Articles | Volume 20, issue 8
https://doi.org/10.5194/acp-20-4987-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-4987-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Biodegradation of phenol and catechol in cloud water: comparison to chemical oxidation in the atmospheric multiphase system
Saly Jaber
Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, CNRS, SIGMA Clermont, 63000 Clermont-Ferrand, France
Audrey Lallement
Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, CNRS, SIGMA Clermont, 63000 Clermont-Ferrand, France
Martine Sancelme
Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, CNRS, SIGMA Clermont, 63000 Clermont-Ferrand, France
Martin Leremboure
Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, CNRS, SIGMA Clermont, 63000 Clermont-Ferrand, France
Gilles Mailhot
Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, CNRS, SIGMA Clermont, 63000 Clermont-Ferrand, France
Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, CNRS, SIGMA Clermont, 63000 Clermont-Ferrand, France
Anne-Marie Delort
CORRESPONDING AUTHOR
Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, CNRS, SIGMA Clermont, 63000 Clermont-Ferrand, France
Related authors
Pascal Renard, Maxence Brissy, Florent Rossi, Martin Leremboure, Saly Jaber, Jean-Luc Baray, Angelica Bianco, Anne-Marie Delort, and Laurent Deguillaume
Atmos. Chem. Phys., 22, 2467–2486, https://doi.org/10.5194/acp-22-2467-2022, https://doi.org/10.5194/acp-22-2467-2022, 2022
Short summary
Short summary
Amino acids (AAs) have been quantified in cloud water collected at the Puy de Dôme station (France). Concentrations and speciation of those compounds are highly variable among the samples. Sources from the sea surface and atmospheric transformations during the air mass transport, mainly in the free troposphere, have been shown to modulate AA levels in cloud water.
Saly Jaber, Muriel Joly, Maxence Brissy, Martin Leremboure, Amina Khaled, Barbara Ervens, and Anne-Marie Delort
Biogeosciences, 18, 1067–1080, https://doi.org/10.5194/bg-18-1067-2021, https://doi.org/10.5194/bg-18-1067-2021, 2021
Short summary
Short summary
Our study is of interest to atmospheric scientists and environmental microbiologists, as we show that clouds can be considered a medium where bacteria efficiently degrade and transform amino acids, in competition with chemical processes. As current atmospheric multiphase models are restricted to chemical degradation of organic compounds, our conclusions motivate further model development.
Barbara Ervens, Andrew Rickard, Bernard Aumont, William P. L. Carter, Max McGillen, Abdelwahid Mellouki, John Orlando, Bénédicte Picquet-Varrault, Paul Seakins, William R. Stockwell, Luc Vereecken, and Timothy J. Wallington
Atmos. Chem. Phys., 24, 13317–13339, https://doi.org/10.5194/acp-24-13317-2024, https://doi.org/10.5194/acp-24-13317-2024, 2024
Short summary
Short summary
Chemical mechanisms describe the chemical processes in atmospheric models that are used to describe the changes in the atmospheric composition. Therefore, accurate chemical mechanisms are necessary to predict the evolution of air pollution and climate change. The article describes all steps that are needed to build chemical mechanisms and discusses the advances and needs of experimental and theoretical research activities needed to build reliable chemical mechanisms.
Raphaëlle Péguilhan, Florent Rossi, Muriel Joly, Engy Nasr, Bérénice Batut, François Enault, Barbara Ervens, and Pierre Amato
EGUsphere, https://doi.org/10.5194/egusphere-2024-2338, https://doi.org/10.5194/egusphere-2024-2338, 2024
Short summary
Short summary
Using comparative metagenomics/metatranscriptomics, we examined the functioning of airborne microorganisms in clouds and clear atmosphere; clouds are atmospheric volumes where multiple microbial processes are promoted compared with clear atmosphere; Overrepresented microbial functions of interest include the processing of chemical compounds, biomass production and the regulation of oxidants; - this has implications for biogeochemical cycles and microbial ecology.
Barbara Ervens, Pierre Amato, Kifle Aregahegn, Muriel Joly, Amina Khaled, Tiphaine Labed-Veydert, Frédéric Mathonat, Leslie Nuñez López, Raphaëlle Péguilhan, and Minghui Zhang
EGUsphere, https://doi.org/10.5194/egusphere-2024-2377, https://doi.org/10.5194/egusphere-2024-2377, 2024
Short summary
Short summary
Atmospheric microorganisms are a small fraction of Earth's microbiome, with bacteria being a significant part. Aerosolized bacteria are airborne for a few days encountering unique chemical and physical conditions affecting stress levels and survival. We explore chemical and microphysical conditions bacteria encounter, highlighting potential nutrient and oxidant limitations and diverse effects by pollutants, which may ultimately impact the microbiome's role in global ecosystems and biodiversity.
Leslie Nuñez López, Pierre Amato, and Barbara Ervens
Atmos. Chem. Phys., 24, 5181–5198, https://doi.org/10.5194/acp-24-5181-2024, https://doi.org/10.5194/acp-24-5181-2024, 2024
Short summary
Short summary
Living bacteria comprise a small particle fraction in the atmosphere. Our model study shows that atmospheric bacteria in clouds may efficiently biodegrade formic and acetic acids that affect the acidity of rain. We conclude that current atmospheric models underestimate losses of these acids as they only consider chemical processes. We suggest that biodegradation can affect atmospheric concentration not only of formic and acetic acids but also of other volatile, moderately soluble organics.
Maud Leriche, Pierre Tulet, Laurent Deguillaume, Frédéric Burnet, Aurélie Colomb, Agnès Borbon, Corinne Jambert, Valentin Duflot, Stéphan Houdier, Jean-Luc Jaffrezo, Mickaël Vaïtilingom, Pamela Dominutti, Manon Rocco, Camille Mouchel-Vallon, Samira El Gdachi, Maxence Brissy, Maroua Fathalli, Nicolas Maury, Bert Verreyken, Crist Amelynck, Niels Schoon, Valérie Gros, Jean-Marc Pichon, Mickael Ribeiro, Eric Pique, Emmanuel Leclerc, Thierry Bourrianne, Axel Roy, Eric Moulin, Joël Barrie, Jean-Marc Metzger, Guillaume Péris, Christian Guadagno, Chatrapatty Bhugwant, Jean-Mathieu Tibere, Arnaud Tournigand, Evelyn Freney, Karine Sellegri, Anne-Marie Delort, Pierre Amato, Muriel Joly, Jean-Luc Baray, Pascal Renard, Angelica Bianco, Anne Réchou, and Guillaume Payen
Atmos. Chem. Phys., 24, 4129–4155, https://doi.org/10.5194/acp-24-4129-2024, https://doi.org/10.5194/acp-24-4129-2024, 2024
Short summary
Short summary
Aerosol particles in the atmosphere play a key role in climate change and air pollution. A large number of aerosol particles are formed from the oxidation of volatile organic compounds (VOCs and secondary organic aerosols – SOA). An important field campaign was organized on Réunion in March–April 2019 to understand the formation of SOA in a tropical atmosphere mostly influenced by VOCs emitted by forest and in the presence of clouds. This work synthesizes the results of this campaign.
