, Wenguo Li, Niko Lahajnar, Kirstin Dähnke, Tina Sanders, Tianqi Xiong, Weidong Zhai, and Kay-Christian Emeis
Biogeosciences, 19, 2397–2415, https://doi.org/10.5194/bg-19-2397-2022, https://doi.org/10.5194/bg-19-2397-2022, 2022
Short summary
Short summary
We constrain the nitrogen budget and in particular the internal sources and sinks of nitrate in the Bohai Sea by using a mass-based and dual stable isotope approach based on δ15N and δ18O of nitrate. Based on available mass fluxes and isotope data an updated nitrogen budget is proposed. Compared to previous estimates, it is more complete and includes the impact of the interior cycle (nitrification) on the nitrate pool. The main external nitrogen sources are rivers contributing 19.2 %–25.6 %.
Xuewu Fu, Chen Liu, Hui Zhang, Yue Xu, Hui Zhang, Jun Li, Xiaopu Lyu, Gan Zhang, Hai Guo, Xun Wang, Leiming Zhang, and Xinbin Feng
Atmos. Chem. Phys., 21, 6721–6734, https://doi.org/10.5194/acp-21-6721-2021, https://doi.org/10.5194/acp-21-6721-2021, 2021
Short summary
Short summary
TGM concentrations and isotopic compositions in 10 Chinese cities showed strong seasonality with higher TGM concentrations and Δ199Hg and lower δ202Hg in summer. We found the seasonal variations in TGM concentrations and isotopic compositions were highly related to regional surface Hg(0) emissions, suggesting land surface Hg(0) emissions are an important source of atmospheric TGM that contribute dominantly to the seasonal variations in TGM concentrations and isotopic compositions.
Jianzhong Sun, Yuzhe Zhang, Guorui Zhi, Regina Hitzenberger, Wenjing Jin, Yingjun Chen, Lei Wang, Chongguo Tian, Zhengying Li, Rong Chen, Wen Xiao, Yuan Cheng, Wei Yang, Liying Yao, Yang Cao, Duo Huang, Yueyuan Qiu, Jiali Xu, Xiaofei Xia, Xin Yang, Xi Zhang, Zheng Zong, Yuchun Song, and Changdong Wu
Atmos. Chem. Phys., 21, 2329–2341, https://doi.org/10.5194/acp-21-2329-2021, https://doi.org/10.5194/acp-21-2329-2021, 2021
Short summary
Short summary
Brown carbon (BrC) emission factors from household biomass fuels were measured with an integrating sphere optics approach supported by iterative calculations. A novel algorithm to directly estimate the absorption contribution of BrC relative to that of BrC + black carbon (FBrC) was proposed based purely on the absorption exponent (AAE)
(FBrC = 0.5519 lnAAE + 0.0067). The FBrC for household biomass fuels was as high as 50.8 % across the strongest solar spectral range of 350−850 nm.
Qingcai Chen, Haoyao Sun, Wenhuai Song, Fang Cao, Chongguo Tian, and Yan-Lin Zhang
Atmos. Chem. Phys., 20, 14407–14417, https://doi.org/10.5194/acp-20-14407-2020, https://doi.org/10.5194/acp-20-14407-2020, 2020
Short summary
Short summary
This study found environmentally persistent free radicals (EPFRs) are widely present in atmospheric particles of different particle sizes and exhibit significant particle size distribution characteristics. EPFR concentrations are higher in coarse particles than in fine particles in summer and vice versa in winter. The potential toxicity caused by EPFRs may also vary with particle size and season. Combustion is the most important source of EPFRs (>70 %).
Cited articles
Adam, M. G., Chiang, A. W. J., and Balasubramanian, R.: Insights into
characteristics of light absorbing carbonaceous aerosols over an urban
location in Southeast Asia, Environ. Pollut., 257, 113425,
https://doi.org/10.1016/j.envpol.2019.113425, 2020.
Alexander, D. T. L., Crozier, P. A., and Anderson, J. R.: Brown carbon
spheres in East Asian outflow and their optical properties, Science, 321,
833–836, https://doi.org/10.1126/science.1155296, 2008.
Andersson, C. A. and Bro, R.: The N-way Toolbox for MATLAB, Chemom. Intell.
Lab. Syst., 52, 1–4, https://doi.org/10.1016/s0169-7439(00)00071-x, 2000.
Babar, Z. B., Park, J.-H., and Lim, H.-J.: Influence of NH 3 on secondary
organic aerosols from the ozonolysis and photooxidation of α-pinene
in a flow reactor, Atmos. Environ., 164, 71–84,
https://doi.org/10.1016/j.atmosenv.2017.05.034, 2017.
Bahram, M., Bro, R., Stedmon, C., and Afkhami, A.: Handling of Rayleigh and
Raman scatter for PARAFAC modeling of fluorescence data using interpolation,
J. Chemom., 20, 99–105, https://doi.org/10.1002/cem.978, 2006.
Barnard, J. C., Volkamer, R., and Kassianov, E. I.: Estimation of the mass absorption cross section of the organic carbon component of aerosols in the Mexico City Metropolitan Area, Atmos. Chem. Phys., 8, 6665–6679, https://doi.org/10.5194/acp-8-6665-2008, 2008.
