Articles | Volume 20, issue 7
https://doi.org/10.5194/acp-20-4415-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-20-4415-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A revisiting of the parametrization of downward longwave radiation in summer over the Tibetan Plateau based on high-temporal-resolution measurements
Mengqi Liu
LAGEO, Institute of Atmospheric Physics, Chinese Academy of Sciences,
Beijing, 100029, China
College of Earth and Planetary Sciences, University of the Chinese
Academy of Sciences, Beijing, 100049, China
Xiangdong Zheng
CORRESPONDING AUTHOR
Chinese Academy of Meteorological Sciences, China Meteorological
Administration, Beijing, 100081, China
Jinqiang Zhang
LAGEO, Institute of Atmospheric Physics, Chinese Academy of Sciences,
Beijing, 100029, China
College of Earth and Planetary Sciences, University of the Chinese
Academy of Sciences, Beijing, 100049, China
Collaborative Innovation Center on Forecast and Evaluation of
Meteorological Disasters, Nanjing University of Information Science &
Technology, Nanjing, 210044, China
LAGEO, Institute of Atmospheric Physics, Chinese Academy of Sciences,
Beijing, 100029, China
College of Earth and Planetary Sciences, University of the Chinese
Academy of Sciences, Beijing, 100049, China
Collaborative Innovation Center on Forecast and Evaluation of
Meteorological Disasters, Nanjing University of Information Science &
Technology, Nanjing, 210044, China
Related authors
No articles found.
Zhou Zang, Jane Liu, David Tarasick, Omid Moeini, Jianchun Bian, Jinqiang Zhang, Anne M. Thompson, Roeland Van Malderen, Herman G. J. Smit, Ryan M. Stauffer, Bryan J. Johnson, and Debra E. Kollonige
Atmos. Chem. Phys., 24, 13889–13912, https://doi.org/10.5194/acp-24-13889-2024, https://doi.org/10.5194/acp-24-13889-2024, 2024
Short summary
Short summary
The Trajectory-mapped Ozonesonde dataset for the Stratosphere and Troposphere (TOST) provides a global-scale, long-term ozone climatology that is horizontally and vertically resolved. In this study, we improved, updated and validated TOST from 1970 to 2021. Based on this TOST dataset, we characterized global ozone variations spatially in both the troposphere and stratosphere and temporally by season and decade. We also showed a stagnant lower stratospheric ozone variation since the late 1990s.
Xinran Xia, Rubin Jiang, Min Min, Shengli Wu, Peng Zhang, and Xiangao Xia
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-395, https://doi.org/10.5194/essd-2024-395, 2024
Revised manuscript under review for ESSD
Short summary
Short summary
Based on the MicroWave Radiation Imager aboard FY-3 series satellites, we developed a global terrestrial precipitable water vapor dataset from 2012 to 2020. This dataset overcomes the limitations of infrared observations and provides accurate, all-weather PWV data ,spanning all types of land surface. Researchers are expected to leverage it to explore the role of water vapor in weather patterns, refine precipitation forecasting, and validate climate simulations.
Zhiheng Liao, Meng Gao, Jinqiang Zhang, Jiaren Sun, Jiannong Quan, Xingcan Jia, Yubing Pan, and Shaojia Fan
Atmos. Chem. Phys., 24, 3541–3557, https://doi.org/10.5194/acp-24-3541-2024, https://doi.org/10.5194/acp-24-3541-2024, 2024
Short summary
Short summary
This study collected 1897 ozonesondes from two Chinese megacities (Beijing and Hong Kong) in 2000–2022 to investigate the climatological vertical heterogeneity of lower-tropospheric ozone distribution with a mixing-layer-height-referenced (h-referenced) vertical coordinate system. This vertical coordinate system highlighted O3 stratification features existing at the mixing layer–free troposphere interface and provided a better understanding of O3 pollution in urban regions.
Weijun Quan, Zhenfa Wang, Lin Qiao, Xiangdong Zheng, Junli Jin, Yinruo Li, Xiaomei Yin, Zhiqiang Ma, and Martin Wild
Earth Syst. Sci. Data, 16, 961–983, https://doi.org/10.5194/essd-16-961-2024, https://doi.org/10.5194/essd-16-961-2024, 2024
Short summary
Short summary
Radiation components play important roles in various fields such as the Earth’s surface radiation budget, ecosystem productivity, and human health. In this study, a dataset consisting of quality-assured daily data of nine radiation components is presented based on the in situ measurements at the Shangdianzi regional GAW station in China during 2013–2022. The dataset can be applied in the validation of satellite products and numerical models and investigation of atmospheric radiation.
Wenying He, Hongbin Chen, Hongyong Yu, Jun Li, Jidong Pan, Shuqing Ma, Xuefen Zhang, Rang Guo, Bingke Zhao, Xi Chen, Xiangao Xia, and Kaicun Wang
Atmos. Meas. Tech., 17, 135–144, https://doi.org/10.5194/amt-17-135-2024, https://doi.org/10.5194/amt-17-135-2024, 2024
Short summary
Short summary
The Marine Weather Observer (MWO) system completed a long-term observation, actively approaching the center of Typhoon Sinlaku on 24 July–2 August 2020, over the South China Sea. The in situ observations were evaluated through comparison with buoy observations during the evolution of Typhoon Sinlaku. As a mobile observation station, MWO has shown its unique advantages over traditional observation methods, and the results preliminarily demonstrate the reliable observation capability of MWO.
Hui Xu, Jianping Guo, Bing Tong, Jinqiang Zhang, Tianmeng Chen, Xiaoran Guo, Jian Zhang, and Wenqing Chen
Atmos. Chem. Phys., 23, 15011–15038, https://doi.org/10.5194/acp-23-15011-2023, https://doi.org/10.5194/acp-23-15011-2023, 2023
Short summary
Short summary
The radiative effect of cloud remains one of the largest uncertain factors in climate change, largely due to the lack of cloud vertical structure (CVS) observations. The study presents the first near-global CVS climatology using high-vertical-resolution soundings. Single-layer cloud mainly occurs over arid regions. As the number of cloud layers increases, clouds tend to have lower bases and thinner layer thicknesses. The occurrence frequency of cloud exhibits a pronounced seasonal diurnal cycle.
Zhiheng Liao, Jinqiang Zhang, Yubin Pan, Xingcan Jia, Pengkun Ma, Qianqian Wang, Zhigang Cheng, Lindong Dai, and Jiannong Quan
EGUsphere, https://doi.org/10.5194/egusphere-2023-1393, https://doi.org/10.5194/egusphere-2023-1393, 2023
Preprint withdrawn
Short summary
Short summary
This study presents the first systematic assessment of observationally constrained UTLS O3 variability over the Northeast Asia region in the framework of upper-level circulation pattern classification. The results indicate that lower-stratospheric O3 exhibits a far stronger sensitivity to upper-level circulation patterns when compared with upper-tropospheric O3. The progression of the East Asian Trough plays a critical role in determining the location and intensity of O3 enhancements.
Yu Zheng, Huizheng Che, Yupeng Wang, Xiangao Xia, Xiuqing Hu, Xiaochun Zhang, Jun Zhu, Jibiao Zhu, Hujia Zhao, Lei Li, Ke Gui, and Xiaoye Zhang
Atmos. Meas. Tech., 15, 2139–2158, https://doi.org/10.5194/amt-15-2139-2022, https://doi.org/10.5194/amt-15-2139-2022, 2022
Short summary
Short summary
Ground-based observations of aerosols and aerosol data verification is important for satellite and climate model modification. Here we present an evaluation of aerosol microphysical, optical and radiative properties measured using a multiwavelength photometer with a highly integrated design and smart control performance. The validation of this product is discussed in detail using AERONET as a reference. This work contributes to reducing AOD uncertainties in China and combating climate change.
Ioana Elisabeta Popovici, Zhaoze Deng, Philippe Goloub, Xiangao Xia, Hongbin Chen, Luc Blarel, Thierry Podvin, Yitian Hao, Hongyan Chen, Disong Fu, Nan Yin, Benjamin Torres, Stéphane Victori, and Xuehua Fan
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1269, https://doi.org/10.5194/acp-2020-1269, 2021
Preprint withdrawn
Short summary
Short summary
This study reports results from MOABAI campaign (Mobile Observation of Atmosphere By vehicle-borne Aerosol measurement Instruments) in North China Plain in may 2017, a unique campaign involving a van equipped with remote sensing and in situ instruments to perform on-road mobile measurements. Aerosol optical properties and mass concentration profiles were derived, capturing the fine spatial distribution of pollution and concentration levels.
Yuli Zhang, Mengchu Tao, Jinqiang Zhang, Yi Liu, Hongbin Chen, Zhaonan Cai, and Paul Konopka
Atmos. Chem. Phys., 20, 13343–13354, https://doi.org/10.5194/acp-20-13343-2020, https://doi.org/10.5194/acp-20-13343-2020, 2020
Minqiang Zhou, Pucai Wang, Bavo Langerock, Corinne Vigouroux, Christian Hermans, Nicolas Kumps, Ting Wang, Yang Yang, Denghui Ji, Liang Ran, Jinqiang Zhang, Yuejian Xuan, Hongbin Chen, Françoise Posny, Valentin Duflot, Jean-Marc Metzger, and Martine De Mazière
Atmos. Meas. Tech., 13, 5379–5394, https://doi.org/10.5194/amt-13-5379-2020, https://doi.org/10.5194/amt-13-5379-2020, 2020
Short summary
Short summary
We study O3 retrievals in the 3040 cm-1 spectral range from FTIR measurements at Xianghe China (39.75° N, 116.96° E; 50 m a.s.l.) between June 2018 and December 2019. It was found that the FTIR O3 (3040 cm-1) retrievals capture the seasonal and synoptic variations of O3 very well. The systematic and random uncertainties of FTIR O3 (3040 cm-1) total column are about 13.6 % and 1.4 %, respectively. The DOFS is 2.4±0.3 (1σ), with two individual pieces of information in surface–20 km and 20–40 km.