Pascal Renard, Maxence Brissy, Florent Rossi, Martin Leremboure, Saly Jaber, Jean-Luc Baray, Angelica Bianco, Anne-Marie Delort, and Laurent Deguillaume
Atmos. Chem. Phys., 22, 2467–2486, https://doi.org/10.5194/acp-22-2467-2022, https://doi.org/10.5194/acp-22-2467-2022, 2022
Short summary
Short summary
Amino acids (AAs) have been quantified in cloud water collected at the Puy de Dôme station (France). Concentrations and speciation of those compounds are highly variable among the samples. Sources from the sea surface and atmospheric transformations during the air mass transport, mainly in the free troposphere, have been shown to modulate AA levels in cloud water.
Amina Khaled, Minghui Zhang, and Barbara Ervens
Atmos. Chem. Phys., 22, 1989–2009, https://doi.org/10.5194/acp-22-1989-2022, https://doi.org/10.5194/acp-22-1989-2022, 2022
Short summary
Short summary
Chemical reactions with iron in clouds and aerosol form and cycle reactive oxygen species (ROS). Previous model studies assumed that all cloud droplets (particles) contain iron, while single-particle analyses showed otherwise. By means of a model, we explore the bias in predicted ROS budgets by distributing a given iron mass to either all or only a few droplets (particles). Implications for oxidation potential, radical loss and iron oxidation state are discussed.
Pamela A. Dominutti, Pascal Renard, Mickaël Vaïtilingom, Angelica Bianco, Jean-Luc Baray, Agnès Borbon, Thierry Bourianne, Frédéric Burnet, Aurélie Colomb, Anne-Marie Delort, Valentin Duflot, Stephan Houdier, Jean-Luc Jaffrezo, Muriel Joly, Martin Leremboure, Jean-Marc Metzger, Jean-Marc Pichon, Mickaël Ribeiro, Manon Rocco, Pierre Tulet, Anthony Vella, Maud Leriche, and Laurent Deguillaume
Atmos. Chem. Phys., 22, 505–533, https://doi.org/10.5194/acp-22-505-2022, https://doi.org/10.5194/acp-22-505-2022, 2022
Short summary
Short summary
We present here the results obtained during an intensive field campaign conducted in March to April 2019 in Reunion. Our study integrates a comprehensive chemical and microphysical characterization of cloud water. Our investigations reveal that air mass history and cloud microphysical properties do not fully explain the variability observed in their chemical composition. This highlights the complexity of emission sources, multiphasic exchanges, and transformations in clouds.
Ramon Campos Braga, Barbara Ervens, Daniel Rosenfeld, Meinrat O. Andreae, Jan-David Förster, Daniel Fütterer, Lianet Hernández Pardo, Bruna A. Holanda, Tina Jurkat-Witschas, Ovid O. Krüger, Oliver Lauer, Luiz A. T. Machado, Christopher Pöhlker, Daniel Sauer, Christiane Voigt, Adrian Walser, Manfred Wendisch, Ulrich Pöschl, and Mira L. Pöhlker
Atmos. Chem. Phys., 21, 17513–17528, https://doi.org/10.5194/acp-21-17513-2021, https://doi.org/10.5194/acp-21-17513-2021, 2021
Short summary
Short summary
Interactions of aerosol particles with clouds represent a large uncertainty in estimates of climate change. Properties of aerosol particles control their ability to act as cloud condensation nuclei. Using aerosol measurements in the Amazon, we performed model studies to compare predicted and measured cloud droplet number concentrations at cloud bases. Our results confirm previous estimates of particle hygroscopicity in this region.
Ramon Campos Braga, Daniel Rosenfeld, Ovid O. Krüger, Barbara Ervens, Bruna A. Holanda, Manfred Wendisch, Trismono Krisna, Ulrich Pöschl, Meinrat O. Andreae, Christiane Voigt, and Mira L. Pöhlker
Atmos. Chem. Phys., 21, 14079–14088, https://doi.org/10.5194/acp-21-14079-2021, https://doi.org/10.5194/acp-21-14079-2021, 2021
Short summary
Short summary
Quantifying the precipitation within clouds is crucial for our understanding of the Earth's hydrological cycle. Using in situ measurements of cloud and rain properties over the Amazon Basin and Atlantic Ocean, we show here a linear relationship between the effective radius (re) and precipitation water content near the tops of convective clouds for different pollution states and temperature levels. Our results emphasize the role of re to determine both initiation and amount of precipitation.
Mira L. Pöhlker, Minghui Zhang, Ramon Campos Braga, Ovid O. Krüger, Ulrich Pöschl, and Barbara Ervens
Atmos. Chem. Phys., 21, 11723–11740, https://doi.org/10.5194/acp-21-11723-2021, https://doi.org/10.5194/acp-21-11723-2021, 2021
Short summary
Short summary
Clouds cool our atmosphere. The role of small aerosol particles in affecting them represents one of the largest uncertainties in current estimates of climate change. Traditionally it is assumed that cloud droplets only form particles of diameters ~ 100 nm (
accumulation mode). Previous studies suggest that this can also occur in smaller particles (
Aitken mode). Our study provides a general framework to estimate under which aerosol and cloud conditions Aitken mode particles affect clouds.
Minghui Zhang, Amina Khaled, Pierre Amato, Anne-Marie Delort, and Barbara Ervens
Atmos. Chem. Phys., 21, 3699–3724, https://doi.org/10.5194/acp-21-3699-2021, https://doi.org/10.5194/acp-21-3699-2021, 2021
Short summary
Short summary
Although primary biological aerosol particles (PBAPs, bioaerosols) represent a small fraction of total atmospheric aerosol burden, they might affect climate and public health. We summarize which PBAP properties are important to affect their inclusion in clouds and interaction with light and might also affect their residence time and transport in the atmosphere. Our study highlights that not only chemical and physical but also biological processes can modify these physicochemical properties.
Amina Khaled, Minghui Zhang, Pierre Amato, Anne-Marie Delort, and Barbara Ervens
Atmos. Chem. Phys., 21, 3123–3141, https://doi.org/10.5194/acp-21-3123-2021, https://doi.org/10.5194/acp-21-3123-2021, 2021
Saly Jaber, Muriel Joly, Maxence Brissy, Martin Leremboure, Amina Khaled, Barbara Ervens, and Anne-Marie Delort
Biogeosciences, 18, 1067–1080, https://doi.org/10.5194/bg-18-1067-2021, https://doi.org/10.5194/bg-18-1067-2021, 2021
Short summary
Short summary
Our study is of interest to atmospheric scientists and environmental microbiologists, as we show that clouds can be considered a medium where bacteria efficiently degrade and transform amino acids, in competition with chemical processes. As current atmospheric multiphase models are restricted to chemical degradation of organic compounds, our conclusions motivate further model development.