Bianco, A., Minella, M., De Laurentiis, E., Maurino, V., Minero, C., and
Vione, D.: Photochemical generation of photoactive compounds with
fulvic-like and humic-like fluorescence in aqueous solution, Chemosphere,
111, 529–536, https://doi.org/10.1016/j.chemosphere.2014.04.035, 2014.
Bianco, A., Passananti, M., Deguillaume, L., Mailhot, G., and Brigante, M.:
Tryptophan and tryptophan-like substances in cloud water: Occurrence and
photochemical fate, Atmos. Environ., 137, 53–61,
https://doi.org/10.1016/j.atmosenv.2016.04.034, 2016.
Bikkina, P., Bikkina, S., Kawamura, K., Sudheer, A. K., Mahesh, G., and
Kumar, S. K.: Evidence for brown carbon absorption over the Bay of Bengal
during the southwest monsoon season: a possible oceanic source, Environ. Sci.
Process Impacts, 22, 1743–1758, https://doi.org/10.1039/d0em00111b, 2020.
Birdwell, J. E. and Engel, A. S.: Characterization of dissolved organic
matter in cave and spring waters using UV–Vis absorbance and fluorescence
spectroscopy, Org. Geochem., 41, 270–280,
https://doi.org/10.1016/j.orggeochem.2009.11.002, 2010.
Birdwell, J. E. and Valsaraj, K. T.: Characterization of dissolved organic
matter in fogwater by excitation–emission matrix fluorescence spectroscopy,
Atmos. Environ., 44, 3246–3253,
https://doi.org/10.1016/j.atmosenv.2010.05.055, 2010.
Chen, H., Liao, Z. L., Gu, X. Y., Xie, J. Q., Li, H. Z., and Zhang, J.:
Anthropogenic Influences of Paved Runoff and Sanitary Sewage on the
Dissolved Organic Matter Quality of Wet Weather Overflows: An
Excitation-Emission Matrix Parallel Factor Analysis Assessment, Environ.
Sci. Technol., 51, 1157–1167, https://doi.org/10.1021/acs.est.6b03727,
2017.
Chen, Q., Ikemori, F., and Mochida, M.: Light Absorption and
Excitation-Emission Fluorescence of Urban Organic Aerosol Components and
Their Relationship to Chemical Structure, Environ. Sci. Technol., 50,
10859–10868, https://doi.org/10.1021/acs.est.6b02541, 2016a.
Chen, Q., Miyazaki, Y., Kawamura, K., Matsumoto, K., Coburn, S., Volkamer,
R., Iwamoto, Y., Kagami, S., Deng, Y., Ogawa, S., Ramasamy, S., Kato, S.,
Ida, A., Kajii, Y., and Mochida, M.: Characterization of Chromophoric
Water-Soluble Organic Matter in Urban, Forest, and Marine Aerosols by
HR-ToF-AMS Analysis and Excitation-Emission Matrix Spectroscopy, Environ.
Sci. Technol., 50, 10351–10360, https://doi.org/10.1021/acs.est.6b01643,
2016b.
Chen, Q., Ikemori, F., Nakamura, Y., Vodicka, P., Kawamura, K., and Mochida,
M.: Structural and Light-Absorption Characteristics of Complex
Water-Insoluble Organic Mixtures in Urban Submicrometer Aerosols, Environ.
Sci. Technol., 51, 8293–8303, https://doi.org/10.1021/acs.est.7b01630,
2017.
Chen, Q., Mu, Z., Song, W., Wang, Y., Yang, Z., Zhang, L., and Zhang, Y. L.:
Size-Resolved Characterization of the Chromophores in Atmospheric
Particulate Matter From a Typical Coal-Burning City in China, J. Geophys.
Res.-Atmos., 124, 10546–10563, https://doi.org/10.1029/2019jd031149, 2019a.
Chen, Q., Wang, M., Wang, Y., Zhang, L., Li, Y., and Han, Y.: Oxidative
Potential of Water-Soluble Matter Associated with Chromophoric Substances in
PM2.5 over Xi'an, China, Environ. Sci. Technol., 53, 8574–8584,
https://doi.org/10.1021/acs.est.9b01976, 2019b.
Chen, W., Westerhoff, P., Leenheer, J. A., and Booksh, K.: Fluorescence
excitation - Emission matrix regional integration to quantify spectra for
dissolved organic matter, Environ. Sci. Technol., 37, 5701–5710,
https://doi.org/10.1021/es034354c, 2003.
Chen, Y. and Bond, T. C.: Light absorption by organic carbon from wood combustion, Atmos. Chem. Phys., 10, 1773–1787, https://doi.org/10.5194/acp-10-1773-2010, 2010.