Jiawei Li, Zhiwei Han, Yunfei Wu, Zhe Xiong, Xiangao Xia, Jie Li, Lin Liang, and Renjian Zhang
Atmos. Chem. Phys., 20, 8659–8690, https://doi.org/10.5194/acp-20-8659-2020, https://doi.org/10.5194/acp-20-8659-2020, 2020
Short summary
Short summary
Aerosol–radiation–climate interaction is one of the least understood mechanisms in air pollution and climate change. A coupled chemistry–climate model is developed to explore the mechanisms of haze evolution and aerosol radiative feedback in north China. The feedback exerts a significant impact on haze evolution. The contributions of physical and chemical processes to the feedback-induced aerosol changes are elucidated and quantified, providing new insights into the feedback mechanism.
Xiaoyu Sun, Minzheng Duan, Yang Gao, Rui Han, Denghui Ji, Wenxing Zhang, Nong Chen, Xiangao Xia, Hailei Liu, and Yanfeng Huo
Atmos. Meas. Tech., 13, 3595–3607, https://doi.org/10.5194/amt-13-3595-2020, https://doi.org/10.5194/amt-13-3595-2020, 2020
Short summary
Short summary
The accurate measurement of greenhouse gases and their vertical distribution in the atmosphere is significant to the study of climate change and satellite remote sensing. Carbon dioxide and methane between 0.6 and 7 km were measured by the aircraft King Air 350ER in Jiansanjiang, northeast China, on 7–11 August 2018. The profiles show strong variation with the altitude and time, so the vertical structure of gases should be taken into account in the current satellite retrieval algorithm.
Dan Li, Bärbel Vogel, Rolf Müller, Jianchun Bian, Gebhard Günther, Felix Ploeger, Qian Li, Jinqiang Zhang, Zhixuan Bai, Holger Vömel, and Martin Riese
Atmos. Chem. Phys., 20, 4133–4152, https://doi.org/10.5194/acp-20-4133-2020, https://doi.org/10.5194/acp-20-4133-2020, 2020
Short summary
Short summary
Low ozone and low water vapour signatures in the UTLS were investigated using balloon-borne measurements and trajectory calculations. The results show that deep convection in tropical cyclones over the western Pacific transports boundary air parcels with low ozone into the tropopause region. Subsequently, these air parcels are dehydrated when passing the lowest temperature region (< 190 K) during quasi-horizontal advection.
Jun Zhu, Xiangao Xia, Huizheng Che, Jun Wang, Zhiyuan Cong, Tianliang Zhao, Shichang Kang, Xuelei Zhang, Xingna Yu, and Yanlin Zhang
Atmos. Chem. Phys., 19, 14637–14656, https://doi.org/10.5194/acp-19-14637-2019, https://doi.org/10.5194/acp-19-14637-2019, 2019
Short summary
Short summary
The long-term temporal–spatial variations of the aerosol optical properties over the Tibetan Plateau (TP) based on the multiple ground-based sun photometer sites and the MODIS product are presented. Besides, the aerosol pollution and aerosol transport processes over the TP are also analyzed by the observations and models. The results in this region could help reduce the assessment uncertainties of aerosol radiative forcing and provide more information on aerosol transportation.
Huizheng Che, Xiangao Xia, Hujia Zhao, Oleg Dubovik, Brent N. Holben, Philippe Goloub, Emilio Cuevas-Agulló, Victor Estelles, Yaqiang Wang, Jun Zhu, Bing Qi, Wei Gong, Honglong Yang, Renjian Zhang, Leiku Yang, Jing Chen, Hong Wang, Yu Zheng, Ke Gui, Xiaochun Zhang, and Xiaoye Zhang
Atmos. Chem. Phys., 19, 11843–11864, https://doi.org/10.5194/acp-19-11843-2019, https://doi.org/10.5194/acp-19-11843-2019, 2019
Short summary
Short summary
A full-scale description of ground-based aerosol microphysical and optical properties over China is presented. Moreover, the results have also provided significant information about optical and radiative aerosol properties for different types of sites covering a broad expanse of China. The results have considerable value for ground-truthing satellite observations and validating aerosol models.
Huizheng Che, Ke Gui, Xiangao Xia, Yaqiang Wang, Brent N. Holben, Philippe Goloub, Emilio Cuevas-Agulló, Hong Wang, Yu Zheng, Hujia Zhao, and Xiaoye Zhang
Atmos. Chem. Phys., 19, 10497–10523, https://doi.org/10.5194/acp-19-10497-2019, https://doi.org/10.5194/acp-19-10497-2019, 2019
Short summary
Short summary
A comprehensive assessment of the global and regional AOD trends over the past 37 years (1980–2016) is presented. AOD observations from both AERONET and CARSNET were used for the first time to assess the performance of the MERRA-2 AOD dataset on a global scale. Based on statistical models, we found the meteorological parameters explained a larger proportion of the regional AOD variability (20.4 %–2.8 %) when compared with emission factors (0 %%–56 %).
Yunfei Wu, Yunjie Xia, Rujin Huang, Zhaoze Deng, Ping Tian, Xiangao Xia, and Renjian Zhang
Atmos. Meas. Tech., 12, 4347–4359, https://doi.org/10.5194/amt-12-4347-2019, https://doi.org/10.5194/amt-12-4347-2019, 2019
Short summary
Short summary
The morphology and effective density of externally mixed black carbon (extBC) aerosols were studied using a tandem technique coupling a DMA with a SP2. The study extended the mass–mobility relationship to large extBC with a mobility diameter larger than 350 nm, a size range seldom included in previous tandem measurements of BC aggregates. On this basis, quantities such as the mass–mobility scaling exponent were revealed for extBC in urban Beijing.
Qianshan He, Jianzhong Ma, Xiangdong Zheng, Xiaolu Yan, Holger Vömel, Frank G. Wienhold, Wei Gao, Dongwei Liu, Guangming Shi, and Tiantao Cheng
Atmos. Chem. Phys., 19, 8399–8406, https://doi.org/10.5194/acp-19-8399-2019, https://doi.org/10.5194/acp-19-8399-2019, 2019
Short summary
Short summary
An enhanced aerosol layer in the upper troposphere--lower stratosphere was observed by a COBALD over the Tibetan Plateau, in the summer of 2014. The color index of the enhanced aerosol layer indicates the prevalence of dominant fine particles with a mode radius < 0.1 μm. Unlike the very small particles at low relative humidity (RHi < 40%), the relatively large particles in the aerosol layer were generally very hydrophilic as their size increased dramatically with relative humidity.
Dan Li, Bärbel Vogel, Rolf Müller, Jianchun Bian, Gebhard Günther, Qian Li, Jinqiang Zhang, Zhixuan Bai, Holger Vömel, and Martin Riese
Atmos. Chem. Phys., 18, 17979–17994, https://doi.org/10.5194/acp-18-17979-2018, https://doi.org/10.5194/acp-18-17979-2018, 2018
Short summary
Short summary
Balloon-borne measurements performed over Lhasa in August 2013 are investigated using CLaMS trajectory calculations. Here, we focus on high ozone mixing ratios in the free troposphere. Our findings demonstrate that both stratospheric intrusions and convective transport of air pollution play a major role in enhancing middle and upper tropospheric ozone.
Amelie Driemel, John Augustine, Klaus Behrens, Sergio Colle, Christopher Cox, Emilio Cuevas-Agulló, Fred M. Denn, Thierry Duprat, Masato Fukuda, Hannes Grobe, Martial Haeffelin, Gary Hodges, Nicole Hyett, Osamu Ijima, Ain Kallis, Wouter Knap, Vasilii Kustov, Charles N. Long, David Longenecker, Angelo Lupi, Marion Maturilli, Mohamed Mimouni, Lucky Ntsangwane, Hiroyuki Ogihara, Xabier Olano, Marc Olefs, Masao Omori, Lance Passamani, Enio Bueno Pereira, Holger Schmithüsen, Stefanie Schumacher, Rainer Sieger, Jonathan Tamlyn, Roland Vogt, Laurent Vuilleumier, Xiangao Xia, Atsumu Ohmura, and Gert König-Langlo
Earth Syst. Sci. Data, 10, 1491–1501, https://doi.org/10.5194/essd-10-1491-2018, https://doi.org/10.5194/essd-10-1491-2018, 2018
Short summary
Short summary
The Baseline Surface Radiation Network (BSRN) collects and centrally archives high-quality ground-based radiation measurements in 1 min resolution. More than 10 300 months, i.e., > 850 years, of high-radiation data in 1 min resolution from the years 1992 to 2017 are available. The network currently comprises 59 stations collectively representing all seven continents as well as island-based stations in the Pacific, Atlantic, Indian and Arctic oceans.
Tianze Sun, Huizheng Che, Bing Qi, Yaqiang Wang, Yunsheng Dong, Xiangao Xia, Hong Wang, Ke Gui, Yu Zheng, Hujia Zhao, Qianli Ma, Rongguang Du, and Xiaoye Zhang
Atmos. Chem. Phys., 18, 2949–2971, https://doi.org/10.5194/acp-18-2949-2018, https://doi.org/10.5194/acp-18-2949-2018, 2018
Short summary
Short summary
The Yangtze River Delta (YRD) region is a key hub in China with air pollution problems. We applied various data from observations and satellites, finding particles in summer prefer hygroscopic growth leading to high scatter. Transported scatter particles lead to a cooling effect which lowers the boundary layer, creating positive feedback. Transported pollutants over YRD are from the North China Plain, northwestern deserts, and southern biomass burning. This finding helps air quality control.