Jean-Luc Baray, Laurent Deguillaume, Aurélie Colomb, Karine Sellegri, Evelyn Freney, Clémence Rose, Joël Van Baelen, Jean-Marc Pichon, David Picard, Patrick Fréville, Laëtitia Bouvier, Mickaël Ribeiro, Pierre Amato, Sandra Banson, Angelica Bianco, Agnès Borbon, Lauréline Bourcier, Yannick Bras, Marcello Brigante, Philippe Cacault, Aurélien Chauvigné, Tiffany Charbouillot, Nadine Chaumerliac, Anne-Marie Delort, Marc Delmotte, Régis Dupuy, Antoine Farah, Guy Febvre, Andrea Flossmann, Christophe Gourbeyre, Claude Hervier, Maxime Hervo, Nathalie Huret, Muriel Joly, Victor Kazan, Morgan Lopez, Gilles Mailhot, Angela Marinoni, Olivier Masson, Nadège Montoux, Marius Parazols, Frédéric Peyrin, Yves Pointin, Michel Ramonet, Manon Rocco, Martine Sancelme, Stéphane Sauvage, Martina Schmidt, Emmanuel Tison, Mickaël Vaïtilingom, Paolo Villani, Miao Wang, Camille Yver-Kwok, and Paolo Laj
Atmos. Meas. Tech., 13, 3413–3445, https://doi.org/10.5194/amt-13-3413-2020, https://doi.org/10.5194/amt-13-3413-2020, 2020
Short summary
Short summary
CO-PDD (Cézeaux-Aulnat-Opme-puy de Dôme) is a fully instrumented platform for atmospheric research. The four sites located at different altitudes from 330 to 1465 m around Clermont-Ferrand (France) host in situ and remote sensing instruments to measure atmospheric composition, including long-term trends and variability, to study interconnected processes (microphysical, chemical, biological, chemical, and dynamical) and to provide a reference point for climate models.
Barbara Ervens and Pierre Amato
Atmos. Chem. Phys., 20, 1777–1794, https://doi.org/10.5194/acp-20-1777-2020, https://doi.org/10.5194/acp-20-1777-2020, 2020
Short summary
Short summary
Bacteria in the atmosphere are important due to their potential adverse health effects and as initiators of ice cloud formation. Observational studies suggest that bacterial cells grow and multiply in clouds and also consume organic compounds.
We estimate the role of microbial processes in the atmosphere for (i) the increase in biological aerosol mass by cell growth and multiplication and (ii) the sink strength of organics in clouds as a loss process in addition to chemical reactions.
Valentin Duflot, Pierre Tulet, Olivier Flores, Christelle Barthe, Aurélie Colomb, Laurent Deguillaume, Mickael Vaïtilingom, Anne Perring, Alex Huffman, Mark T. Hernandez, Karine Sellegri, Ellis Robinson, David J. O'Connor, Odessa M. Gomez, Frédéric Burnet, Thierry Bourrianne, Dominique Strasberg, Manon Rocco, Allan K. Bertram, Patrick Chazette, Julien Totems, Jacques Fournel, Pierre Stamenoff, Jean-Marc Metzger, Mathilde Chabasset, Clothilde Rousseau, Eric Bourrianne, Martine Sancelme, Anne-Marie Delort, Rachel E. Wegener, Cedric Chou, and Pablo Elizondo
Atmos. Chem. Phys., 19, 10591–10618, https://doi.org/10.5194/acp-19-10591-2019, https://doi.org/10.5194/acp-19-10591-2019, 2019
Short summary
Short summary
The Forests gAses aeRosols Clouds Exploratory (FARCE) campaign was conducted in March–April 2015 on the tropical island of La Réunion. For the first time, several scientific teams from different disciplines collaborated to provide reference measurements and characterization of La Réunion vegetation, volatile organic compounds (VOCs), biogenic VOCs (BVOCs), (bio)aerosols and composition of clouds, with a strong focus on the Maïdo mount slope area.
Barbara Ervens, Armin Sorooshian, Abdulmonam M. Aldhaif, Taylor Shingler, Ewan Crosbie, Luke Ziemba, Pedro Campuzano-Jost, Jose L. Jimenez, and Armin Wisthaler
Atmos. Chem. Phys., 18, 16099–16119, https://doi.org/10.5194/acp-18-16099-2018, https://doi.org/10.5194/acp-18-16099-2018, 2018
Short summary
Short summary
The paper presents a new framework that can be used to identify emission scenarios in which aerosol populations are most likely modified by chemical processes in clouds. We show that in neither very polluted nor in very clean air masses is this the case. Only if the ratio of possible aerosol mass precursors (sulfur dioxide, some organics) and preexisting aerosol mass is sufficiently high will aerosol particles show substantially modified physicochemical properties upon cloud processing.
Audrey Lallement, Ludovic Besaury, Elise Tixier, Martine Sancelme, Pierre Amato, Virginie Vinatier, Isabelle Canet, Olga V. Polyakova, Viatcheslay B. Artaev, Albert T. Lebedev, Laurent Deguillaume, Gilles Mailhot, and Anne-Marie Delort
Biogeosciences, 15, 5733–5744, https://doi.org/10.5194/bg-15-5733-2018, https://doi.org/10.5194/bg-15-5733-2018, 2018
Short summary
Short summary
The main objective of this work was to evaluate the potential degradation of phenol, a highly toxic pollutant, by cloud microorganisms. Phenol concentrations measured on five cloud samples collected at the PUY station in France were from 0.15 to 0.74 µg L−1. Metatranscriptomic analysis suggested that phenol could be biodegraded directly in clouds, likely by Gammaproteobacteria. A large screening showed that 93 % of 145 bacterial strains isolated from clouds were able to degrade phenol.
Nolwenn Wirgot, Virginie Vinatier, Laurent Deguillaume, Martine Sancelme, and Anne-Marie Delort
Atmos. Chem. Phys., 17, 14841–14851, https://doi.org/10.5194/acp-17-14841-2017, https://doi.org/10.5194/acp-17-14841-2017, 2017
Short summary
Short summary
This article highlights the interactions between H2O2 and microorganisms within the cloud system. Experiments performed in microcosms with bacterial strains isolated from clouds showed that H2O2 strongly impacted the microbial energetic state. The ATP depletion measured in the presence of H2O2 was not due to the loss of cell viability. The strong correlation between ATP and H2O2 based on the analysis of 37 real cloud samples confirmed that H2O2 modulates the metabolism of cloud microorganisms.
B. Ervens, P. Renard, S. Tlili, S. Ravier, J.-L. Clément, and A. Monod
Atmos. Chem. Phys., 15, 9109–9127, https://doi.org/10.5194/acp-15-9109-2015, https://doi.org/10.5194/acp-15-9109-2015, 2015
Short summary
Short summary
A detailed chemical mechanism is developed based on laboratory studies that predicts the formation of high molecular weight compounds in the aqueous phase of atmospheric aerosol particles. Model simulations using this mechanism for atmospheric conditions show that these pathways are likely not a substantial source of particle mass, unless unidentified precursors for these compounds exist that were not taken into account so far and/or the solubility of oxygen in aerosol water is overestimated.
B. Yuan, P. R. Veres, C. Warneke, J. M. Roberts, J. B. Gilman, A. Koss, P. M. Edwards, M. Graus, W. C. Kuster, S.-M. Li, R. J. Wild, S. S. Brown, W. P. Dubé, B. M. Lerner, E. J. Williams, J. E. Johnson, P. K. Quinn, T. S. Bates, B. Lefer, P. L. Hayes, J. L. Jimenez, R. J. Weber, R. Zamora, B. Ervens, D. B. Millet, B. Rappenglück, and J. A. de Gouw
Atmos. Chem. Phys., 15, 1975–1993, https://doi.org/10.5194/acp-15-1975-2015, https://doi.org/10.5194/acp-15-1975-2015, 2015
Short summary
Short summary
In this work, secondary formation of formic acid at an urban site and a site in an oil and gas production region is studied. We investigated various gas phase formation pathways of formic acid, including those recently proposed, using a box model. The contributions from aerosol-related processes, fog events and air-snow exchange to formic acid are also quantified.