Chen, Y., Ge, X., Chen, H., Xie, X., Chen, Y., Wang, J., Ye, Z., Bao, M.,
Zhang, Y., and Chen, M.: Seasonal light absorption properties of
water-soluble brown carbon in atmospheric fine particles in Nanjing, China,
Atmos. Environ., 187, 230–240, https://doi.org/10.1016/j.atmosenv.2018.06.002,
2018.
Cory, R. M. and McKnight, D. M.: Fluorescence spectroscopy reveals
ubiquitous presence of oxidized and reduced quinones in dissolved organic
matter, Environ. Sci. Technol., 39, 8142–8149,
https://doi.org/10.1021/es0506962, 2005.
Dasari, S., Andersson, A., Bikkina, S., Holmstrand, H., Budhavant, K.,
Satheesh, S., Asmi, E., Kesti, J., Backman, J., Salam, A., Bisht, D. S.,
Tiwari, S., Hameed, Z., and Gustafsson, O.: Photochemical degradation
affects the light absorption of water-soluble brown carbon in the South
Asian outflow, Sci. Adv., 5, 1–10, https://doi.org/10.1126/sciadv.aau8066,
2019.
Del Vecchio, R. and Blough, N. V.: On the Origin of the Optical Properties
of Humic Substances, Environ. Sci. Technol., 38, 3885–3891,
https://doi.org/10.1021/es049912h, 2004.
Di Lorenzo, R. A., Washenfelder, R. A., Attwood, A. R., Guo, H., Xu, L., Ng,
N. L., Weber, R. J., Baumann, K., Edgerton, E., and Young, C. J.:
Molecular-Size-Separated Brown Carbon Absorption for Biomass-Burning Aerosol
at Multiple Field Sites, Environ. Sci. Technol., 51, 3128–3137,
https://doi.org/10.1021/acs.est.6b06160, 2017.
Fan, X., Li, M., Cao, T., Cheng, C., Li, F., Xie, Y., Wei, S., Song, J., and
Peng, P. a.: Optical properties and oxidative potential of water- and
alkaline-soluble brown carbon in smoke particles emitted from laboratory
simulated biomass burning, Atmos. Environ., 194, 48–57,
https://10.1016/j.atmosenv.2018.09.025, 2018.
Fan, X., Cao, T., Yu, X., Wang, Y., Xiao, X., Li, F., Xie, Y., Ji, W., Song, J., and Peng, P.: The evolutionary behavior of chromophoric brown carbon during ozone aging of fine particles from biomass burning, Atmos. Chem. Phys., 20, 4593–4605, https://doi.org/10.5194/acp-20-4593-2020, 2020.
Fu, P., Kawamura, K., Chen, J., Qin, M., Ren, L., Sun, Y., Wang, Z., Barrie,
L. A., Tachibana, E., Ding, A., and Yamashita, Y.: Fluorescent water-soluble
organic aerosols in the High Arctic atmosphere, Sci. Rep., 5, 9845,
https://doi.org/10.1038/srep09845, 2015.
Fujii, Y., Iriana, W., Oda, M., Puriwigati, A., Tohno, S., Lestari, P.,
Mizohata, A., and Huboyo, H. S.: Characteristics of carbonaceous aerosols
emitted from peatland fire in Riau, Sumatra, Indonesia, Atmos. Environ., 87,
164–169, https://doi.org/10.1016/j.atmosenv.2014.01.037, 2014.
Gabor, R. S., Baker, A., McKnight, D. M., and Miller, M. P.: Fluorescence
Indices and Their Interpretation, in: Aquatic Organic Matter Fluorescence,
edited by: Baker, A., Reynolds, D. M., Lead, J., Coble, P. G., and Spencer,
R. G. M., Cambridge Environmental Chemistry Series, Cambridge University
Press, Cambridge, UK, 303–338, 2014.
Gao, Y. and Zhang, Y.: Formation and photochemical investigation of brown
carbon by hydroxyacetone reactions with glycine and ammonium sulfate, RSC
Advances, 8, 20719–20725, https://doi.org/10.1039/c8ra02019a, 2018.
Graber, E. R. and Rudich, Y.: Atmospheric HULIS: How humic-like are they? A comprehensive and critical review, Atmos. Chem. Phys., 6, 729–753, https://doi.org/10.5194/acp-6-729-2006, 2006.
Gu, Q. and Kenny, J. E.: Improvement of Inner Filter Effect Correction
Based on Determination of Effective Geometric Parameters Using a
Conventional Fluorimeter, Anal. Chem., 81, 420–426,
https://doi.org/10.1021/ac801676j, 2009.
Han, H., Kim, G., Seo, H., Shin, K.-H., and Lee, D.-H.: Significant seasonal changes in optical properties of brown carbon in the midlatitude atmosphere, Atmos. Chem. Phys., 20, 2709–2718, https://doi.org/10.5194/acp-20-2709-2020, 2020.