Huizheng Che, Bing Qi, Hujia Zhao, Xiangao Xia, Thomas F. Eck, Philippe Goloub, Oleg Dubovik, Victor Estelles, Emilio Cuevas-Agulló, Luc Blarel, Yunfei Wu, Jun Zhu, Rongguang Du, Yaqiang Wang, Hong Wang, Ke Gui, Jie Yu, Yu Zheng, Tianze Sun, Quanliang Chen, Guangyu Shi, and Xiaoye Zhang
Atmos. Chem. Phys., 18, 405–425, https://doi.org/10.5194/acp-18-405-2018, https://doi.org/10.5194/acp-18-405-2018, 2018
Short summary
Short summary
Sun photometer measurements from seven sites in the Yangtze River Delta (YRD) from 2011 to 2015 were used to characterize the climatology of aerosol microphysical and optical properties, calculate direct aerosol radiative forcing (DARF) and classify aerosols based on size and absorption. This study contributes to our understanding of aerosols and regional climate/air quality, and the results will be useful for validating satellite retrievals and for improving climate models and remote sensing.
Xu Yue, Nadine Unger, Kandice Harper, Xiangao Xia, Hong Liao, Tong Zhu, Jingfeng Xiao, Zhaozhong Feng, and Jing Li
Atmos. Chem. Phys., 17, 6073–6089, https://doi.org/10.5194/acp-17-6073-2017, https://doi.org/10.5194/acp-17-6073-2017, 2017
Short summary
Short summary
While it is widely recognized that air pollutants adversely affect human health and climate change, their impacts on the regional carbon balance are less well understood. We apply an Earth system model to quantify the combined effects of ozone and aerosol particles on net primary production in China. Ozone vegetation damage dominates over the aerosol effects, leading to a substantial net suppression of land carbon uptake in the present and future worlds.
Dan Li, Bärbel Vogel, Jianchun Bian, Rolf Müller, Laura L. Pan, Gebhard Günther, Zhixuan Bai, Qian Li, Jinqiang Zhang, Qiujun Fan, and Holger Vömel
Atmos. Chem. Phys., 17, 4657–4672, https://doi.org/10.5194/acp-17-4657-2017, https://doi.org/10.5194/acp-17-4657-2017, 2017
Short summary
Short summary
High-resolution ozone and water vapour profiles over Lhasa, China, were measured in August 2013. The correlations between ozone and water vapour profiles show a strong variability in the upper troposphere. These relationships were investigated using CLaMS trajectory calculations. The model results demonstrate that three tropical cyclones (Jebi, Utor, and Trami), occurring over the western Pacific, had a strong impact on the vertical structure of ozone and water vapour profiles.
Guiqian Tang, Jinqiang Zhang, Xiaowan Zhu, Tao Song, Christoph Münkel, Bo Hu, Klaus Schäfer, Zirui Liu, Junke Zhang, Lili Wang, Jinyuan Xin, Peter Suppan, and Yuesi Wang
Atmos. Chem. Phys., 16, 2459–2475, https://doi.org/10.5194/acp-16-2459-2016, https://doi.org/10.5194/acp-16-2459-2016, 2016
Short summary
Short summary
This is the first paper to validate and characterize mixing layer height and discuss its relationship with air pollution, using a ceilometer in Beijing. The novelty, originality, and importance of this paper are as follows: (1) the applicable conditions of the ceilometer; (2) the variations of mixing layer height; (3) thermal/dynamic structure inside mixing layers with different degrees of pollution; and (4) critical meteorological conditions for the formation of heavy air pollution.
H. Che, X.-Y. Zhang, X. Xia, P. Goloub, B. Holben, H. Zhao, Y. Wang, X.-C. Zhang, H. Wang, L. Blarel, B. Damiri, R. Zhang, X. Deng, Y. Ma, T. Wang, F. Geng, B. Qi, J. Zhu, J. Yu, Q. Chen, and G. Shi
Atmos. Chem. Phys., 15, 7619–7652, https://doi.org/10.5194/acp-15-7619-2015, https://doi.org/10.5194/acp-15-7619-2015, 2015
Short summary
Short summary
This work studied more than 10 years of measurements of aerosol optical depths (AODs) made for 50 sites of CARSNET compiled into a climatology of aerosol optical properties for China. It lets us see a detailed full-scale description of AOD observations over China. The results would benefit us a lot in comprehending the temporal and special distribution aerosol optical property over China. Also the data would be valuable to communities of aerosol satellite retrieval, modelling, etc.
Y. Gao, M. Zhang, Z. Liu, L. Wang, P. Wang, X. Xia, M. Tao, and L. Zhu
Atmos. Chem. Phys., 15, 4279–4295, https://doi.org/10.5194/acp-15-4279-2015, https://doi.org/10.5194/acp-15-4279-2015, 2015
Short summary
Short summary
By using an online coupled meteorology and aerosol/chemistry model (WRF-Chem), the increase of surface PM2.5 concentration is estimated to be up to 30% during a severe fog--haze event (10--15 January 2013) over North China Plain owing to the aerosol-induced decreased surface temperature, wind speed and atmosphere boundary layer height, increased surface relative humidity, and more stable atmosphere. A mechanism of positive feedback exists and contributes to the formation of fog--haze events.
T. Stavrakou, J.-F. Müller, M. Bauwens, I. De Smedt, M. Van Roozendael, A. Guenther, M. Wild, and X. Xia
Atmos. Chem. Phys., 14, 4587–4605, https://doi.org/10.5194/acp-14-4587-2014, https://doi.org/10.5194/acp-14-4587-2014, 2014
H. Che, X. Xia, J. Zhu, Z. Li, O. Dubovik, B. Holben, P. Goloub, H. Chen, V. Estelles, E. Cuevas-Agulló, L. Blarel, H. Wang, H. Zhao, X. Zhang, Y. Wang, J. Sun, R. Tao, X. Zhang, and G. Shi
Atmos. Chem. Phys., 14, 2125–2138, https://doi.org/10.5194/acp-14-2125-2014, https://doi.org/10.5194/acp-14-2125-2014, 2014
H. Chen, Y. Zhu, J. Zhang, and Y. Xuan
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-6-8107-2013, https://doi.org/10.5194/amtd-6-8107-2013, 2013
Revised manuscript not accepted
X. Xia
Ann. Geophys., 31, 795–804, https://doi.org/10.5194/angeo-31-795-2013, https://doi.org/10.5194/angeo-31-795-2013, 2013
Related subject area
Subject: Radiation | Research Activity: Field Measurements | Altitude Range: Troposphere | Science Focus: Physics (physical properties and processes)
Broadband and filter radiometers at Ross Island, Antarctica: detection of cloud ice phase versus liquid water influences on shortwave and longwave radiation
Tethered balloon-borne observations of thermal-infrared irradiance and cooling rate profiles in the Arctic atmospheric boundary layer
Assessing the cloud radiative bias at Macquarie Island in the ACCESS-AM2 model
Surface energy balance fluxes in a suburban area of Beijing: energy partitioning variability
Effects of variable ice–ocean surface properties and air mass transformation on the Arctic radiative energy budget
Airborne observations of the surface cloud radiative effect during different seasons over sea ice and open ocean in the Fram Strait
Assessment of spectral UV radiation at Marambio Base, Antarctic Peninsula
Parameterization of downward long-wave radiation based on long-term baseline surface radiation measurements in China
An assessment of land energy balance over East Asia from multiple lines of evidence and the roles of the Tibet Plateau, aerosols, and clouds
Ozone, DNA-active UV radiation, and cloud changes for the near-global mean and at high latitudes due to enhanced greenhouse gas concentrations
In situ observation of warm atmospheric layer and the heat contribution of suspended dust over the Tarim Basin
Eight-year variations in atmospheric radiocesium in Fukushima city
Variability and trends in surface solar spectral ultraviolet irradiance in Italy: on the influence of geopotential height and lower-stratospheric ozone
Fifty-six years of surface solar radiation and sunshine duration over São Paulo, Brazil: 1961–2016
Changes in the surface broadband shortwave radiation budget during the 2017 eclipse
Reassessment of shortwave surface cloud radiative forcing in the Arctic: consideration of surface-albedo–cloud interactions
Deposition of brown carbon onto snow: changes in snow optical and radiative properties
Solar UV radiation measurements in Marambio, Antarctica, during years 2017–2019
Trends in surface radiation and cloud radiative effect at four Swiss sites for the 1996–2015 period
Can downwelling far-infrared radiances over Antarctica be estimated from mid-infrared information?
Measurements of spectral irradiance during the solar eclipse of 21 August 2017: reassessment of the effect of solar limb darkening and of changes in total ozone
UV measurements at Marambio and Ushuaia during 2000–2010
On the suitability of current atmospheric reanalyses for regional warming studies over China
A long-term time series of global and diffuse photosynthetically active radiation in the Mediterranean: interannual variability and cloud effects
Long-term series and trends in surface solar radiation in Athens, Greece
Reconstruction and analysis of erythemal UV radiation time series from Hradec Králové (Czech Republic) over the past 50 years
Trends in erythemal doses at the Polish Polar Station, Hornsund, Svalbard based on the homogenized measurements (1996–2016) and reconstructed data (1983–1995)
Effects of vernal equinox solar eclipse on temperature and wind direction in Switzerland
Sky radiance at a coastline and effects of land and ocean reflectivities
Impact of aerosols and clouds on decadal trends in all-sky solar radiation over the Netherlands (1966–2015)
Contributions of surface solar radiation and precipitation to the spatiotemporal patterns of surface and air warming in China from 1960 to 2003
Multiresolution analysis of the spatiotemporal variability in global radiation observed by a dense network of 99 pyranometers
Validation of satellite-based noontime UVI with NDACC ground-based instruments: influence of topography, environment and satellite overpass time
Is global dimming and brightening in Japan limited to urban areas?