B. Ervens, Y. Wang, J. Eagar, W. R. Leaitch, A. M. Macdonald, K. T. Valsaraj, and P. Herckes
Atmos. Chem. Phys., 13, 5117–5135, https://doi.org/10.5194/acp-13-5117-2013, https://doi.org/10.5194/acp-13-5117-2013, 2013
Related subject area
Subject: Clouds and Precipitation | Research Activity: Laboratory Studies | Altitude Range: Troposphere | Science Focus: Chemistry (chemical composition and reactions)
Retention of α-pinene oxidation products and nitro-aromatic compounds during riming
Direct formation of HONO through aqueous-phase photolysis of organic nitrates
On the importance of multiphase photolysis of organic nitrates on their global atmospheric removal
Effects of pH and light exposure on the survival of bacteria and their ability to biodegrade organic compounds in clouds: implications for microbial activity in acidic cloud water
Towards a chemical mechanism of the oxidation of aqueous sulfur dioxide via isoprene hydroxyl hydroperoxides (ISOPOOH)
On the importance of atmospheric loss of organic nitrates by aqueous-phase ●OH oxidation
Lignin's ability to nucleate ice via immersion freezing and its stability towards physicochemical treatments and atmospheric processing
Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 2: Quartz and amorphous silica
Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 3: Aluminosilicates
Aqueous reactions of organic triplet excited states with atmospheric alkenes
The quasi-liquid layer of ice revisited: the role of temperature gradients and tip chemistry in AFM studies
Ice nucleation activity of silicates and aluminosilicates in pure water and aqueous solutions – Part 1: The K-feldspar microcline
Direct molecular-level characterization of different heterogeneous freezing modes on mica – Part 1
Chemistry of riming: the retention of organic and inorganic atmospheric trace constituents
Surface-charge-induced orientation of interfacial water suppresses heterogeneous ice nucleation on α-alumina (0001)
Screening of cloud microorganisms isolated at the Puy de Dôme (France) station for the production of biosurfactants
Comparing contact and immersion freezing from continuous flow diffusion chambers
A better understanding of hydroxyl radical photochemical sources in cloud waters collected at the puy de Dôme station – experimental versus modelled formation rates
Deposition and immersion-mode nucleation of ice by three distinct samples of volcanic ash
Organic matter matters for ice nuclei of agricultural soil origin
Effect of atmospheric organic complexation on iron-bearing dust solubility
Are sesquiterpenes a good source of secondary organic cloud condensation nuclei (CCN)? Revisiting β-caryophyllene CCN
Ice nucleation efficiency of clay minerals in the immersion mode
Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry
Yields of hydrogen peroxide from the reaction of hydroxyl radical with organic compounds in solution and ice
In-cloud processes of methacrolein under simulated conditions – Part 1: Aqueous phase photooxidation
In-cloud processes of methacrolein under simulated conditions – Part 2: Formation of secondary organic aerosol
Christine Borchers, Jackson Seymore, Martanda Gautam, Konstantin Dörholt, Yannik Müller, Andreas Arndt, Laura Gömmer, Florian Ungeheuer, Miklós Szakáll, Stephan Borrmann, Alexander Theis, Alexander L. Vogel, and Thorsten Hoffmann
Atmos. Chem. Phys., 24, 13961–13974, https://doi.org/10.5194/acp-24-13961-2024, https://doi.org/10.5194/acp-24-13961-2024, 2024
Short summary
Short summary
Riming, a crucial process in cloud dynamics, influences the vertical distribution of compounds in the atmosphere. Experiments in Mainz's wind tunnel investigated retention coefficients of organic compounds under varying conditions. Findings suggest a correlation between the Henry's law constant and retention, applicable even to complex organic molecules.
Juan Miguel González-Sánchez, Miquel Huix-Rotllant, Nicolas Brun, Julien Morin, Carine Demelas, Amandine Durand, Sylvain Ravier, Jean-Louis Clément, and Anne Monod
Atmos. Chem. Phys., 23, 15135–15147, https://doi.org/10.5194/acp-23-15135-2023, https://doi.org/10.5194/acp-23-15135-2023, 2023
Short summary
Short summary
Organic nitrates play a crucial role in air pollution, as they are nitrogen oxide (NOx) reservoirs. This work investigated the reaction products and mechanisms of their reactivity with light in the aqueous phase (cloud and fog conditions and wet aerosol). Our findings reveal that this chemistry leads to the formation of atmospheric nitrous acid (HONO).
Juan Miguel González-Sánchez, Nicolas Brun, Junteng Wu, Sylvain Ravier, Jean-Louis Clément, and Anne Monod
Atmos. Chem. Phys., 23, 5851–5866, https://doi.org/10.5194/acp-23-5851-2023, https://doi.org/10.5194/acp-23-5851-2023, 2023
Short summary
Short summary
Organic nitrates play a crucial role in air pollution, as they are NOx reservoirs. This work investigated for the first time their reactivity with light in the aqueous phase (cloud and fog and wet aerosol), proving it slower than in the gas phase. Therefore, our findings reveal that partitioning of organic nitrates in the aqueous phase leads to longer atmospheric lifetimes of these compounds and thus a broader spatial distribution of their related pollution.
Yushuo Liu, Chee Kent Lim, Zhiyong Shen, Patrick K. H. Lee, and Theodora Nah
Atmos. Chem. Phys., 23, 1731–1747, https://doi.org/10.5194/acp-23-1731-2023, https://doi.org/10.5194/acp-23-1731-2023, 2023
Short summary
Short summary
We investigated how cloud water pH and solar radiation impact the survival and energetic metabolism of two neutrophilic bacteria species and their biodegradation of organic acids. Experiments were performed using artificial cloud water that mimicked the pH and composition of cloud water in South China. We found that there is a minimum cloud water pH threshold at which neutrophilic bacteria will survive and biodegrade organic compounds in cloud water during the daytime and/or nighttime.
Eleni Dovrou, Kelvin H. Bates, Jean C. Rivera-Rios, Joshua L. Cox, Joshua D. Shutter, and Frank N. Keutsch
Atmos. Chem. Phys., 21, 8999–9008, https://doi.org/10.5194/acp-21-8999-2021, https://doi.org/10.5194/acp-21-8999-2021, 2021
Short summary
Short summary
We examined the mechanism and products of oxidation of dissolved sulfur dioxide with the main isomers of isoprene hydroxyl hydroperoxides, via laboratory and model analysis. Two chemical mechanism pathways are proposed and the results provide an improved understanding of the broader atmospheric chemistry and role of multifunctional organic hydroperoxides, which should be the dominant VOC oxidation products under low-NO conditions, highlighting their significant contribution to sulfate formation.