Hawkes, J. A., Patriarca, C., Sjöberg, P. J. R., Tranvik, L. J., and
Bergquist, J.: Extreme isomeric complexity of dissolved organic matter found
across aquatic environments, Limnol. Oceanogr. Lett., 3, 21–30,
https://doi.org/10.1002/lol2.10064, 2018.
Hecobian, A., Zhang, X., Zheng, M., Frank, N., Edgerton, E. S., and Weber, R. J.: Water-Soluble Organic Aerosol material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States, Atmos. Chem. Phys., 10, 5965–5977, https://doi.org/10.5194/acp-10-5965-2010, 2010.
Hoffer, A., Gelencsér, A., Guyon, P., Kiss, G., Schmid, O., Frank, G. P., Artaxo, P., and Andreae, M. O.: Optical properties of humic-like substances (HULIS) in biomass-burning aerosols, Atmos. Chem. Phys., 6, 3563–3570, https://doi.org/10.5194/acp-6-3563-2006, 2006.
Hopkins, R. J., Lewis, K., Desyaterik, Y., Wang, Z., Tivanski, A. V.,
Arnott, W. P., Laskin, A., and Gilles, M. K.: Correlations between optical,
chemical and physical properties of biomass burn aerosols, Geophys. Res.
Lett., 34, L18806, https://doi.org/10.1029/2007gl030502, 2007.
Huang, K., Fu, J. S., Hsu, N. C., Gao, Y., Dong, X., Tsay, S.-C., and Lam,
Y. F.: Impact assessment of biomass burning on air quality in Southeast and
East Asia during BASE-ASIA, Atmos. Environ., 78, 291–302,
https://doi.org/10.1016/j.atmosenv.2012.03.048, 2013.
Huguet, A., Vacher, L., Relexans, S., Saubusse, S., Froidefond, J. M., and
Parlanti, E.: Properties of fluorescent dissolved organic matter in the
Gironde Estuary, Org. Geochem., 40, 706–719,
https://doi.org/10.1016/j.orggeochem.2009.03.002, 2009.
Huo, Y., Li, M., Jiang, M., and Qi, W.: Light absorption properties of HULIS
in primary particulate matter produced by crop straw combustion under
different moisture contents and stacking modes, Atmos. Environ., 191,
490–499, https://doi.org/10.1016/j.atmosenv.2018.08.038, 2018.
Ishii, S. K. and Boyer, T. H.: Behavior of reoccurring PARAFAC components
in fluorescent dissolved organic matter in natural and engineered systems: a
critical review, Environ. Sci. Technol., 46, 2006–2017,
https://doi.org/10.1021/es2043504, 2012.
Jiang, H., Li, J., Chen, D., Tang, J., Cheng, Z., Mo, Y., Su, T., Tian, C.,
Jiang, B., Liao, Y., and Zhang, G.: Biomass burning organic aerosols
significantly influence the light absorption properties of
polarity-dependent organic compounds in the Pearl River Delta Region, China,
Environ. Int., 144, 106079, https://doi.org/10.1016/j.envint.2020.106079,
2020.
Jiang, H., Li, J., Sun, R., Liu, G., Tian, C., Tang, J., Cheng, Z., Zhu, S.,
Zhong, G., Ding, X., and Zhang, G.: Determining the Sources and Transport of
Brown Carbon Using Radionuclide Tracers and Modeling, J. Geophys.
Res.-Atmos., 126, e2021JD034616, https://doi.org/10.1029/2021jd034616, 2021.
Kasthuriarachchi, N. Y., Rivellini, L.-H., Chen, X., Li, Y. J., and Lee, A.
K. Y.: Effect of relative humidity on secondary brown carbon formation in
aqueous droplets, Environ. Sci. Technol., 54, 13207–13216,
https://doi.org/10.1021/acs.est.0c01239, 2020.
Kellerman, A. M., Kothawala, D. N., Dittmar, T., and Tranvik, L. J.:
Persistence of dissolved organic matter in lakes related to its molecular
characteristics, Nat. Geosci., 8, 454–452,
https://doi.org/10.1038/ngeo2440, 2015.
Kirchstetter, T. W. and Thatcher, T. L.: Contribution of organic carbon to wood smoke particulate matter absorption of solar radiation, Atmos. Chem. Phys., 12, 6067–6072, https://doi.org/10.5194/acp-12-6067-2012, 2012.
Kirchstetter, T. W., Novakov, T., and Hobbs, P. V.: Evidence that the
spectral dependence of light absorption by aerosols is affected by organic
carbon, J. Geophys. Res.-Atmos., 109, D21208, https://doi.org/10.1029/2004jd004999,
2004.
Lack, D. A., Bahreini, R., Langridge, J. M., Gilman, J. B., and Middlebrook, A. M.: Brown carbon absorption linked to organic mass tracers in biomass burning particles, Atmos. Chem. Phys., 13, 2415–2422, https://doi.org/10.5194/acp-13-2415-2013, 2013.
Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of atmospheric
brown carbon, Chem. Rev., 115, 4335–4382, https://doi.org/10.1021/cr5006167,
2015.
Laskin, J., Laskin, A., and Nizkorodov, S. A.: Mass Spectrometry Analysis in
Atmospheric Chemistry, Anal. Chem., 90, 166–189,
https://doi.org/10.1021/acs.analchem.7b04249, 2018.
Lawrence, M. G. and Lelieveld, J.: Atmospheric pollutant outflow from southern Asia: a review, Atmos. Chem. Phys., 10, 11017–11096, https://doi.org/10.5194/acp-10-11017-2010, 2010.
Lee, H.-H., Bar-Or, R. Z., and Wang, C.: Biomass burning aerosols and the low-visibility events in Southeast Asia, Atmos. Chem. Phys., 17, 965–980, https://doi.org/10.5194/acp-17-965-2017, 2017.
Lee, H. J., Laskin, A., Laskin, J., and Nizkorodov, S. A.:
Excitation-emission spectra and fluorescence quantum yields for fresh and
aged biogenic secondary organic aerosols, Environ. Sci. Technol., 47,
5763–5770, https://doi.org/10.1021/es400644c, 2013.
Li, M., Fan, X., Zhu, M., Zou, C., Song, J., Wei, S., Jia, W., and Peng, P.:
Abundances and light absorption properties of brown carbon emitted from
residential coal combustion in China, Environ. Sci. Technol., 53, 595–603,
https://doi.org/10.1021/acs.est.8b05630, 2018.
Lin, P., Laskin, J., Nizkorodov, S. A., and Laskin, A.: Revealing Brown
Carbon Chromophores Produced in Reactions of Methylglyoxal with Ammonium
Sulfate, Environ. Sci. Technol., 49, 14257–14266,
https://doi.org/10.1021/acs.est.5b03608, 2015.
Lin, P., Aiona, P. K., Li, Y., Shiraiwa, M., Laskin, J., Nizkorodov, S. A.,
and Laskin, A.: Molecular Characterization of Brown Carbon in Biomass
Burning Aerosol Particles, Environ. Sci. Technol., 50, 11815–11824,
https://doi.org/10.1021/acs.est.6b03024, 2016.
Lin, P., Bluvshtein, N., Rudich, Y., Nizkorodov, S. A., Laskin, J., and
Laskin, A.: Molecular Chemistry of Atmospheric Brown Carbon Inferred from a
Nationwide Biomass Burning Event, Environ. Sci. Technol., 51, 11561–11570,
https://doi.org/10.1021/acs.est.7b02276, 2017.
Lin, P., Fleming, L. T., Nizkorodov, S. A., Laskin, J., and Laskin, A.:
Comprehensive Molecular Characterization of Atmospheric Brown Carbon by High
Resolution Mass Spectrometry with Electrospray and Atmospheric Pressure
Photoionization, Anal. Chem., 90, 12493–12502,
https://doi.org/10.1021/acs.analchem.8b02177, 2018.
Liu, J., Bergin, M., Guo, H., King, L., Kotra, N., Edgerton, E., and Weber, R. J.: Size-resolved measurements of brown carbon in water and methanol extracts and estimates of their contribution to ambient fine-particle light absorption, Atmos. Chem. Phys., 13, 12389–12404, https://doi.org/10.5194/acp-13-12389-2013, 2013.
Liu, J., Mo, Y., Ding, P., Li, J., Shen, C., and Zhang, G.: Dual carbon
isotopes ((14)C and (13)C) and optical properties of WSOC and HULIS-C during
winter in Guangzhou, China, Sci. Total Environ., 633, 1571–1578,
https://doi.org/10.1016/j.scitotenv.2018.03.293, 2018.
Luciani, X., Mounier, S., Redon, R., and Bois, A.: A simple correction
method of inner filter effects affecting FEEM and its application to the
PARAFAC decomposition, Chemom. Intell. Lab. Syst., 96, 227–238,
https://doi.org/10.1016/j.chemolab.2009.02.008, 2009.
Marrero-Ortiz, W., Hu, M., Du, Z., Ji, Y., Wang, Y., Guo, S., Lin, Y.,
Gomez-Hermandez, M., Peng, J., Li, Y., Secrest, J., Levy Zamora, M., Wang,
Y., An, T., and Zhang, R.: Formation and optical properties of brown carbon
from small alpha-dicarbonyls and amines, Environ. Sci. Technol., 53, 117–126,
https://doi.org/10.1021/acs.est.8b03995, 2018.
Matos, J. T. V., Freire, S. M. S. C., Duarte, R. M. B. O., and Duarte, A.
C.: Natural organic matter in urban aerosols: Comparison between water and
alkaline soluble components using excitation–emission matrix fluorescence
spectroscopy and multiway data analysis, Atmos. Environ., 102, 1–10,
https://doi.org/10.1016/j.atmosenv.2014.11.042, 2015.