The climatology of planetary boundary layer height in China derived from radiosonde and reanalysis data
Detection of dimming/brightening in Italy from homogenized all-sky and clear-sky surface solar radiation records and underlying causes (1959–2013)
Comparison of land–atmosphere interaction at different surface types in the mid- to lower reaches of the Yangtze River valley
Spectral optical layer properties of cirrus from collocated airborne measurements and simulations
Local short-term variability in solar irradiance
The contrasting roles of water and dust in controlling daily variations in radiative heating of the summertime Saharan heat low
Global dimming and urbanization: did stronger negative SSR trends collocate with regions of population growth?
Short- and long-term variability of spectral solar UV irradiance at Thessaloniki, Greece: effects of changes in aerosols, total ozone and clouds
On the progress of the 2015–2016 El Niño event
Role of radiatively forced temperature changes in enhanced semi-arid warming in the cold season over east Asia
Assessment of long-term WRF–CMAQ simulations for understanding direct aerosol effects on radiation "brightening" in the United States
Comparison of OMI UV observations with ground-based measurements at high northern latitudes
Characterisation of J(O1D) at Cape Grim 2000–2005
On the scaling of the solar incident flux
Analysis of actinic flux profiles measured from an ozonesonde balloon
Relations between erythemal UV dose, global solar radiation, total ozone column and aerosol optical depth at Uccle, Belgium
Kristopher Scarci, Ryan C. Scott, Madison L. Ghiz, Andrew M. Vogelmann, and Dan Lubin
Atmos. Chem. Phys., 24, 6681–6697, https://doi.org/10.5194/acp-24-6681-2024, https://doi.org/10.5194/acp-24-6681-2024, 2024
Short summary
Short summary
We demonstrate what can be learned about an Antarctic region's climate from basic atmospheric irradiance measurements made by broadband and filter radiometers, instruments suitable for deployment at very remote sites, assisted by meteorological reanalysis and satellite remote sensing. Analysis of shortwave and longwave irradiance reveals subtle contrasts between meteorological regimes favoring cloud ice versus liquid water, relevant to onset versus inhibition of surface melt over ice shelves.
Michael Lonardi, Elisa F. Akansu, André Ehrlich, Mauro Mazzola, Christian Pilz, Matthew D. Shupe, Holger Siebert, and Manfred Wendisch
Atmos. Chem. Phys., 24, 1961–1978, https://doi.org/10.5194/acp-24-1961-2024, https://doi.org/10.5194/acp-24-1961-2024, 2024
Short summary
Short summary
Profiles of thermal-infrared irradiance were measured at two Arctic sites. The presence or lack of clouds influences the vertical structure of these observations. In particular, the cloud top region is a source of radiative energy that can promote cooling and mixing in the cloud layer. Simulations are used to further characterize how the amount of water in the cloud modifies this forcing. A case study additionally showcases the evolution of the radiation profiles in a dynamic atmosphere.
Zhangcheng Pei, Sonya L. Fiddes, W. John R. French, Simon P. Alexander, Marc D. Mallet, Peter Kuma, and Adrian McDonald
Atmos. Chem. Phys., 23, 14691–14714, https://doi.org/10.5194/acp-23-14691-2023, https://doi.org/10.5194/acp-23-14691-2023, 2023
Short summary
Short summary
In this paper, we use ground-based observations to evaluate a climate model and a satellite product in simulating surface radiation and investigate how radiation biases are influenced by cloud properties over the Southern Ocean. We find that significant radiation biases exist in both the model and satellite. The cloud fraction and cloud occurrence play an important role in affecting radiation biases. We suggest further development for the model and satellite using ground-based observations.
Junxia Dou, Sue Grimmond, Shiguang Miao, Bei Huang, Huimin Lei, and Mingshui Liao
Atmos. Chem. Phys., 23, 13143–13166, https://doi.org/10.5194/acp-23-13143-2023, https://doi.org/10.5194/acp-23-13143-2023, 2023
Short summary
Short summary
Multi-timescale variations in surface energy fluxes in a suburb of Beijing are analyzed using 16-month observations. Compared to previous suburban areas, this study site has larger seasonal variability in energy partitioning, and summer and winter Bowen ratios are at the lower and higher end of those at other suburban sites, respectively. Our analysis indicates that precipitation, irrigation, crop/vegetation growth activity, and land use/cover all play critical roles in energy partitioning.
Manfred Wendisch, Johannes Stapf, Sebastian Becker, André Ehrlich, Evelyn Jäkel, Marcus Klingebiel, Christof Lüpkes, Michael Schäfer, and Matthew D. Shupe
Atmos. Chem. Phys., 23, 9647–9667, https://doi.org/10.5194/acp-23-9647-2023, https://doi.org/10.5194/acp-23-9647-2023, 2023
Short summary
Short summary
Atmospheric radiation measurements have been conducted during two field campaigns using research aircraft. The data are analyzed to see if the near-surface air in the Arctic is warmed or cooled if warm–humid air masses from the south enter the Arctic or cold–dry air moves from the north from the Arctic to mid-latitude areas. It is important to study these processes and to check if climate models represent them well. Otherwise it is not possible to reliably forecast the future Arctic climate.
Sebastian Becker, André Ehrlich, Michael Schäfer, and Manfred Wendisch
Atmos. Chem. Phys., 23, 7015–7031, https://doi.org/10.5194/acp-23-7015-2023, https://doi.org/10.5194/acp-23-7015-2023, 2023
Short summary
Short summary
This study analyses the variability of the warming or cooling effect of clouds on the Arctic surface. Therefore, aircraft radiation measurements were performed over sea ice and open ocean during three seasonally different campaigns. It is found that clouds cool the open-ocean surface most strongly in summer. Over sea ice, clouds warm the surface in spring but have a neutral effect in summer. Due to the variable sea ice extent, clouds warm the surface during spring but cool it during late summer.
Klára Čížková, Kamil Láska, Ladislav Metelka, and Martin Staněk
Atmos. Chem. Phys., 23, 4617–4636, https://doi.org/10.5194/acp-23-4617-2023, https://doi.org/10.5194/acp-23-4617-2023, 2023
Short summary
Short summary
The study deals with ultraviolet (UV) radiation in southern polar conditions, where ozone depletion occurs each spring. A 10-year-long time series of UV spectra from Marambio Base, Antarctic Peninsula, has been studied, with a focus on the changes of UV radiation at different wavelengths and the effects of atmospheric and terrestrial variables like ozone, solar elevation, or cloudiness. At the very short wavelengths, the effect of ozone and its deficiency was clearly observed.
Junli Yang, Jianglin Hu, Qiying Chen, and Weijun Quan
Atmos. Chem. Phys., 23, 4419–4430, https://doi.org/10.5194/acp-23-4419-2023, https://doi.org/10.5194/acp-23-4419-2023, 2023
Short summary
Short summary
Downward long-wave radiation (DLR) affects energy exchange between the land surface and the atmosphere, while it is seldom observed at conventional radiation stations. Therefore, parameterization of DLR based on the near-surface meteorological variables provides a chance to estimate the DLR over most meteorological stations. This work established three parameterizations suited to estimating the DLR over China by using the measurements from the CBSRN with an accuracy of ~6.1 %.
Qiuyan Wang, Hua Zhang, Su Yang, Qi Chen, Xixun Zhou, Bing Xie, Yuying Wang, Guangyu Shi, and Martin Wild
Atmos. Chem. Phys., 22, 15867–15886, https://doi.org/10.5194/acp-22-15867-2022, https://doi.org/10.5194/acp-22-15867-2022, 2022
Short summary
Short summary
The present-day land energy balance over East Asia is estimated for the first time. Results indicate that high aerosol loadings, clouds, and the Tibet Plateau (TP) over East Asia play vital roles in the shortwave budgets, while the TP is responsible for the longwave budgets during this regional energy budget assessment. This study provides a perspective to understand fully how the potential factors influence the diversifying regional energy budget assessments.
Kostas Eleftheratos, John Kapsomenakis, Ilias Fountoulakis, Christos S. Zerefos, Patrick Jöckel, Martin Dameris, Alkiviadis F. Bais, Germar Bernhard, Dimitra Kouklaki, Kleareti Tourpali, Scott Stierle, J. Ben Liley, Colette Brogniez, Frédérique Auriol, Henri Diémoz, Stana Simic, Irina Petropavlovskikh, Kaisa Lakkala, and Kostas Douvis
Atmos. Chem. Phys., 22, 12827–12855, https://doi.org/10.5194/acp-22-12827-2022, https://doi.org/10.5194/acp-22-12827-2022, 2022
Short summary
Short summary
We present the future evolution of DNA-active ultraviolet (UV) radiation in view of increasing greenhouse gases (GHGs) and decreasing ozone depleting substances (ODSs). It is shown that DNA-active UV radiation might increase after 2050 between 50° N–50° S due to GHG-induced reductions in clouds and ozone, something that is likely not to happen at high latitudes, where DNA-active UV radiation will continue its downward trend mainly due to stratospheric ozone recovery from the reduction in ODSs.
Chenglong Zhou, Yuzhi Liu, Qingzhe Zhu, Qing He, Tianliang Zhao, Fan Yang, Wen Huo, Xinghua Yang, and Ali Mamtimin
Atmos. Chem. Phys., 22, 5195–5207, https://doi.org/10.5194/acp-22-5195-2022, https://doi.org/10.5194/acp-22-5195-2022, 2022
Short summary
Short summary
Based on the radiosonde observations, an anomalously warm layer is measured at altitudes between 500 and 300 hPa over the Tarim Basin (TB) with an average intensity of 2.53 and 1.39 K in the spring and summer, respectively. The heat contributions of dust to this anomalously warm atmospheric layer in spring and summer were 13.77 and 10.25 %, respectively. Topographically, the TB is adjacent to the Tibetan Plateau; we propose the concept of the Tibetan heat source’s northward extension.