Juan Miguel González-Sánchez, Nicolas Brun, Junteng Wu, Julien Morin, Brice Temime-Roussel, Sylvain Ravier, Camille Mouchel-Vallon, Jean-Louis Clément, and Anne Monod
Atmos. Chem. Phys., 21, 4915–4937, https://doi.org/10.5194/acp-21-4915-2021, https://doi.org/10.5194/acp-21-4915-2021, 2021
Short summary
Short summary
Organic nitrates play a crucial role in air pollution as they are considered NOx reservoirs. This work lights up the importance of their reactions with OH radicals in the aqueous phase (cloud/fog, wet aerosol), which is slower than in the gas phase. For compounds that significantly partition in water such as polyfunctional biogenic nitrates, these aqueous-phase reactions should drive their atmospheric removal, leading to a broader spatial distribution of NOx than previously accounted for.
Sophie Bogler and Nadine Borduas-Dedekind
Atmos. Chem. Phys., 20, 14509–14522, https://doi.org/10.5194/acp-20-14509-2020, https://doi.org/10.5194/acp-20-14509-2020, 2020
Short summary
Short summary
To study the role of organic matter in ice crystal formation, we investigated the ice nucleation ability of a subcomponent of organic aerosols, the biopolymer lignin, using a droplet-freezing technique. We found that lignin is an ice-active macromolecule with changing abilities based on dilutions. The effects of atmospheric processing and of physicochemical treatments on the ability of lignin solutions to freeze were negligible. Thus, lignin is a recalcitrant ice-nucleating macromolecule.
Anand Kumar, Claudia Marcolli, and Thomas Peter
Atmos. Chem. Phys., 19, 6035–6058, https://doi.org/10.5194/acp-19-6035-2019, https://doi.org/10.5194/acp-19-6035-2019, 2019
Short summary
Short summary
This paper not only interests the atmospheric science community but has a potential to cater to a broader audience. We discuss both long- and
short-term effects of various
atmospherically relevantchemical species on a fairly abundant mineral surface
Quartz. We of course discuss these chemical interactions from the perspective of fate of airborne mineral dust but the same interactions could be interesting for studies on minerals at the ground level.
Anand Kumar, Claudia Marcolli, and Thomas Peter
Atmos. Chem. Phys., 19, 6059–6084, https://doi.org/10.5194/acp-19-6059-2019, https://doi.org/10.5194/acp-19-6059-2019, 2019
Short summary
Short summary
This paper not only interests the Atmospheric Science community but has a potential to cater to a broader audience. We discuss both long- and short-term effects of various
atmospherically relevantchemical species on fairly abundant mineral surfaces like feldspars and clays. We of course discuss these chemical interactions from the perspective of fate of airborne mineral dust but the same interactions could be interesting for studies on minerals at the ground level.
Richie Kaur, Brandi M. Hudson, Joseph Draper, Dean J. Tantillo, and Cort Anastasio
Atmos. Chem. Phys., 19, 5021–5032, https://doi.org/10.5194/acp-19-5021-2019, https://doi.org/10.5194/acp-19-5021-2019, 2019
Short summary
Short summary
Organic triplets are an important class of aqueous photooxidants, but little is known about their reactions with most atmospheric organic compounds. We measured the reaction rate constants of a model triplet with 17 aliphatic alkenes; using their correlation with oxidation potential, we predicted rate constants for some atmospherically relevant alkenes. Depending on their reactivities, triplets can be minor to important sinks for isoprene- and limonene-derived alkenes in cloud or fog drops.
Julián Gelman Constantin, Melisa M. Gianetti, María P. Longinotti, and Horacio R. Corti
Atmos. Chem. Phys., 18, 14965–14978, https://doi.org/10.5194/acp-18-14965-2018, https://doi.org/10.5194/acp-18-14965-2018, 2018
Short summary
Short summary
Numerous studies have shown that ice surface is actually coated by a thin layer of water even for temperatures below melting temperature. This quasi-liquid layer is relevant in the atmospheric chemistry of clouds, polar regions, glaciers, and other cold regions. We present new results of atomic force microscopy on pure ice, which suggests a thickness for this layer below 1 nm between -7 ºC and -2 ºC. We propose that in many cases previous authors have overestimated this thickness.
Anand Kumar, Claudia Marcolli, Beiping Luo, and Thomas Peter
Atmos. Chem. Phys., 18, 7057–7079, https://doi.org/10.5194/acp-18-7057-2018, https://doi.org/10.5194/acp-18-7057-2018, 2018
Short summary
Short summary
We have performed immersion freezing experiments with microcline (most active ice nucleation, IN, K-feldspar polymorph) and investigated the effect of ammonium and non-ammonium solutes on its IN efficiency. We report increased IN efficiency of microcline in dilute ammonia- or ammonium-containing solutions, which opens up a pathway for condensation freezing occurring at a warmer temperature than immersion freezing.
Ahmed Abdelmonem
Atmos. Chem. Phys., 17, 10733–10741, https://doi.org/10.5194/acp-17-10733-2017, https://doi.org/10.5194/acp-17-10733-2017, 2017
Short summary
Short summary
On the basis of supercooled SHG spectroscopy, I report molecular-level evidence for the existence of one- and two-step deposition freezing depending on the surface type and the supersaturation conditions. In addition, immersion freezing shows a transient ice phase with a lifetime of c. 1 min. This study provides new insights into atmospheric processes and can impact various industrial and research branches, particularly climate change, weather modification, and tracing water in the hydrosphere.
Alexander Jost, Miklós Szakáll, Karoline Diehl, Subir K. Mitra, and Stephan Borrmann
Atmos. Chem. Phys., 17, 9717–9732, https://doi.org/10.5194/acp-17-9717-2017, https://doi.org/10.5194/acp-17-9717-2017, 2017
Short summary
Short summary
During riming of graupel and hail, soluble chemical trace constituents contained in the liquid droplets could be retained while freezing onto the glaciated particle, or released back to the air potentially at other altitudes as retained. Quantification of retention constitutes a major uncertainty in numerical models for atmospheric chemistry and improvements hinge upon experimental determination of retention for carboxylic acids, aldehydes, SO2, H2O2, NH2, and others, as presented in this paper.
Ahmed Abdelmonem, Ellen H. G. Backus, Nadine Hoffmann, M. Alejandra Sánchez, Jenée D. Cyran, Alexei Kiselev, and Mischa Bonn
Atmos. Chem. Phys., 17, 7827–7837, https://doi.org/10.5194/acp-17-7827-2017, https://doi.org/10.5194/acp-17-7827-2017, 2017
Short summary
Short summary
We report the effect of surface charge on heterogeneous immersion freezing for the atmospherically relevant sapphire surface. Combining linear and nonlinear optical techniques and investigating isolated drops, we find that charge-induced surface templating is detrimental for ice nucleation on α-alumina surface. This study provides new insights into atmospheric processes and can impact various industrial and research branches, particularly climate change and tracing of water in the hydrosphere.
Pascal Renard, Isabelle Canet, Martine Sancelme, Nolwenn Wirgot, Laurent Deguillaume, and Anne-Marie Delort
Atmos. Chem. Phys., 16, 12347–12358, https://doi.org/10.5194/acp-16-12347-2016, https://doi.org/10.5194/acp-16-12347-2016, 2016
Short summary
Short summary
A total of 480 microorganisms collected from 39 clouds sampled in France were isolated and identified. This unique collection was screened for biosurfactant production by measuring the surface tension. 41 % of the tested strains were active producers. Pseudomonas, the most frequently detected genus in clouds, was the dominant group for the production of biosurfactants. Further, the potential impact of the production of biosurfactants by cloud microorganisms on atmospheric processes is discussed.