Mcknight, D. M., Boyer, E. W., Westerhoff, P., Doran, P. T., Kulbe, T., and
Andersen, D. T.: Spectrofluorometric characterization of dissolved organic
matter for indication of precursor organic material and aromaticity, Limnol.
Oceanogr., 46, 38–48, https://doi.org/10.4319/lo.2001.46.1.0038, 2001.
Mo, Y., Li, J., Jiang, B., Su, T., Geng, X., Liu, J., Jiang, H., Shen, C.,
Ding, P., Zhong, G., Cheng, Z., Liao, Y., Tian, C., Chen, Y., and Zhang, G.:
Sources, compositions, and optical properties of humic-like substances in
Beijing during the 2014 APEC summit: Results from dual carbon isotope and
Fourier-transform ion cyclotron resonance mass spectrometry analyses,
Environ. Pollut., 239, 322–331,
https://doi.org/10.1016/j.envpol.2018.04.041, 2018.
Mo, Y. Z., Li, J., Liu, J. W., Zhong, G. C., Cheng, Z. N., Tian, C. G.,
Chen, Y. J., and Zhang, G.: The influence of solvent and pH on determination
of the light absorption properties of water-soluble brown carbon, Atmos.
Environ., 161, 90–98, https://doi.org/10.1016/j.atmosenv.2017.04.037, 2017.
Mounier, S., Patel, N., Quilici, L., Benaim, J. Y., and Benamou, C.:
Fluorescence 3D de la matière organique dissoute du fleuve amazone:
(Three-dimensional fluorescence of the dissolved organic carbon in the
Amazon river), Water Res., 33, 1523–1533,
https://doi.org/10.1016/S0043-1354(98)00347-9, 1999.
Murphy, K. R., Butler, K. D., Spencer, R. G., Stedmon, C. A., Boehme, J. R.,
and Aiken, G. R.: Measurement of dissolved organic matter fluorescence in
aquatic environments: an interlaboratory comparison, Environ. Sci. Technol.,
44, 9405–9412, https://doi.org/10.1021/es102362t, 2010.
Murphy, K. R., Stedmon, C. A., Graeber, D., and Bro, R.: Fluorescence
spectroscopy and multi-way techniques. PARAFAC, Anal. Methods, 5, 6557–6566,
https://doi.org/10.1039/c3ay41160e, 2013.
Murphy, K. R., Timko, S. A., Gonsior, M., Powers, L. C., Wunsch, U. J., and
Stedmon, C. A.: Photochemistry Illuminates Ubiquitous Organic Matter
Fluorescence Spectra, Environ. Sci. Technol., 52, 11243–11250,
https://doi.org/10.1021/acs.est.8b02648, 2018.
Park, S. S. and Yu, J.: Chemical and light absorption properties of
humic-like substances from biomass burning emissions under controlled
combustion experiments, Atmos. Environ., 136, 114–122,
https://doi.org/10.1016/j.atmosenv.2016.04.022, 2016.
Permadi, D. A., Kim Oanh, N. T., and Vautard, R.: Assessment of emission scenarios for 2030 and impacts of black carbon emission reduction measures on air quality and radiative forcing in Southeast Asia, Atmos. Chem. Phys., 18, 3321–3334, https://doi.org/10.5194/acp-18-3321-2018, 2018.
Pöhlker, C., Huffman, J. A., and Pöschl, U.: Autofluorescence of atmospheric bioaerosols – fluorescent biomolecules and potential interferences, Atmos. Meas. Tech., 5, 37–71, https://doi.org/10.5194/amt-5-37-2012, 2012.
Qin, J., Zhang, L., Zhou, X., Duan, J., Mu, S., Xiao, K., Hu, J., and Tan,
J.: Fluorescence fingerprinting properties for exploring water-soluble
organic compounds in PM2.5 in an industrial city of northwest China,
Atmos. Environ., 184, 203–211,
https://doi.org/10.1016/j.atmosenv.2018.04.049, 2018.
Ramanathan, V., Li, F., Ramana, M. V., Praveen, P. S., Kim, D., Corrigan, C.
E., Van Nguyen, H., Stone, E. A., Schauer, J. J., and Carmichael, G. R.:
Atmospheric brown clouds: Hemispherical and regional variations in
long-range transport, absorption, and radiative forcing, J. Geophys. Res.,
112, D22S21, https://doi.org/10.1029/2006JD008124, 2007.
See, S. W., Balasubramanian, R., and Wang, W.: A study of the physical,
chemical, and optical properties of ambient aerosol particles in Southeast
Asia during hazy and nonhazy days, J. Geophys. Res.-Atmos., 111, D10S08,
https://doi.org/10.1029/2005JD006180, 2006.
Shimabuku, K. K., Kennedy, A. M., Mulhern, R. E., and Summers, R. S.:
Evaluating Activated Carbon Adsorption of Dissolved Organic Matter and
Micropollutants Using Fluorescence Spectroscopy, Environ. Sci. Technol., 51,
2676–2684, https://doi.org/10.1021/acs.est.6b04911, 2017.