Akira Watanabe, Mizuo Kajino, Kazuhiko Ninomiya, Yoshitaka Nagahashi, and Atsushi Shinohara
Atmos. Chem. Phys., 22, 675–692, https://doi.org/10.5194/acp-22-675-2022, https://doi.org/10.5194/acp-22-675-2022, 2022
Short summary
Short summary
This study summarizes continuous measurements of surface air concentrations and deposition of radiocesium in Fukushima city over 8 years after the Fukushima nuclear accident. The concentration in the city was high in winter and low in summer (inverse of the forest area). The decreasing trends were much faster in the earlier stage, probably because dissolved cesium discharged faster from the local environment. Biotite might play a key role in circulation of particulate cesium in Fukushima city.
Ilias Fountoulakis, Henri Diémoz, Anna Maria Siani, Alcide di Sarra, Daniela Meloni, and Damiano M. Sferlazzo
Atmos. Chem. Phys., 21, 18689–18705, https://doi.org/10.5194/acp-21-18689-2021, https://doi.org/10.5194/acp-21-18689-2021, 2021
Short summary
Short summary
The variability and trends of solar spectral UV irradiance have been studied for the periods 1996–2020 (for Rome) and 2006–2020 (for Lampedusa, Rome, and Aosta) with respect to the variability and trends of total ozone and geopotential height. Analyses revealed increasing UV in particular months at all sites, possibly due to decreasing lower-stratospheric ozone (at Rome in 1996–2020) and decreasing attenuation by aerosols and/or clouds (at all stations in 2006–2020).
Marcia Akemi Yamasoe, Nilton Manuel Évora Rosário, Samantha Novaes Santos Martins Almeida, and Martin Wild
Atmos. Chem. Phys., 21, 6593–6603, https://doi.org/10.5194/acp-21-6593-2021, https://doi.org/10.5194/acp-21-6593-2021, 2021
Short summary
Short summary
Spatio-temporal disparity to assess global dimming and brightening phenomena has been a critical topic. For instance, few studies addressed surface solar irradiation (SSR) long-term trend in South America. In this study, SSR, sunshine duration (SD) and the diurnal temperature range (DTR) are analysed for São Paulo, Brazil. We found a dimming phase, identified by SSR, SD and DTR, extending till 1983. Then, while SSR is still declining, consistent with cloud increasing, SD and DTR are increasing.
Guoyong Wen, Alexander Marshak, Si-Chee Tsay, Jay Herman, Ukkyo Jeong, Nader Abuhassan, Robert Swap, and Dong Wu
Atmos. Chem. Phys., 20, 10477–10491, https://doi.org/10.5194/acp-20-10477-2020, https://doi.org/10.5194/acp-20-10477-2020, 2020
Short summary
Short summary
We combine the ground-based observations and radiative transfer model to quantify the impact of the 2017 solar eclipse on surface shortwave irradiation reduction. We find that the eclipse caused local reductions of time-averaged surface flux of about 379 W m-2 (50 %) and 329 W m-2 (46 %) during the ~ 3 h course of the eclipse at the Casper and Columbia sites, respectively. We estimate that the Moon’s shadow caused a reduction of approximately 7 %–8 % in global average surface broadband SW radiation.
Johannes Stapf, André Ehrlich, Evelyn Jäkel, Christof Lüpkes, and Manfred Wendisch
Atmos. Chem. Phys., 20, 9895–9914, https://doi.org/10.5194/acp-20-9895-2020, https://doi.org/10.5194/acp-20-9895-2020, 2020
Nicholas D. Beres, Deep Sengupta, Vera Samburova, Andrey Y. Khlystov, and Hans Moosmüller
Atmos. Chem. Phys., 20, 6095–6114, https://doi.org/10.5194/acp-20-6095-2020, https://doi.org/10.5194/acp-20-6095-2020, 2020
Short summary
Short summary
Brown carbon (BrC) aerosol can be produced by the smoldering combustion of peat, a wildland fuel common at high latitude, often adjacent to the cryosphere. However, little is known about how BrC deposition onto snow changes snow optical and radiative properties. Here, we artificially deposited BrC onto natural snow surfaces, monitored changes of the spectral surface albedo, characterized optical properties of deposited aerosol, and compared to modeled values of albedo and radiative forcing.
Margit Aun, Kaisa Lakkala, Ricardo Sanchez, Eija Asmi, Fernando Nollas, Outi Meinander, Larisa Sogacheva, Veerle De Bock, Antti Arola, Gerrit de Leeuw, Veijo Aaltonen, David Bolsée, Klara Cizkova, Alexander Mangold, Ladislav Metelka, Erko Jakobson, Tove Svendby, Didier Gillotay, and Bert Van Opstal
Atmos. Chem. Phys., 20, 6037–6054, https://doi.org/10.5194/acp-20-6037-2020, https://doi.org/10.5194/acp-20-6037-2020, 2020
Short summary
Short summary
In 2017, new measurements of UV radiation started in Marambio, Antarctica, by the Finnish Meteorological Institute in collaboration with the Argentinian Servicio Meteorológico Nacional. The paper presents the results of UV irradiance measurements from March 2017 to March 2019, and it
compares them with those from 2000–2008 and also with UV measurements at other Antarctic stations. In 2017/2018, below average UV radiation levels were recorded due to favourable ozone and cloud conditions.
Stephan Nyeki, Stefan Wacker, Christine Aebi, Julian Gröbner, Giovanni Martucci, and Laurent Vuilleumier
Atmos. Chem. Phys., 19, 13227–13241, https://doi.org/10.5194/acp-19-13227-2019, https://doi.org/10.5194/acp-19-13227-2019, 2019
Short summary
Short summary
The trends of meteorological parameters and surface downward shortwave radiation (DSR) and downward longwave radiation (DLR) were analysed at four stations (between 370 and 3580 m a. s. l.) in Switzerland for the 1996–2015 period. Trends in DSR and DLR were positive during cloudy as well as clear conditions. The trend due to the influence of clouds decreased in magnitude, which implies a reduction in cloud cover and/or a change towards a different cloud type over the four Swiss sites.
Christophe Bellisario, Helen E. Brindley, Simon F. B. Tett, Rolando Rizzi, Gianluca Di Natale, Luca Palchetti, and Giovanni Bianchini
Atmos. Chem. Phys., 19, 7927–7937, https://doi.org/10.5194/acp-19-7927-2019, https://doi.org/10.5194/acp-19-7927-2019, 2019
Short summary
Short summary
We explore the possibility of inferring far-infrared downwelling radiances from mid-infrared observations to better constrain radiation schemes in climate models. Our results imply that while it is feasible to use this type of approach, the quality of the extension will be strongly dependent on the noise characteristics of the observations and on the accurate characterisation of the atmospheric state.
Germar Bernhard and Boyan Petkov
Atmos. Chem. Phys., 19, 4703–4719, https://doi.org/10.5194/acp-19-4703-2019, https://doi.org/10.5194/acp-19-4703-2019, 2019
Short summary
Short summary
Solar radiation at ultraviolet, visible, and infrared wavelengths was measured during the total solar eclipse of 21 August 2017. Data were used to study the wavelength-dependent changes of solar radiation at Earth’s surface and to validate parameterizations of solar limb darkening (LD), which describes the change in the Sun’s brightness between its center and its edge. The study highlights the importance of the LD effect when calculating total ozone and aerosol optical depth during an eclipse.
Kaisa Lakkala, Alberto Redondas, Outi Meinander, Laura Thölix, Britta Hamari, Antonio Fernando Almansa, Virgilio Carreno, Rosa Delia García, Carlos Torres, Guillermo Deferrari, Hector Ochoa, Germar Bernhard, Ricardo Sanchez, and Gerrit de Leeuw
Atmos. Chem. Phys., 18, 16019–16031, https://doi.org/10.5194/acp-18-16019-2018, https://doi.org/10.5194/acp-18-16019-2018, 2018
Short summary
Short summary
Solar UV irradiances were measured at Ushuaia (54° S) and Marambio (64° S) during 2000–2013. The measurements were part of the Antarctic NILU-UV network, which was maintained as a cooperation between Spain, Argentina and Finland. The time series of the network were analysed for the first time in this study. At both stations maximum UV indices and daily doses were measured when spring-time ozone loss episodes occurred. The maximum UV index was 13 and 12 in Ushuaia and Marambio, respectively.
Chunlüe Zhou, Yanyi He, and Kaicun Wang
Atmos. Chem. Phys., 18, 8113–8136, https://doi.org/10.5194/acp-18-8113-2018, https://doi.org/10.5194/acp-18-8113-2018, 2018
Pamela Trisolino, Alcide di Sarra, Fabrizio Anello, Carlo Bommarito, Tatiana Di Iorio, Daniela Meloni, Francesco Monteleone, Giandomenico Pace, Salvatore Piacentino, and Damiano Sferlazzo
Atmos. Chem. Phys., 18, 7985–8000, https://doi.org/10.5194/acp-18-7985-2018, https://doi.org/10.5194/acp-18-7985-2018, 2018
Short summary
Short summary
The long-term (2002–2016) variability of global and diffuse PAR over the central Mediterranean is investigated based on measurements from Lampedusa. PAR modulates biological processes and this study provides useful insight into its variability. Seasonal and interannual variability of global and diffuse PAR is characterized and the effects of clouds are quantified. The analysis suggests that 77 % of the global PAR interannual variability may be ascribed to clouds.
Stelios Kazadzis, Dimitra Founda, Basil E. Psiloglou, Harry Kambezidis, Nickolaos Mihalopoulos, Arturo Sanchez-Lorenzo, Charikleia Meleti, Panagiotis I. Raptis, Fragiskos Pierros, and Pierre Nabat
Atmos. Chem. Phys., 18, 2395–2411, https://doi.org/10.5194/acp-18-2395-2018, https://doi.org/10.5194/acp-18-2395-2018, 2018
Short summary
Short summary
The National Observatory of Athens has been collecting solar radiation, sunshine duration, and cloud and visibility data/observations since the beginning of the 20th century. In this work we present surface solar radiation data since 1953 and reconstructed data since 1900. We have attempted to show and discuss the long-term changes in solar surface radiation over Athens, Greece, using these unique datasets.