Baban Nagare, Claudia Marcolli, André Welti, Olaf Stetzer, and Ulrike Lohmann
Atmos. Chem. Phys., 16, 8899–8914, https://doi.org/10.5194/acp-16-8899-2016, https://doi.org/10.5194/acp-16-8899-2016, 2016
Short summary
Short summary
The relative importance of contact freezing and immersion freezing at mixed-phase cloud temperatures is the subject of debate. We performed experiments using continuous-flow diffusion chambers to compare the freezing efficiency of ice-nucleating particles for both these nucleation modes. Silver iodide, kaolinite and Arizona Test Dust were used as ice-nucleating particles. We could not confirm the dominance of contact freezing over immersion freezing for our experimental conditions.
A. Bianco, M. Passananti, H. Perroux, G. Voyard, C. Mouchel-Vallon, N. Chaumerliac, G. Mailhot, L. Deguillaume, and M. Brigante
Atmos. Chem. Phys., 15, 9191–9202, https://doi.org/10.5194/acp-15-9191-2015, https://doi.org/10.5194/acp-15-9191-2015, 2015
G. P. Schill, K. Genareau, and M. A. Tolbert
Atmos. Chem. Phys., 15, 7523–7536, https://doi.org/10.5194/acp-15-7523-2015, https://doi.org/10.5194/acp-15-7523-2015, 2015
Short summary
Short summary
Fine volcanic ash can influence cloud glaciation and, therefore, global climate. In this work we examined the heterogeneous ice nucleation properties of three distinct types of volcanic ash. We find that, in contrast to previous studies, these volcanic ash samples have different ice nucleation properties in the immersion mode. In the deposition mode, however, they nucleate ice with similar efficiency. We show that this behavior may be due to their mineralogy.
Y. Tobo, P. J. DeMott, T. C. J. Hill, A. J. Prenni, N. G. Swoboda-Colberg, G. D. Franc, and S. M. Kreidenweis
Atmos. Chem. Phys., 14, 8521–8531, https://doi.org/10.5194/acp-14-8521-2014, https://doi.org/10.5194/acp-14-8521-2014, 2014
R. Paris and K. V. Desboeufs
Atmos. Chem. Phys., 13, 4895–4905, https://doi.org/10.5194/acp-13-4895-2013, https://doi.org/10.5194/acp-13-4895-2013, 2013
X. Tang, D. R. Cocker III, and A. Asa-Awuku
Atmos. Chem. Phys., 12, 8377–8388, https://doi.org/10.5194/acp-12-8377-2012, https://doi.org/10.5194/acp-12-8377-2012, 2012
V. Pinti, C. Marcolli, B. Zobrist, C. R. Hoyle, and T. Peter
Atmos. Chem. Phys., 12, 5859–5878, https://doi.org/10.5194/acp-12-5859-2012, https://doi.org/10.5194/acp-12-5859-2012, 2012
M. Vaïtilingom, T. Charbouillot, L. Deguillaume, R. Maisonobe, M. Parazols, P. Amato, M. Sancelme, and A.-M. Delort
Atmos. Chem. Phys., 11, 8721–8733, https://doi.org/10.5194/acp-11-8721-2011, https://doi.org/10.5194/acp-11-8721-2011, 2011
T. Hullar and C. Anastasio
Atmos. Chem. Phys., 11, 7209–7222, https://doi.org/10.5194/acp-11-7209-2011, https://doi.org/10.5194/acp-11-7209-2011, 2011
Yao Liu, I. El Haddad, M. Scarfogliero, L. Nieto-Gligorovski, B. Temime-Roussel, E. Quivet, N. Marchand, B. Picquet-Varrault, and A. Monod
Atmos. Chem. Phys., 9, 5093–5105, https://doi.org/10.5194/acp-9-5093-2009, https://doi.org/10.5194/acp-9-5093-2009, 2009
I. El Haddad, Yao Liu, L. Nieto-Gligorovski, V. Michaud, B. Temime-Roussel, E. Quivet, N. Marchand, K. Sellegri, and A. Monod
Atmos. Chem. Phys., 9, 5107–5117, https://doi.org/10.5194/acp-9-5107-2009, https://doi.org/10.5194/acp-9-5107-2009, 2009
Cited articles
Al-Khalid, T. and El-Naas, M. H.: Aerobic Biodegradation of Phenols: A
Comprehensive Review, Crit. Rev. Environ. Sci. Technol., 42, 1631–1690,
https://doi.org/10.1080/10643389.2011.569872, 2012.
Amato, P., Joly, M., Besaury, L., Oudart, A., Taib, N., Moné, A. I.,
Deguillaume, L., Delort, A., and Debroas, D.: Active microorganisms thrive
among extremely diverse communities in cloud water, PLOS One, 12, e0182869,
https://doi.org/10.1371/journal.pone.0182869, 2017.
Amato, P., Besaury, L., Joly, M., Penaud, B., Deguillaume, L., and Delort,
A.-M.: Metatranscriptomic exploration of microbial functioning in clouds,
Sci. Rep., 9, 4383, https://doi.org/10.1038/s41598-019-41032-4, 2019.
Arakaki, T., Anastasio, C., Kuroki, Y., Nakajima, H., Okada, K., Kotani, Y.,
Handa, D., Azechi, S., Kimura, T., Tsuhako, A., and Miyagi, Y.: A general
scavenging rate constant for reaction of hydroxyl radical with organic
carbon in atmospheric waters, Environ. Sci. Technol., 47, 8196–8203,
https://doi.org/10.1021/es401927b, 2013.
Ariya, P. A., Nepotchatykh, O., Ignatova, O., and Amyot, M.: Microbiological
degradation of atmospheric organic compounds, Geophys. Res. Lett., 29, 2077,
https://doi.org/10.1029/2002GL015637, 2002.
Bahadur, R., Uplinger, T., Russell, L. M., Sive, B. C., Cliff, S. S.,
Millet, D. B., Goldstein, A., and Bates, T. S.: Phenol Groups in Northeastern
U.S. Submicrometer Aerosol Particles Produced from Seawater Sources,
Environ. Sci. Technol., 44, 2542–2548, https://doi.org/10.1021/es9032277, 2010.
Beales, N.: Adaptation of Microorganisms to Cold Temperatures, Weak Acid
Preservatives, Low pH, and Osmotic Stress: A Review, Compr. Rev. Food Sci.
F., 3, 1–20, https://doi.org/10.1111/j.1541-4337.2004.tb00057.x, 2004.
Bianco, A., Deguillaume, L., Chaumerliac, N., Vaïtilingom, M., Wang,
M., Delort, A.-M., and Bridoux, M. C.: Effect of endogenous microbiota on the
molecular composition of cloud water: a study by Fourier-transform ion
cyclotron resonance mass spectrometry (FT-ICR MS), Sci. Rep., 9, 7663,
https://doi.org/10.1038/s41598-019-44149-8, 2019.
Bolzacchini, E., Bruschi, M., Hjorth, J., Meinardi, S., Orlandi, M.,
Rindone, B., and Rosenbohm, E.: Gas-Phase Reaction of Phenol with NO3,
Environ. Sci. Technol., 35, 1791–1797, https://doi.org/10.1021/es001290m, 2001.