Song, J., Li, M., Jiang, B., Wei, S., Fan, X., and Peng, P.: Molecular
Characterization of Water-Soluble Humic like Substances in Smoke Particles
Emitted from Combustion of Biomass Materials and Coal Using
Ultrahigh-Resolution Electrospray Ionization Fourier Transform Ion Cyclotron
Resonance Mass Spectrometry, Environ. Sci. Technol., 52, 2575–2585,
https://doi.org/10.1021/acs.est.7b06126, 2018.
Song, J. Z., Li, M. J., Fan, X. J., Zou, C. L., Zhu, M. B., Jiang, B., Yu,
Z. Q., Jia, W. L., Liao, Y. H., and Peng, P. A.: Molecular Characterization
of Water- and Methanol-Soluble Organic Compounds Emitted from Residential
Coal Combustion Using Ultrahigh-Resolution Electrospray Ionization Fourier
Transform Ion Cyclotron Resonance Mass Spectrometry, Environ. Sci. Technol.,
53, 13607–13617, https://doi.org/10.1021/acs.est.9b04331, 2019.
Stedmon, C. A. and Markager, S.: Resolving the variability in dissolved
organic matter fluorescence in a temperate estuary and its catchment using
PARAFAC analysis, Limnol. Oceanogr., 50, 686–697,
https://doi.org/10.4319/lo.2005.50.2.0686, 2005.
Tang, J.: Data for TJ, Harvard Dataverse [data set], https://doi.org/10.7910/DVN/GQ04LG, 2021,
Tang, J., Li, J., Mo, Y., Safaei Khorram, M., Chen, Y., Tang, J., Zhang, Y.,
Song, J., and Zhang, G.: Light absorption and emissions inventory of
humic-like substances from simulated rainforest biomass burning in Southeast
Asia, Environ. Pollut., 262, 114266,
https://doi.org/10.1016/j.envpol.2020.114266, 2020a.
Tang, J., Li, J., Su, T., Han, Y., Mo, Y., Jiang, H., Cui, M., Jiang, B., Chen, Y., Tang, J., Song, J., Peng, P., and Zhang, G.: Molecular compositions and optical properties of dissolved brown carbon in biomass burning, coal combustion, and vehicle emission aerosols illuminated by excitation–emission matrix spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry analysis, Atmos. Chem. Phys., 20, 2513–2532, https://doi.org/10.5194/acp-20-2513-2020, 2020b.
Wang, J., Jiang, H., Jiang, H., Mo, Y., Geng, X., Li, J., Mao, S., Bualert,
S., Ma, S., Li, J., and Zhang, G.: Source apportionment of water-soluble
oxidative potential in ambient total suspended particulate from Bangkok:
Biomass burning versus fossil fuel combustion, Atmos. Environ., 235, 117624,
https://doi.org/10.1016/j.atmosenv.2020.117624, 2020.
Wang, K., Pang, Y., He, C., Li, P., Xiao, S., Sun, Y., Pan, Q., Zhang, Y.,
Shi, Q., and He, D.: Optical and molecular signatures of dissolved organic
matter in Xiangxi Bay and mainstream of Three Gorges Reservoir, China:
Spatial variations and environmental implications, Sci. Total Environ., 657,
1274–1284, https://doi.org/10.1016/j.scitotenv.2018.12.117, 2019.
Wang, X., Hayeck, N., Brüggemann, M., Abis, L., Riva, M., Lu, Y., Wang,
B., Chen, J., George, C., and Wang, L.: Chemical Characteristics and Brown
Carbon Chromophores of Atmospheric Organic Aerosols Over the Yangtze River
Channel: A Cruise Campaign, J. Geophys. Res.-Atmos., 125, e2020JD032497,
https://doi.org/10.1029/2020jd032497, 2020.
Wong, J. P. S., Nenes, A., and Weber, R. J.: Changes in Light Absorptivity
of Molecular Weight Separated Brown Carbon Due to Photolytic Aging, Environ.
Sci. Technol., 51, 8414–8421, https://doi.org/10.1021/acs.est.7b01739, 2017.
Wu, C., Wang, G., Li, J., Li, J., Cao, C., Ge, S., Xie, Y., Chen, J., Li, X., Xue, G., Wang, X., Zhao, Z., and Cao, F.: The characteristics of atmospheric brown carbon in Xi'an, inland China: sources, size distributions and optical properties, Atmos. Chem. Phys., 20, 2017–2030, https://doi.org/10.5194/acp-20-2017-2020, 2020.
Wu, F. C., Evans, R. D., and Dillon, P. J.: Separation and Characterization
of NOM by High-Performance Liquid Chromatography and On-Line
Three-Dimensional Excitation Emission Matrix Fluorescence Detection,
Environ. Sci. Technol., 37, 3687–3693, https://doi.org/10.1021/es020244e,
2003.