Klára Čížková, Kamil Láska, Ladislav Metelka, and Martin Staněk
Atmos. Chem. Phys., 18, 1805–1818, https://doi.org/10.5194/acp-18-1805-2018, https://doi.org/10.5194/acp-18-1805-2018, 2018
Short summary
Short summary
In order to broaden the knowledge of long-term UV radiation variability, we have reconstructed and analyzed a 50-year-long UV radiation time series from Hradec Králové, Czech Republic. The UV radiation intensities increased greatly following the decline of ozone amounts in the 1980s and 1990s. High UV radiation doses were observed in days with low ozone amounts, clear or partly cloudy skies, or snow cover.
Janusz W. Krzyścin and Piotr S. Sobolewski
Atmos. Chem. Phys., 18, 1–11, https://doi.org/10.5194/acp-18-1-2018, https://doi.org/10.5194/acp-18-1-2018, 2018
Short summary
Short summary
Maintaining homogeneity of long-term UV time series taken from various instruments and thus trend estimation are challenging tasks, especially for remote Arctic sites.
Highlights: method of the UV data homogenization is proposed to be used at any remote site. Past UV data built from satellite total O3 and ground-based sunshine duration. Yearly UV doses trendless in the southern Svalbard for 34-year period since 1983. Long-term cloud effects on UV more important than the ozone effects there.
Werner Eugster, Carmen Emmel, Sebastian Wolf, Nina Buchmann, Joseph P. McFadden, and Charles David Whiteman
Atmos. Chem. Phys., 17, 14887–14904, https://doi.org/10.5194/acp-17-14887-2017, https://doi.org/10.5194/acp-17-14887-2017, 2017
Short summary
Short summary
The effects of penumbral shading of the solar eclipse of 20 March 2015 on near-surface meteorology across Switzerland (occultation 65.8–70.1 %) was investigated. Temperature effects at 184 weather stations are compared with temperature drops reported in the literature since 1834. A special focus is, however, put on wind direction effects observed at six flux sites (with 20 Hz data) and 165 meteorological stations (with 10 min resolution data). Results show the importance of local topography.
Axel Kreuter, Mario Blumthaler, Martin Tiefengraber, Richard Kift, and Ann R. Webb
Atmos. Chem. Phys., 17, 14353–14364, https://doi.org/10.5194/acp-17-14353-2017, https://doi.org/10.5194/acp-17-14353-2017, 2017
Short summary
Short summary
We have done measurements of the sky's brightness at the Italian coast and show the influence of the underlying surface: looking towards the land, the sky can be up to 50 % brighter than opposite viewing directions towards the ocean as a result of higher land reflectivity. At low solar elevations, the specular reflection from the ocean, or sun glint, increases the zenith brightness. Understanding these effects requires a 3-D model and is important when retrieving, e.g., aerosol properties.
Reinout Boers, Theo Brandsma, and A. Pier Siebesma
Atmos. Chem. Phys., 17, 8081–8100, https://doi.org/10.5194/acp-17-8081-2017, https://doi.org/10.5194/acp-17-8081-2017, 2017
Short summary
Short summary
In the Netherlands 9 W m−2 more solar radiation falls on the surface today than 50 years ago. Often this increase, which has also been detected in surrounding western Europe, has been attributed to decreasing air pollution due to improved regulatory practices. However, over the Netherlands clouds play an important but ambiguous role. Cloud cover has increased but have become optically thinner as well. Here, the impact of clouds on radiation is in fact more important than that of air pollution.
Jizeng Du, Kaicun Wang, Jiankai Wang, and Qian Ma
Atmos. Chem. Phys., 17, 4931–4944, https://doi.org/10.5194/acp-17-4931-2017, https://doi.org/10.5194/acp-17-4931-2017, 2017
Bomidi Lakshmi Madhavan, Hartwig Deneke, Jonas Witthuhn, and Andreas Macke
Atmos. Chem. Phys., 17, 3317–3338, https://doi.org/10.5194/acp-17-3317-2017, https://doi.org/10.5194/acp-17-3317-2017, 2017
Short summary
Short summary
A method has been introduced to assess the representativeness of the time series of a point measurement compared to results for a larger area centered around the measurement location. This method allows one to determine the optimal accuracy that can be achieved for the validation of satellite products for a given pixel footprint, or the evaluation of an atmospheric model with a given grid-cell resolution.
Colette Brogniez, Frédérique Auriol, Christine Deroo, Antti Arola, Jukka Kujanpää, Béatrice Sauvage, Niilo Kalakoski, Mikko Riku Aleksi Pitkänen, Maxime Catalfamo, Jean-Marc Metzger, Guy Tournois, and Pierre Da Conceicao
Atmos. Chem. Phys., 16, 15049–15074, https://doi.org/10.5194/acp-16-15049-2016, https://doi.org/10.5194/acp-16-15049-2016, 2016
Short summary
Short summary
The atmospheric ozone layer is changing, thus the UV radiation at the surface is changing. Due to both beneficial and adverse effects of UV on the biosphere, monitoring of UV is essential. Satellite sensors provide estimates of UV at the surface with a global coverage. Validation of satellite-sensor UV is therefore needed and this can be done by comparison with ground-based measurements. The present validation in three sites (midlatitude, tropical) shows that OMI and GOME-2 provide reliable UV.
Katsumasa Tanaka, Atsumu Ohmura, Doris Folini, Martin Wild, and Nozomu Ohkawara
Atmos. Chem. Phys., 16, 13969–14001, https://doi.org/10.5194/acp-16-13969-2016, https://doi.org/10.5194/acp-16-13969-2016, 2016
Short summary
Short summary
Surface solar radiation observed in Japan generally shows a strong decline until the end of the 1980s and then a recovery up until around 2000. A substantial number of measurement stations are located close to populated areas and are speculated to have been influenced by air pollution. However, data obtained at 14 meteorological observatories suggest that the large decadal variations in surface solar radiation occur on a large scale and not limited to urban areas.
Jianping Guo, Yucong Miao, Yong Zhang, Huan Liu, Zhanqing Li, Wanchun Zhang, Jing He, Mengyun Lou, Yan Yan, Lingen Bian, and Panmao Zhai
Atmos. Chem. Phys., 16, 13309–13319, https://doi.org/10.5194/acp-16-13309-2016, https://doi.org/10.5194/acp-16-13309-2016, 2016
Short summary
Short summary
The large-scale PBL climatology from sounding observations is still lacking in China. This work investigated the BLH characterization at diurnal, monthly and seasonal timescales throughout China, showing large geographic and meteorological dependences. BLH is, on average, negatively (positively) associated with the surface pressure and lower tropospheric stability (wind speed and temperature). Cloud tends to suppress the development of the PBL, which has implications for air quality forecasts.
Veronica Manara, Michele Brunetti, Angela Celozzi, Maurizio Maugeri, Arturo Sanchez-Lorenzo, and Martin Wild
Atmos. Chem. Phys., 16, 11145–11161, https://doi.org/10.5194/acp-16-11145-2016, https://doi.org/10.5194/acp-16-11145-2016, 2016
Short summary
Short summary
This paper presents the temporal evolution of solar radiation over Italy for the 1959–2013 period and discusses possible reasons for differences between all-sky and clear-sky conditions in order to understand which part of the solar radiation variability depends on aerosols or clouds. The results give evidence of a relevant influence of both anthropogenic and natural aerosols on solar radiation long-term variability.
Weidong Guo, Xueqian Wang, Jianning Sun, Aijun Ding, and Jun Zou
Atmos. Chem. Phys., 16, 9875–9890, https://doi.org/10.5194/acp-16-9875-2016, https://doi.org/10.5194/acp-16-9875-2016, 2016
Short summary
Short summary
Basic characteristics of land–atmosphere interactions at four neighboring sites with different underlying surfaces in southern China, a typical monsoon region, are analyzed systematically. Despite the same climate background, the differences in land surface characteristics like albedo and aerodynamic roughness length due to land use/cover change exert distinct influences on the surface radiative budget and energy allocation and result in differences of near-surface micrometeorological elements.
Fanny Finger, Frank Werner, Marcus Klingebiel, André Ehrlich, Evelyn Jäkel, Matthias Voigt, Stephan Borrmann, Peter Spichtinger, and Manfred Wendisch
Atmos. Chem. Phys., 16, 7681–7693, https://doi.org/10.5194/acp-16-7681-2016, https://doi.org/10.5194/acp-16-7681-2016, 2016
Short summary
Short summary
Solar spectra of optical layer properties of cirrus have been derived from the first truly collocated airborne radiation measurements using an aircraft and a towed sensor platform. The measured layer properties differ slightly due to horizontal cirrus inhomogeneities and the influence of low-level water clouds. Applying a 1-D radiative transfer model sensitivity studies were performed. It was found that if a low-level cloud is not considered, the solar cooling of the cirrus is strongly overestimated.
Gerald M. Lohmann, Adam H. Monahan, and Detlev Heinemann
Atmos. Chem. Phys., 16, 6365–6379, https://doi.org/10.5194/acp-16-6365-2016, https://doi.org/10.5194/acp-16-6365-2016, 2016
Short summary
Short summary
Increasing numbers of photovoltaic (PV) power systems call for the characterization of irradiance variability with very high spatiotemporal resolution. We use 1 Hz irradiance data recorded by as many as 99 pyranometers and show mixed sky conditions to differ substantially from clear and overcast skies. For example, the probabilities of strong fluctuations and their respective spatial autocorrelation structures are appreciably distinct under mixed conditions.