Brigante, M. and Mailhot, G.: Chapter 9: Phototransformation of Organic
Compounds Induced by Iron Species, in: Surface Water Photochemistry, edited by: Calza, P. and Vione, D., Royal Society of Chemistry, Cambridge, UK,
167–195, 2015.
Chow, K. S., Huang, X. H. H., and Yu, J. Z.: Quantification of nitroaromatic
compounds in atmospheric fine particulate matter in Hong Kong over 3 years:
field measurement evidence for secondary formation derived from biomass
burning emissions, Environ. Chem., 13, 665–673, 2016.
Deguillaume, L., Charbouillot, T., Joly, M., Vaïtilingom, M., Parazols, M., Marinoni, A., Amato, P., Delort, A.-M., Vinatier, V., Flossmann, A., Chaumerliac, N., Pichon, J. M., Houdier, S., Laj, P., Sellegri, K., Colomb, A., Brigante, M., and Mailhot, G.: Classification of clouds sampled at the puy de Dôme (France) based on 10 yr of monitoring of their physicochemical properties, Atmos. Chem. Phys., 14, 1485–1506, https://doi.org/10.5194/acp-14-1485-2014, 2014.
Delhomme, O., Morville, S., and Millet, M.: Seasonal and diurnal variations
of atmospheric concentrations of phenols and nitrophenols measured in the
Strasbourg area, France, Atmos. Pollut. Res., 1, 16–22,
https://doi.org/10.5094/APR.2010.003, 2010.
Delort, A.-M., Vaïtilingom, M., Amato, P., Sancelme, M., Parazols, M.,
Mailhot, G., Laj, P., and Deguillaume, L.: A short overview of the microbial
population in clouds: Potential roles in atmospheric chemistry and
nucleation processes, Atmos. Res., 98, 249–260,
https://doi.org/10.1016/j.atmosres.2010.07.004, 2010.
Ervens, B., George, C., Williams, J. E., Buxton, G. V., Salmon, G. A.,
Bydder, M., Wilkinson, F., Dentener, F., Mirabel, P., Wolke, R., and
Herrmann, H.: CAPRAM2.4 (MODAC mechanism): An extended and condensed
tropospheric aqueous phase mechanism and its application, J. Geophys. Res.,
108, 4426, https://doi.org/10.1029/2002JD002202, 2003.
Ervens, B., Sorooshian, A., Lim, Y. B., and Turpin, B. J.: Key parameters
controlling OH-initiated formation of secondary organic aerosol in the
aqueous phase (aqSOA), J. Geophys. Res.-Atmos, 119, 3997–4016,
https://doi.org/10.1002/2013JD021021, 2014.
Fankhauser, A. M., Antonio, D. D., Krell, A., Alston, S. J., Banta, S., and
McNeill, V. F.: Constraining the Impact of Bacteria on the Aqueous
Atmospheric Chemistry of Small Organic Compounds, ACS Earth Space Chem.,
3, 1485–1491, https://doi.org/10.1021/acsearthspacechem.9b00054, 2019.
Guan, N. and Liu, L.: Microbial response to acid stress: mechanisms and
applications, Appl. Microbiol. Biot., 104, 51–65,
https://doi.org/10.1007/s00253-019-10226-1, 2020.
Gurol, M. D. and Nekouinaini, S.: Kinetic behavior of ozone in aqueous
solutions of substituted phenols, Ind. Eng. Chem. Fund., 23, 54–60,
https://doi.org/10.1021/i100013a011, 1984.
Harrison, M. A. J., Barra, S., Borghesi, D., Vione, D., Arsene, C., and
Olariu, R. I.: Nitrated phenols in the atmosphere: A review, Atmos. Environ., 39,
231–248, 2005.
Herrmann, H., Ervens, B., Jacobi, H.-W., Wolke, R., Nowacki, P., and Zellner,
R.: CAPRAM2.3: A Chemical Aqueous Phase Radical Mechanism for Tropospheric
Chemistry, J. Atmos. Chem., 36, 231–284, 2000.
Hinteregger, C., Leitner, R., Loidl, M., Ferschl, A., and Streichsbier, F.:
Degradation of phenol and phenolic compounds by Pseudomonas putida EKII,
Appl. Microbiol. Biot., 37, 252–259, https://doi.org/10.1007/BF00178180, 1992.
Hoffmann, E. H., Tilgner, A., Wolke, R., Böge, O.,
Walter, A., and Herrmann, H.: Oxidation of substituted aromatic hydrocarbons
in the tropospheric aqueous phase: kinetic mechanism development and
modelling, Phys. Chem. Chem. Phys., 20, 10960–10977,
https://doi.org/10.1039/C7CP08576A, 2018.
Hsieh, C.-C., Chang, K.-H., and Kao, Y.-S.: Estimating the ozone formation
potential of volatile aromatic compounds in vehicle tunnels, Chemosphere,
39, 1433–1444, https://doi.org/10.1016/S0045-6535(99)00045-4, 1999.
Husárová, S., Vaïtilingom, M., Deguillaume, L., Traikia, M.,
Vinatier, V., Sancelme, M., Amato, P., Matulová, M., and Delort, A.-M.:
Biotransformation of methanol and formaldehyde by bacteria isolated from
clouds. Comparison with radical chemistry, Atmos. Environ., 45,
6093–6102, https://doi.org/10.1016/j.atmosenv.2011.06.035, 2011.
Kumar, A., Bisht, B. S., Joshi, V. D., and Dhewa, T.: Review on
Bioremediation of Polluted Environment: A Management Tool, Int. J. Environ.
Sci., 1, 1079–1093, 2011.
Lallement, A., Besaury, L., Eyheraguibel, B., Amato, P., Sancelme, M.,
Mailhot, G., and Delort, A. M.: Draft Genome Sequence of Rhodococcus
enclensis 23b-28, a Model Strain Isolated from Cloud Water, Genome Announc.,
5, e01199-17, https://doi.org/10.1128/genomeA.01199-17, 2017.
Lallement, A., Vinatier, V., Brigante, M., Deguillaume, L., Delort, A. M., and Mailhot, G.: First evaluation of the effect of microorganisms on steady
state hydroxyl radical concentrations in atmospheric waters, Chemosphere,
212, 715–722, https://doi.org/10.1016/j.chemosphere.2018.08.128, 2018a.
Lallement, A., Besaury, L., Tixier, E., Sancelme, M., Amato, P., Vinatier, V., Canet, I., Polyakova, O. V., Artaev, V. B., Lebedev, A. T., Deguillaume, L., Mailhot, G., and Delort, A.-M.: Potential for phenol biodegradation in cloud waters, Biogeosciences, 15, 5733–5744, https://doi.org/10.5194/bg-15-5733-2018, 2018b.
Lebedev, A. T., Polyakova, O. V., Mazur, D. M., Artaev, V. B., Canet, I.,
Lallement, A., Vaïtilingom, M., Deguillaume, L., and Delort, A.-M.:
Detection of semi-volatile compounds in cloud waters by GC×GC-TOF-MS. Evidence of phenols and phthalates as priority pollutants,
Environ. Pollut., 241, 616–625, https://doi.org/10.1016/j.envpol.2018.05.089, 2018.
Levsen, K., Behnert, S., Mußmann, P., Raabe, M., and Prieß, B.:
Organic Compounds In Cloud And Rain Water, Int. J. Environ. An. Ch.,
52, 87–97, https://doi.org/10.1080/03067319308042851, 1993.