Wu, G., Wan, X., Gao, S., Fu, P., Yin, Y., Li, G., Zhang, G., Kang, S., Ram,
K., and Cong, Z.: Humic-Like Substances (HULIS) in Aerosols of Central
Tibetan Plateau (Nam Co, 4730 m asl): Abundance, Light Absorption
Properties, and Sources, Environ. Sci. Technol., 52, 7203–7211,
https://doi.org/10.1021/acs.est.8b01251, 2018.
Wu, G., Ram, K., Fu, P., Wang, W., Zhang, Y., Liu, X., Stone, E. A.,
Pradhan, B. B., Dangol, P. M., Panday, A. K., Wan, X., Bai, Z., Kang, S.,
Zhang, Q., and Cong, Z.: Water-Soluble Brown Carbon in Atmospheric Aerosols
from Godavari (Nepal), a Regional Representative of South Asia, Environ.
Sci. Technol., 53, 3471–3479, https://doi.org/10.1021/acs.est.9b00596, 2019.
Wu, G., Wan, X., Ram, K., Li, P., Liu, B., Yin, Y., Fu, P., Loewen, M., Gao,
S., Kang, S., Kawamura, K., Wang, Y., and Cong, Z.: Light absorption,
fluorescence properties and sources of brown carbon aerosols in the
Southeast Tibetan Plateau, Environ. Pollut., 257, 113616,
https://doi.org/10.1016/j.envpol.2019.113616, 2020.
Wu, G., Fu, P., Ram, K., Song, J., Chen, Q., Kawamura, K., Wan, X., Kang,
S., Wang, X., Laskin, A., and Cong, Z.: Fluorescence characteristics of
water-soluble organic carbon in atmospheric aerosol, Environ. Pollut., 268,
115906, https://doi.org/10.1016/j.envpol.2020.115906, 2021.
Xie, M., Chen, X., Holder, A. L., Hays, M. D., Lewandowski, M., Offenberg,
J. H., Kleindienst, T. E., Jaoui, M., and Hannigan, M. P.: Light absorption
of organic carbon and its sources at a southeastern U.S. location in summer,
Environ. Pollut., 244, 38–46, https://doi.org/10.1016/j.envpol.2018.09.125,
2019.
Yan, C., Zheng, M., Sullivan, A. P., Bosch, C., Desyaterik, Y., Andersson,
A., Li, X., Guo, X., Zhou, T., Gustafsson, Ö., and Collett, J. L.:
Chemical characteristics and light-absorbing property of water-soluble
organic carbon in Beijing: Biomass burning contributions, Atmos. Environ.,
121, 4–12, https://doi.org/10.1016/j.atmosenv.2015.05.005, 2015.
Yan, C., Zheng, M., Desyaterik, Y., Sullivan, A. P., Wu, Y., and Collett
Jr., J. L.: Molecular Characterization of Water-Soluble Brown Carbon
Chromophores in Beijing, China, J. Geophys. Res.-Atmos., 125, e2019JD032018,
https://doi.org/10.1029/2019jd032018, 2020.
Yan, G. and Kim, G.: Speciation and Sources of Brown Carbon in
Precipitation at Seoul, Korea: Insights from Excitation-Emission Matrix
Spectroscopy and Carbon Isotopic Analysis, Environ. Sci. Technol., 51,
11580–11587, https://doi.org/10.1021/acs.est.7b02892, 2017.
Yue, S., Ren, L., Song, T., Li, L., Xie, Q., Li, W., Kang, M., Zhao, W.,
Wei, L., Ren, H., Sun, Y., Wang, Z., Ellam, R. M., Liu, C. Q., Kawamura, K.,
and Fu, P.: Abundance and Diurnal Trends of Fluorescent Bioaerosols in the
Troposphere over Mt. Tai, China, in Spring, J. Geophys. Res.-Atmos., 124,
4158–4173, https://doi.org/10.1029/2018jd029486, 2019.
Zhou, Y., Wen, H., Liu, J., Pu, W., Chen, Q., and Wang, X.: The optical characteristics and sources of chromophoric dissolved organic matter (CDOM) in seasonal snow of northwestern China, The Cryosphere, 13, 157–175, https://doi.org/10.5194/tc-13-157-2019, 2019.
Zsolnay, A., Baigar, E., Jimenez, M., Steinweg, B., and Saccomandi, F.:
Differentiating with fluorescence spectroscopy the sources of dissolved
organic matter in soils subjected to drying, Chemosphere, 38, 45–50,
https://doi.org/10.1016/S0045-6535(98)00166-0, 1999.
Short summary
This article provides a combined EEM–PARAFAC and statistical analysis method to explore how excitation–emission matrix (EEM) chromophores influence BrC light absorption in soluble organic matter. The application enables us to deduce that BrC absorption is mainly dependent on longer-emission-wavelength chromophores largely associated with biomass burning emissions. This method promotes the application of EEM spectroscopy and helps us understand the light absorption of BrC in the atmosphere.
This article provides a combined EEM–PARAFAC and statistical analysis method to explore how...
Altmetrics
Final-revised paper
Preprint