John H. Marsham, Douglas J. Parker, Martin C. Todd, Jamie R. Banks, Helen E. Brindley, Luis Garcia-Carreras, Alexander J. Roberts, and Claire L. Ryder
Atmos. Chem. Phys., 16, 3563–3575, https://doi.org/10.5194/acp-16-3563-2016, https://doi.org/10.5194/acp-16-3563-2016, 2016
Short summary
Short summary
The roles of water, clouds and airborne dust in controlling the heating of the Sahara are uncertain, which has major implications for the West African monsoon. Observations from the Fennec project, with satellite data, show that total atmospheric water content provides a far stronger control on total radiative heating than dust does, but dust provides the stronger control on surface heating. Therefore major heating errors in global models are likely due to known errors in water transport.
Adel Imamovic, Katsumasa Tanaka, Doris Folini, and Martin Wild
Atmos. Chem. Phys., 16, 2719–2725, https://doi.org/10.5194/acp-16-2719-2016, https://doi.org/10.5194/acp-16-2719-2016, 2016
Short summary
Short summary
Systematic measurements of surface solar radiation revealed a worldwide decrease from the 1960s to the mid-1980s. The role of urbanization for this so called global dimming is still under debate. We developed a set of population-data based urbanization indicators and found no correlation between urbanization and global dimming for Europe and Japan, while an urbanization impact can't be precluded for Asia. It is thus called into question whether the global dimming was mainly a local phenomenon.
Ilias Fountoulakis, Alkiviadis F. Bais, Konstantinos Fragkos, Charickleia Meleti, Kleareti Tourpali, and Melina Maria Zempila
Atmos. Chem. Phys., 16, 2493–2505, https://doi.org/10.5194/acp-16-2493-2016, https://doi.org/10.5194/acp-16-2493-2016, 2016
Short summary
Short summary
Short- and long-term variability of spectral UV irradiance at Thessaloniki, Greece, is discussed in association with changes in total ozone column, aerosols and cloudiness. The UV data set from two Brewer spectrophotometers is used for the analysis. For the entire period 1994–2014, positive, statistically significant increases of UV irradiance were found, mainly attributable to changes in aerosols. UV irradiance is mainly increased from 1994 to 2006 and remains relatively stable thereafter.
Costas A. Varotsos, Chris G. Tzanis, and Nicholas V. Sarlis
Atmos. Chem. Phys., 16, 2007–2011, https://doi.org/10.5194/acp-16-2007-2016, https://doi.org/10.5194/acp-16-2007-2016, 2016
Short summary
Short summary
It has been recently reported that the current 2015–2016 El Niño could become "one of the strongest on record". To further explore this claim, we performed a new analysis that allows the detection of precursory signals of the strong El Niño events by using a recently developed non-linear dynamics tool. The analysis of the SOI time series shows that the 2015–2016 El Niño would be rather a "moderate to strong" or even a "strong” event and not "one of the strongest on record", as that of 1997–1998.
X. Guan, J. Huang, R. Guo, H. Yu, P. Lin, and Y. Zhang
Atmos. Chem. Phys., 15, 13777–13786, https://doi.org/10.5194/acp-15-13777-2015, https://doi.org/10.5194/acp-15-13777-2015, 2015
Short summary
Short summary
Dynamical adjustment methodology has been applied to the raw surface air temperature and has successfully identified and separated the contribution of dynamically induced temperature (DIT) and radiatively forced temperature (RFT). It found that regional anthropogenic radiative forcing caused the enhanced warming in the semi-arid region, which may be closely associated with local human activities.
C.-M. Gan, J. Pleim, R. Mathur, C. Hogrefe, C. N. Long, J. Xing, D. Wong, R. Gilliam, and C. Wei
Atmos. Chem. Phys., 15, 12193–12209, https://doi.org/10.5194/acp-15-12193-2015, https://doi.org/10.5194/acp-15-12193-2015, 2015
Short summary
Short summary
This study attempts to determine the consequences of the changes in tropospheric aerosol burden arising from substantial reductions in emissions of SO2 and NOx associated with control measures under the Clean Air Act especially on trends in solar radiation. Comparisons of model results with observations of aerosol optical depth, aerosol concentration, and radiation demonstrate that the coupled WRF-CMAQ model is capable of replicating the trends well even though it tends to underestimate the AOD.
G. Bernhard, A. Arola, A. Dahlback, V. Fioletov, A. Heikkilä, B. Johnsen, T. Koskela, K. Lakkala, T. Svendby, and J. Tamminen
Atmos. Chem. Phys., 15, 7391–7412, https://doi.org/10.5194/acp-15-7391-2015, https://doi.org/10.5194/acp-15-7391-2015, 2015
Short summary
Short summary
Surface erythemal UV data from the Ozone Monitoring Instrument (OMI) are validated for high northern latitudes (Arctic and Scandinavia) using ground-based measurements. The bias in OMI data caused by incorrect assumptions of the surface albedo are quantified and the mechanism that causes this bias is discussed. Methods to improve the accuracy of OMI data products are presented.
S. R. Wilson
Atmos. Chem. Phys., 15, 7337–7349, https://doi.org/10.5194/acp-15-7337-2015, https://doi.org/10.5194/acp-15-7337-2015, 2015
Short summary
Short summary
Measurements of the photolysis rates which drive production of OH from ozone are reported for Cape Grim, a "clean-air" site in the southern midlatitudes. This remote maritime site sits in the Southern Ocean, a region of the globe which is little studied. From the 6 years of data the dependence of this photolysis on solar zenith angle and stratospheric ozone is determined. Included with the reported values is an estimate of the uncertainties in these measurements.
C. A. Varotsos, S. Lovejoy, N. V. Sarlis, C. G. Tzanis, and M. N. Efstathiou
Atmos. Chem. Phys., 15, 7301–7306, https://doi.org/10.5194/acp-15-7301-2015, https://doi.org/10.5194/acp-15-7301-2015, 2015
Short summary
Short summary
Varotsos et al. (Theor. Appl. Climatol., 114, 725–727, 2013) found that the solar ultraviolet (UV) wavelengths exhibit 1/f-type power-law correlations. In this study, we show that the residues of the spectral solar incident flux with respect to the Planck law over a wider range of wavelengths (i.e. UV-visible) have a scaling regime too.
P. Wang, M. Allaart, W. H. Knap, and P. Stammes
Atmos. Chem. Phys., 15, 4131–4144, https://doi.org/10.5194/acp-15-4131-2015, https://doi.org/10.5194/acp-15-4131-2015, 2015
Short summary
Short summary
A green light sensor has been developed at KNMI to measure actinic flux profiles together with an ozonesonde. The impact of clouds on the actinic flux is clearly detected. Good agreement is found between the DAK-simulated actinic flux profiles and the observations for single-layer clouds in fully overcast scenes. The instrument is suitable for operational balloon measurements because of its simplicity and low cost.
V. De Bock, H. De Backer, R. Van Malderen, A. Mangold, and A. Delcloo
Atmos. Chem. Phys., 14, 12251–12270, https://doi.org/10.5194/acp-14-12251-2014, https://doi.org/10.5194/acp-14-12251-2014, 2014
Cited articles
Ångström, A.: A study of the radiation of the atmosphere,
Smithsonian Miscellaneous Collection, 65, 1–159, 1915.
Arking, A.: The radiative effects of clouds and their impact on climate,
B. Am. Meteorol. Soc., 72, 795–813, https://doi.org/10.1175/1520-0477(1991)072<0795:Treoca>2.0.Co;2, 1991.
Brunt, D.: Notes on radiation in the atmosphere, Q. J. Roy. Meteor. Soc.,
58, 389–420, 1932.
Brutsaert, W.: On a derivable formula for long-wave radiation from clear
skies, Water Resour. Res., 11, 742–744, 1975.
Che, H., Xia, X., Zhao, H., Dubovik, O., Holben, B. N., Goloub, P., Cuevas-Agulló, E., Estelles, V., Wang, Y., Zhu, J., Qi, B., Gong, W., Yang, H., Zhang, R., Yang, L., Chen, J., Wang, H., Zheng, Y., Gui, K., Zhang, X., and Zhang, X.: Spatial distribution of aerosol microphysical and optical properties and direct radiative effect from the China Aerosol Remote Sensing Network, Atmos. Chem. Phys., 19, 11843–11864, https://doi.org/10.5194/acp-19-11843-2019, 2019.
Crawford, T. M. and Duchon, C. E.: An improved parameterization for
estimating effective atmospheric emissivity for use in calculating daytime
downwelling longwave radiation, J. Appl. Meteorol., 38, 474–480, 1998.
Deardorff, J. W.: Efficient prediction of ground surface temperature and
moisture, with an inclusion of a layer of vegetation, J. Geophys. Res., 83,
1889–1903, 1978.
Dilley, A. C. and O'Brien, D. M.: Estimating downward clear sky long-wave irradiance at the surface from screen temperature and precipitable water, Q. J. Roy. Meteor. Soc., 124, 1391–1401, https://doi.org/10.1002/qj.49712454903, 1998.
Duan, A. and Wu, G.: Change of cloud amount and the climate warming on the
Tibetan Plateau, Geophys. Res. Lett., 33, L22704, https://doi.org/10.1029/2006gl027946, 2006.
Duarte, H. F., Dias, N. L., and Maggiotto, S. R.: Assessing daytime downward
longwave radiation estimates for clear and cloudy skies in Southern Brazil,
Agr. Forest. Meteorol., 139, 171–181, https://doi.org/10.1016/j.agrformet.2006.06.008, 2006.
Duchon, C. E. and O'Malley, M. S.: Estimating cloud type from pyranometer
observations, J. Appl. Meteorol., 38, 132–141, 1999.
Dupont, J. C., Haeffelin, M., Drobinski, P., and Besnard, T.: Parametric
model to estimate clear-sky longwave irradiance at the surface on the basis
of vertical distribution of humidity and temperature, J. Geophys. Res., 113, D07203,
https://doi.org/10.1029/2007jd009046, 2008.