Li, J., Mailhot, G., Wu, F., and Deng, N.: Photochemical efficiency of
Fe(III)-EDDS complex: OH radical production and 17β-estradiol
degradation, J. Photochem. Photobiol. Chem., 212, 1–7,
https://doi.org/10.1016/j.jphotochem.2010.03.001, 2010.
Lüttke, J. and Levsen, K.: Phase partitioning of phenol and nitrophenols
in clouds, Atmos. Environ., 31, 2649–2655, https://doi.org/10.1016/S1352-2310(96)00228-2, 1997.
Lüttke, J., Scheer, V., Levsen, K., Wünsch, G., Neil Cape, J.,
Hargreaves, K. J., Storeton-West, R. L., Acker, K., Wieprecht, W., and Jones,
B.: Occurrence and formation of nitrated phenols in and out of cloud, Atmos. Environ., 31, 2637–2648, https://doi.org/10.1016/S1352-2310(96)00229-4, 1997.
Ng, N. L., Kroll, J. H., Chan, A. W. H., Chhabra, P. S., Flagan, R. C., and Seinfeld, J. H.: Secondary organic aerosol formation from m-xylene, toluene, and benzene, Atmos. Chem. Phys., 7, 3909–3922, https://doi.org/10.5194/acp-7-3909-2007, 2007.
Pillar, E. A., Camm, R. C., and Guzman, M. I.: Catechol Oxidation by Ozone
and Hydroxyl Radicals at the Air–Water Interface, Environ. Sci. Technol.,
4824), 14352–14360, https://doi.org/10.1021/es504094x, 2014.
Razika, B., Abbes, C., Messaoud, C., and Soufi, K.: Phenol and Benzoic Acid
Degradation by Pseudomonas aeruginosa, J. Water Resour. Prot., 2,
788–791, 2010.
Reasoner, D. J. and Geldreich, E. E.: A new medium for the enumeration and
subculture of bacteria from potable water, Appl. Environ. Microb., 49,
1–7, 1985.
Schwartz, S.: Mass transport considerations pertinent to aqueous phase
reactions of gases in liquid water clouds, in: Chemistry of Multiphase
Atmospheric Systems, vol. 6, edited by: Jaeschke, W., Springer,
Berlin, Germany, 415–471, 1986.
Straube, G.: Phenol hydroxylase from Rhodococcus sp. P 1, J. Basic
Microbiol., 27, 229–232, https://doi.org/10.1002/jobm.3620270415, 1987.
TOXNET Toxicology Data Network: TOXNET, Toxicol. Data Netw, available at: https://toxnet.nlm.nih.gov/ newtoxnet/hsdb.htm, last access: 6 November 2019.
Vaïtilingom, M., Amato, P., Sancelme, M., Laj, P., Leriche, M., and
Delort, A.-M.: Contribution of Microbial Activity to Carbon Chemistry in
Clouds, Appl. Environ. Microb., 76, 23–29, https://doi.org/10.1128/AEM.01127-09,
2010.
Vaïtilingom, M., Charbouillot, T., Deguillaume, L., Maisonobe, R., Parazols, M., Amato, P., Sancelme, M., and Delort, A.-M.: Atmospheric chemistry of carboxylic acids: microbial implication versus photochemistry, Atmos. Chem. Phys., 11, 8721–8733, https://doi.org/10.5194/acp-11-8721-2011, 2011.
Vaïtilingom, M., Attard, E., Gaiani, N., Sancelme, M., Deguillaume, L.,
Flossmann, A. I., Amato, P., and Delort, A.-M.: Long-term features of cloud
microbiology at the puy de Dôme (France), Atmos. Environ., 56,
88–100, https://doi.org/10.1016/j.atmosenv.2012.03.072, 2012.
Vaïtilingom, M., Deguillaume, L., Vinatier, V., Sancelme, M., Amato,
P., Chaumerliac, N., and Delort, A.-M.: Potential impact of microbial
activity on the oxidant capacity and organic carbon budget in clouds, P.
Natl. Acad. Sci. USA, 110, 559–564, https://doi.org/10.1073/pnas.1205743110, 2013.
Vinatier, V., Wirgot, N., Joly, M., Sancelme, M., Abrantes, M., Deguillaume,
L., and Delort, A.-M.: Siderophores in Cloud Waters and Potential Impact on
Atmospheric Chemistry: Production by Microorganisms Isolated at the Puy de
Dôme Station, Environ. Sci. Technol., 50, 9315–9323,
https://doi.org/10.1021/acs.est.6b02335, 2016.
Vione, D., Maurino, V., Minero, C., Vincenti, M., and Pelizzetti, E.:
Aromatic photonitration in homogeneous and heterogeneous aqueous systems,
Environ. Sci. Pollut. R., 10, 321–324, https://doi.org/10.1065/espr2001.12.104.1,
2003.
Watanabe, K.: Microorganisms relevant to bioremediation, Curr. Opin.
Biotechnol., 12, 237–241, https://doi.org/10.1016/S0958-1669(00)00205-6, 2001.
Wirgot, N., Vinatier, V., Deguillaume, L., Sancelme, M., and Delort, A.-M.: H2O2 modulates the energetic metabolism of the cloud microbiome, Atmos. Chem. Phys., 17, 14841–14851, https://doi.org/10.5194/acp-17-14841-2017, 2017.
Xie, M., Chen, X., Hays, M. D., Lewandowski, M., Offenberg, J., Kleindienst,
T. E., and Holder, A. L.: Light Absorption of Secondary Organic Aerosol:
Composition and Contribution of Nitroaromatic Compounds, Environ. Sci.
Technol., 51, 11607–11616, https://doi.org/10.1021/acs.est.7b03263, 2017.
Xu, C. and Wang, L.: Atmospheric Oxidation Mechanism of Phenol Initiated by
OH Radical, J. Phys. Chem. A, 117, 2358–2364, https://doi.org/10.1021/jp308856b,
2013.
Yu, L., Smith, J., Laskin, A., Anastasio, C., Laskin, J., and Zhang, Q.: Chemical characterization of SOA formed from aqueous-phase reactions of phenols with the triplet excited state of carbonyl and hydroxyl radical, Atmos. Chem. Phys., 14, 13801–13816, https://doi.org/10.5194/acp-14-13801-2014, 2014.
Yuan, B., Liggio, J., Wentzell, J., Li, S.-M., Stark, H., Roberts, J. M., Gilman, J., Lerner, B., Warneke, C., Li, R., Leithead, A., Osthoff, H. D., Wild, R., Brown, S. S., and de Gouw, J. A.: Secondary formation of nitrated phenols: insights from observations during the Uintah Basin Winter Ozone Study (UBWOS) 2014, Atmos. Chem. Phys., 16, 2139–2153, https://doi.org/10.5194/acp-16-2139-2016, 2016.
Short summary
Current atmospheric multiphase models do not include biotransformations of organic compounds by bacteria, although many previous studies of our and other research groups have shown microbial activity in cloud water. The current lab/model study shows that for water-soluble aromatic compounds, biodegradation by bacteria may be as efficient as chemical reactions in cloud water.
Current atmospheric multiphase models do not include biotransformations of organic compounds by...
Altmetrics
Final-revised paper
Preprint