Dürr, B. and Philipona, R.: Automatic cloud amount detection by surface
longwave downward radiation measurements, J. Geophys. Res., 109, D05201,
https://doi.org/10.1029/2003jd004182, 2004.
Gubler, S., Gruber, S., and Purves, R. S.: Uncertainties of parameterized surface downward clear-sky shortwave and all-sky longwave radiation., Atmos. Chem. Phys., 12, 5077–5098, https://doi.org/10.5194/acp-12-5077-2012, 2012.
He, Q. S., Li, C. C., Ma, J. Z., Wang, H. Q., Shi, G. M., Liang, Z. R.,
Luan, Q., Geng, F. H., and Zhou, X. W.: The properties and formation of
cirrus clouds over the Tibetan Plateau based on summertime lidar
measurements, J. Atmos. Sci., 70, 901–915, https://doi.org/10.1175/jas-d-12-0171.1, 2013.
Idso, S. B.: A set of equations for full spectrum and 8 to 14 µm and
10.5 to 12.5 µm thermal radiation from cloudless skies, Water Resource
Res., 17, 295–304, 1981.
Idso, S. B. and Jackson, R. D.: Thermal radiation from the atmosphere,
J. Geophys. Res., 74, 4167–4178, 1969.
Iqbal, M.: An Introduction to Solar Radiation, Academic Press, Toronto,
Canada, 1983.
Iziomon, M. G., Mayer, H., and Matzarakis, A.: Downward atmospheric longwave
irradiance under clear and cloudy skies: measurement and parameterization,
J. Atmos. Sol.-Terr. Phys., 65, 1107–1116, 2003.
Jacobs, J. D.: Radiation climate of Broughton Island, in: Energy Budget
Studies in Relation to Fast-ice Breakup Processes in Davis Strait, edited by:
Barry, R. G. and Jacobs, J. D., Inst. of Arctic and Alp. Res. Occas. Paper
No. 26, University of Colorado, Boulder, 105–120, 1978.
James, G., Witten, D., Hastie, T., and Tibshirani, R.: An Introduction to
Statistical Learning: with Applications in R, Springer-Verlag New York, USA,
2013.
Kato, S., Rose, F., Sun, S., Miller, W., Chen, Y., Rutan, D., Stephens, G.,
Loeb, N., Minnis, P., Wielicki, B., Winker, D., Charlock, T., Stackhouse Jr.,
P., Xu, K. M., and Collins, W.: Improvements of top-of-atmosphere and
surface irradiance computations with CALIPSO-, CloudSat-, and MODIS-derived
cloud and aerosol properties, J. Geophys. Res., 116, D19209,
https://doi.org/10.1029/2011JD016050, 2011.
Kiehl, J. T. and Trenberth, K. E.: Earth's annual global mean energy
budget, B. Am. Meteorol. Soc., 78, 197–208, 1997.
Konzelmann, T., van de Wal, R. S. W., Greuell, W., Bintanja, R., Henneken,
E. A. C., and Abe-Ouchi, A.: Parameterization of global and longwave
incoming radiation for the Greenland Ice Sheet, Global Planet. Change, 9,
143–164, 1994.
Li, M. Y., Jiang, Y. J., and Coimbra, C. F. M.: On the determination of
atmospheric longwave irradiance under all-sky conditions, Sol. Energy., 144,
40–48, https://doi.org/10.1016/j.solener.2017.01.006, 2017.
Liang, H., Zhang, R. H., Liu, J. M., Sun, Z. A., and Cheng, X. H.:
Estimation of hourly solar radiation at the surface under cloudless
conditions on the Tibetan Plateau using a simple radiation model, Adv.
Atmos. Sci., 29, 675–689, https://doi.org/10.1007/s00376-012-1157-1, 2012.
Long, C. N. and Ackerman, T. P.: Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects, J. Geophys. Res.-Atmos., 105, 15609–15626, https://doi.org/10.1029/2000jd900077, 2000.
Long, C. N. and Turner, D. D.: A method for continuous estimation of
clear-sky downwelling longwave radiative flux developed using ARM surface
measurements, J. Geophys. Res., 113, 15609–15626, https://doi.org/10.1029/2008jd009936, 2008.
Long, C. N., Ackerman, T. P., Gaustad, K. L., and Cole, J. N. S.: Estimation
of fractional sky cover from broadband shortwave radiometer measurements, J.
Geophys. Res., 111, D11204, https://doi.org/10.1029/2005jd006475, 2006.
Marthews, T. R., Malhi, Y., and Iwata, H.: Calculating downward longwave
radiation under clear and cloudy conditions over a tropical lowland forest
site: an evaluation of model schemes for hourly data, Theor. Appl.
Climatol., 107, 461–477, https://doi.org/10.1007/s00704-011-0486-9, 2012.
Marty, C. and Philipona, R.: The Clear-Sky Index to separate clear-sky from
cloudy-sky situations in climate research, Geophys. Res. Lett., 27,
2649–2652, https://doi.org/10.1029/2000gl011743, 2000.
Maykut, G. A. and Church P. E.: Radiation climate of Barrow, Alaska,
1962–1966, J. Appl. Meteorol., 12, 620–628, 1973.
Michel, D., Philipona, R., Ruckstuhl, C., Vogt, R., and Vuilleumier, L.: Performance and Uncertainty of CNR1 Net Radiometers during a One-Year Field Comparison, J. Atmos. Ocean. Tech., 25, 442–451, https://doi.org/10.1175/2007jtecha973.1, 2008.
Niemelä, S., Räisänen, P., and Savijärvi, H.: Comparison of
surface radiative flux parameterizations: Part I: Longwave radiation, Atmos.
Res., 58, 1–18, 2001.
Orsini, A., Tomasi, C., Calzolari, F., Nardino, M., Cacciari, A., and
Georgiadis, T.: Cloud cover classification through simultaneous ground-based
measurements of solar and infrared radiation, Atmos. Res., 61, 251–275, https://doi.org/10.1016/s0169-8095(02)00003-0, 2002.
Prata, A. J.: A new long-wave formula for estimating downward clear-sky
radiation at the surface, Q. J. Roy. Meteor. Soc., 122, 1127–1151, 1996.
Rangwala, I., Miller, J. R., and Xu, M.: Warming in the Tibetan plateau:
possible influences of the changes in surface water vapor, Geophys. Res.
Lett., 36, 295–311, 2009.
Satterlund, D. R.: An improved equation for estimating longwave radiation
from the atmosphere, Water Resour. Res., 15, 1649–1650, 1979.
Stephens, G. L., Wild, M., Stackhouse Jr., P. W., L'Ecuyer, T., Kato, S.,
and Henderson, D. S.: The global character of the flux of downward longwave
radiation, J. Climate, 25, 2329–2340, https://doi.org/10.1175/jcli-d-11-00262.1, 2012.
Stoffel, T.: Solar infrared radiation station (SIRS) handbook, Tech. Rep.,
ARM TR-025, Atmos. Rad. Mea. Program, U.S. Dep. of Energy, Washington, DC,
2005.
Sugita, M. and Brutsaert, W.: Cloud effect in the estimation of
instantaneous downward longwave radiation, Water Resour. Res.,
29, 599-605, https://doi.org/10.1029/92wr02352, 1993.
Sutter, M., Dürr, B., and Philipona, R.: Comparison of two radiation algorithms for surface-based cloud-free sky detection, J. Geophys. Res.-Atmos., 109, D17202, https://doi.org/10.1029/2004jd004582, 2004.
Swinbank, W. C.: Long-wave radiation from clear skies, Q. J. Roy. Meteor.
Soc., 89, 330–348, 1963.
Viúdez-Mora, A., Costa-Surós, M., Calbó, J., and González,
J. A.: Modeling atmospheric longwave radiation at the surface during
overcast skies: The role of cloud base height, J. Geophys. Res.-Atmos., 120,
199–214, https://doi.org/10.1002/2014JD022310, 2015.
Wang, K. and Dickinson, R. E.: Global atmospheric downward longwave
radiation at the surface from ground-based observations, satellite
retrievals, and re-analyses, Rev. Geophys., 51, 150–185, https://doi.org/10.1002/rog.20009, 2013.
Wang, K. and Liang, S.: Global atmospheric downward longwave radiation over
land surface under all-sky conditions from 1973 to 2008, J. Geophys. Res.,
114, D19101, https://doi.org/10.1029/2009jd011800, 2009.
Yang, K., Ding, B., Qin, J., Tang, W., Lu, N., and Lin, C.: Can aerosol
loading explain the solar dimming over the Tibetan Plateau?, Geophys. Res.
Lett., 39, L20710, https://doi.org/10.1029/2012gl053733, 2012.
Zhao, X., Peng, B., Qin, N., and Wang, W.: Characteristics of Energy Transfer
and Micrometeorology in Surface Layer in Different Areas of Tibetan Plateau
in Summer, Plateau and mountain Meteorology Research, 31,
6–11, 2011 (in Chinese).
Zhu, M. L., Yao, T. D., Yang, W., Xu, B. Q., and Wang, X. J.: Evaluation of
parameterizations of incoming longwave radiation in the high-mountain region
of the Tibetan Plateau, J. Appl. Meteorol. Clim., 56, 833–848, https://doi.org/10.1175/jamc-d-16-0189.1, 2017.
Short summary
This study uses 1 min radiation and lidar measurements at three stations over the Tibetan Plateau (TP) to parametrize downward longwave radiation (DLR) during summer months. Clear-sky DLR can be estimated from the best parametrization with a RMSE of 3.8 W m-2 and R2 > 0.98. Additionally cloud base height under overcast conditions is shown to play an important role in cloudy DLR parametrization, which is considered in the locally calibrated parametrization over the TP for the first time.
This study uses 1 min radiation and lidar measurements at three stations over the Tibetan...
Altmetrics
Final-revised paper
Preprint